/usr/include/trilinos/Tsqr_MatView.hpp is in libtrilinos-tpetra-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_Tsqr_MatView_hpp
#define __TSQR_Tsqr_MatView_hpp
#include <cstring> // NULL
// Define for bounds checking and other safety features, undefine for speed.
// #define TSQR_MATVIEW_DEBUG 1
#ifdef TSQR_MATVIEW_DEBUG
# include <limits>
#endif // TSQR_MATVIEW_DEBUG
#include <sstream>
#include <stdexcept>
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
namespace TSQR {
template< class MatrixViewType1, class MatrixViewType2 >
void
deep_copy (MatrixViewType1& A, const MatrixViewType2& B)
{
const typename MatrixViewType1::ordinal_type A_nrows = A.nrows ();
const typename MatrixViewType1::ordinal_type A_ncols = A.ncols ();
if (A_nrows != B.nrows () || A_ncols != B.ncols ()) {
using std::endl;
std::ostringstream os;
os << "deep_copy: dimensions of A (output matrix) and B (input matrix) "
<< "are not compatible. A is " << A.nrows () << " x " << A.ncols ()
<< ", and B is " << B.nrows () << " x " << B.ncols () << ".";
throw std::invalid_argument(os.str());
}
for (typename MatrixViewType1::ordinal_type j = 0; j < A_ncols; ++j) {
typename MatrixViewType1::scalar_type* const A_j = &A(0,j);
const typename MatrixViewType2::scalar_type* const B_j = &B(0,j);
for (typename MatrixViewType1::ordinal_type i = 0; i < A_nrows; ++i) {
A_j[i] = B_j[i];
}
}
}
template< class FirstMatrixViewType, class SecondMatrixViewType >
bool
matrix_equal (FirstMatrixViewType& A, SecondMatrixViewType& B)
{
if (A.nrows() != B.nrows() || A.ncols() != B.ncols())
return false;
typedef typename FirstMatrixViewType::ordinal_type first_ordinal_type;
typedef typename SecondMatrixViewType::ordinal_type second_ordinal_type;
typedef typename FirstMatrixViewType::pointer_type first_pointer_type;
typedef typename SecondMatrixViewType::pointer_type second_pointer_type;
const first_ordinal_type nrows = A.nrows();
const first_ordinal_type A_lda = A.lda();
const first_ordinal_type ncols = A.ncols();
const second_ordinal_type B_lda = B.lda();
first_pointer_type A_j = A.get();
second_pointer_type B_j = B.get();
for (first_ordinal_type j = 0; j < ncols; ++j, A_j += A_lda, B_j += B_lda)
for (first_ordinal_type i = 0; i < nrows; ++i)
if (A_j[i] != B_j[i])
return false;
return true;
}
#ifdef TSQR_MATVIEW_DEBUG
template< class Ordinal, class Scalar >
class MatViewVerify {
public:
static void
verify (const Ordinal num_rows,
const Ordinal num_cols,
const Scalar* const A,
const Ordinal leading_dim)
{
using std::endl;
bool good = true;
std::ostringstream os;
if (! std::numeric_limits<Ordinal>::is_integer) {
good = false;
os << "Error: Ordinal type must be an integer.";
}
if (std::numeric_limits<Ordinal>::is_signed) {
if (num_rows < 0) {
good = false;
os << "Error: num_rows (= " << num_rows << ") < 0.";
}
if (num_cols < 0) {
good = false;
os << "Error: num_cols (= " << num_cols << ") < 0.";
}
if (leading_dim < 0) {
good = false;
os << "Error: leading_dim (= " << leading_dim << ") < 0.";
}
}
if (leading_dim < num_rows) {
good = false;
os << "Error: leading_dim (= " << leading_dim << ") < num_rows (= "
<< num_rows << ").";
}
if (! good) {
throw std::invalid_argument (os.str ());
}
}
};
#endif // TSQR_MATVIEW_DEBUG
// Forward declaration
template< class Ordinal, class Scalar >
class ConstMatView;
// Forward declaration
template< class Ordinal, class Scalar >
class Matrix;
/// \class MatView
///
/// A read-and-write nonowning view of a column-oriented matrix.
template< class Ordinal, class Scalar >
class MatView {
public:
typedef Scalar scalar_type;
typedef Ordinal ordinal_type;
typedef Scalar* pointer_type;
/// \note g++ with -Wall wants A_ to be initialized after lda_,
/// otherwise it emits a compiler warning.
MatView () : nrows_(0), ncols_(0), lda_(0), A_(NULL) {}
MatView (const Ordinal num_rows,
const Ordinal num_cols,
Scalar* const A,
const Ordinal leading_dim) :
nrows_(num_rows),
ncols_(num_cols),
lda_(leading_dim),
A_(A)
{
#ifdef TSQR_MATVIEW_DEBUG
MatViewVerify< Ordinal, Scalar >::verify (num_rows, num_cols, A, leading_dim);
#endif // TSQR_MATVIEW_DEBUG
}
MatView (const MatView& view) :
nrows_(view.nrows()),
ncols_(view.ncols()),
lda_(view.lda()),
A_(view.get())
{}
//! Assignment operator: Does a shallow (pointer) assignment.
MatView& operator= (const MatView& view) {
if (this != &view) {
nrows_ = view.nrows ();
ncols_ = view.ncols ();
A_ = view.get ();
lda_ = view.lda ();
}
return *this;
}
/// \note The function is const, only because returning a
/// reference to the matrix data doesn't change any members of
/// *this. Of course one may use the resulting reference to
/// change an entry in the matrix, but that doesn't affect the
/// MatView's properties.
Scalar& operator() (const Ordinal i, const Ordinal j) const
{
#ifdef TSQR_MATVIEW_DEBUG
if (std::numeric_limits< Ordinal >::is_signed) {
if (i < 0 || i >= nrows()) {
throw std::invalid_argument("Row range invalid");
}
else if (j < 0 || j >= ncols()) {
throw std::invalid_argument("Column range invalid");
}
}
else {
if (i >= nrows()) {
throw std::invalid_argument("Row range invalid");
}
else if (j >= ncols()) {
throw std::invalid_argument("Column range invalid");
}
}
if (A_ == NULL) {
throw std::logic_error("Attempt to reference NULL data");
}
#endif // TSQR_MATVIEW_DEBUG
return A_[i + j*lda()];
}
Ordinal nrows() const { return nrows_; }
Ordinal ncols() const { return ncols_; }
Ordinal lda() const { return lda_; }
/// \note The function is const, only because returning A_ doesn't
/// change any members of *this. Of course one may use the
/// resulting pointer to fiddle with entries in the matrix, but
/// that doesn't affect the MatView's properties.
pointer_type get() const { return A_; }
bool empty() const { return nrows() == 0 || ncols() == 0; }
/// Return a "row block" (submatrix of consecutive rows in the
/// inclusive range [firstRow,lastRow]).
MatView row_block (const Ordinal firstRow, const Ordinal lastRow)
{
#ifdef TSQR_MATVIEW_DEBUG
if (std::numeric_limits< Ordinal >::is_signed) {
if (firstRow < 0 || firstRow > lastRow || lastRow >= nrows()) {
throw std::invalid_argument ("Row range invalid");
}
}
else {
if (firstRow > lastRow || lastRow >= nrows()) {
throw std::invalid_argument ("Row range invalid");
}
}
#endif // TSQR_MATVIEW_DEBUG
return MatView (lastRow - firstRow + 1, ncols(), get() + firstRow, lda());
}
/// Split off and return the top cache block of nrows_top rows.
/// Modify *this to be the "rest" of the matrix.
///
/// \note Only use this method to split off a single cache block.
/// It breaks if you try to use it otherwise.
///
/// \param nrows_top [in] Number of rows in the top block (which
/// this method returns)
///
/// \param b_contiguous_blocks [in] Whether or not the entries of
/// the top block are stored contiguously in *this. The default
/// is no (false).
///
/// \return The top block of nrows_top rows. Data is a shallow
/// copy of the data in *this.
MatView split_top (const Ordinal nrows_top,
const bool b_contiguous_blocks = false)
{
#ifdef TSQR_MATVIEW_DEBUG
if (std::numeric_limits< Ordinal >::is_signed && nrows_top < 0)
{
std::ostringstream os;
os << "nrows_top (= " << nrows_top << ") < 0";
throw std::invalid_argument (os.str());
}
else if (nrows_top > nrows())
{
std::ostringstream os;
os << "nrows_top (= " << nrows_top << ") > nrows (= " << nrows() << ")";
throw std::invalid_argument (os.str());
}
#endif // TSQR_MATVIEW_DEBUG
Scalar* const A_top_ptr = get();
Scalar* A_rest_ptr;
const Ordinal nrows_rest = nrows() - nrows_top;
Ordinal lda_top, lda_rest;
if (b_contiguous_blocks)
{
lda_top = nrows_top;
lda_rest = nrows_rest;
A_rest_ptr = A_top_ptr + nrows_top * ncols();
}
else
{
lda_top = lda();
lda_rest = lda();
A_rest_ptr = A_top_ptr + nrows_top;
}
MatView A_top (nrows_top, ncols(), get(), lda_top);
A_ = A_rest_ptr;
nrows_ = nrows_rest;
lda_ = lda_rest;
return A_top;
}
/// Split off and return the bottom block. Modify *this to be the
/// "rest" of the matrix.
MatView split_bottom (const Ordinal nrows_bottom,
const bool b_contiguous_blocks = false)
{
#ifdef TSQR_MATVIEW_DEBUG
if (std::numeric_limits< Ordinal >::is_signed && nrows_bottom < 0)
throw std::invalid_argument ("nrows_bottom < 0");
if (nrows_bottom > nrows())
throw std::invalid_argument ("nrows_bottom > nrows");
#endif // TSQR_MATVIEW_DEBUG
Scalar* const A_rest_ptr = get();
Scalar* A_bottom_ptr;
const Ordinal nrows_rest = nrows() - nrows_bottom;
Ordinal lda_bottom, lda_rest;
if (b_contiguous_blocks)
{
lda_bottom = nrows_bottom;
lda_rest = nrows() - nrows_bottom;
A_bottom_ptr = A_rest_ptr + nrows_rest * ncols();
}
else
{
lda_bottom = lda();
lda_rest = lda();
A_bottom_ptr = A_rest_ptr + nrows_rest;
}
MatView A_bottom (nrows_bottom, ncols(), A_bottom_ptr, lda_bottom);
A_ = A_rest_ptr;
nrows_ = nrows_rest;
lda_ = lda_rest;
return A_bottom;
}
void
fill (const scalar_type& value)
{
const ordinal_type num_rows = nrows();
const ordinal_type num_cols = ncols();
const ordinal_type stride = lda();
scalar_type* A_j = get();
for (ordinal_type j = 0; j < num_cols; ++j, A_j += stride)
for (ordinal_type i = 0; i < num_rows; ++i)
A_j[i] = value;
}
bool operator== (const MatView& rhs) const {
return nrows() == rhs.nrows() && ncols() == rhs.ncols() &&
lda() == rhs.lda() && get() == rhs.get();
}
bool operator!= (const MatView& rhs) const {
return nrows() != rhs.nrows() || ncols() != rhs.ncols() ||
lda() != rhs.lda() || get() != rhs.get();
}
private:
ordinal_type nrows_, ncols_, lda_;
scalar_type* A_;
};
/// \class ConstMatView
///
/// A read-only view of a column-oriented matrix.
///
/// \note Implicit promotion of a MatView to a ConstMatView is
/// forbidden, because it violates the expectation that
/// ConstMatView points to a matrix that doesn't change during the
/// computation.
template< class Ordinal, class Scalar >
class ConstMatView {
public:
typedef Scalar scalar_type;
typedef Ordinal ordinal_type;
typedef const Scalar* pointer_type;
ConstMatView () : nrows_(0), ncols_(0), lda_(0), A_(NULL) {}
/// \note g++ with -Wall wants A_ to be initialized after lda_,
/// otherwise it emits a compiler warning.
ConstMatView (const Ordinal num_rows,
const Ordinal num_cols,
const Scalar* const A,
const Ordinal leading_dim) :
nrows_(num_rows),
ncols_(num_cols),
lda_(leading_dim),
A_(A)
{
#ifdef TSQR_MATVIEW_DEBUG
MatViewVerify< Ordinal, Scalar >::verify (num_rows, num_cols, A, leading_dim);
#endif // TSQR_MATVIEW_DEBUG
}
ConstMatView (const ConstMatView& view) :
nrows_(view.nrows()),
ncols_(view.ncols()),
lda_(view.lda()),
A_(view.get())
{}
//! Assignment operator: Does a shallow (pointer) copy.
ConstMatView& operator= (const ConstMatView& view) {
if (this != &view) {
nrows_ = view.nrows();
ncols_ = view.ncols();
lda_ = view.lda();
A_ = view.get();
}
return *this;
}
const Scalar& operator() (const Ordinal i, const Ordinal j) const
{
#ifdef TSQR_MATVIEW_DEBUG
if (std::numeric_limits< Ordinal >::is_signed) {
if (i < 0 || i >= nrows()) {
throw std::invalid_argument("Row range invalid");
}
else if (j < 0 || j >= ncols()) {
throw std::invalid_argument("Column range invalid");
}
}
else {
if (i >= nrows()) {
throw std::invalid_argument("Row range invalid");
}
else if (j >= ncols()) {
throw std::invalid_argument("Column range invalid");
}
}
if (A_ == NULL) {
throw std::logic_error("Attempt to reference NULL data");
}
#endif // TSQR_MATVIEW_DEBUG
return A_[i + j*lda()];
}
Ordinal nrows() const { return nrows_; }
Ordinal ncols() const { return ncols_; }
Ordinal lda() const { return lda_; }
pointer_type get() const { return A_; }
bool empty() const { return nrows() == 0 || ncols() == 0; }
/// Return a "row block" (submatrix of consecutive rows in the
/// inclusive range [firstRow,lastRow]).
ConstMatView rowBlock (const Ordinal firstRow,
const Ordinal lastRow) const
{
#ifdef TSQR_MATVIEW_DEBUG
if (firstRow < 0 || lastRow >= nrows())
throw std::invalid_argument ("Row range invalid");
#endif // TSQR_MATVIEW_DEBUG
return ConstMatView (lastRow - firstRow + 1, ncols(), get() + firstRow, lda());
}
/// Split off and return the top block. Modify *this to be the
/// "rest" of the matrix.
///
/// \note Only use this method to split off a single cache block.
/// It breaks if you try to use it otherwise.
///
/// \param nrows_top [in] Number of rows in the top block (which
/// this method returns)
///
/// \param b_contiguous_blocks [in] Whether or not the entries of
/// the top block are stored contiguously in *this. The default
/// is no (false).
///
/// \return The top block of nrows_top rows. Data is a shallow
/// copy of the data in *this.
ConstMatView split_top (const Ordinal nrows_top,
const bool b_contiguous_blocks = false)
{
#ifdef TSQR_MATVIEW_DEBUG
if (std::numeric_limits< Ordinal >::is_signed && nrows_top < 0)
throw std::invalid_argument ("nrows_top < 0");
if (nrows_top > nrows())
throw std::invalid_argument ("nrows_top > nrows");
#endif // TSQR_MATVIEW_DEBUG
pointer_type const A_top_ptr = get();
pointer_type A_rest_ptr;
const Ordinal nrows_rest = nrows() - nrows_top;
Ordinal lda_top, lda_rest;
if (b_contiguous_blocks)
{
lda_top = nrows_top;
lda_rest = nrows_rest;
A_rest_ptr = A_top_ptr + nrows_top * ncols();
}
else
{
lda_top = lda();
lda_rest = lda();
A_rest_ptr = A_top_ptr + nrows_top;
}
ConstMatView A_top (nrows_top, ncols(), get(), lda_top);
A_ = A_rest_ptr;
nrows_ = nrows_rest;
lda_ = lda_rest;
return A_top;
}
/// Split off and return the bottom block. Modify *this to be the
/// "rest" of the matrix.
ConstMatView split_bottom (const Ordinal nrows_bottom,
const bool b_contiguous_blocks = false)
{
#ifdef TSQR_MATVIEW_DEBUG
if (std::numeric_limits< Ordinal >::is_signed && nrows_bottom < 0)
throw std::invalid_argument ("nrows_bottom < 0");
if (nrows_bottom > nrows())
throw std::invalid_argument ("nrows_bottom > nrows");
#endif // TSQR_MATVIEW_DEBUG
pointer_type const A_rest_ptr = get();
pointer_type A_bottom_ptr;
const ordinal_type nrows_rest = nrows() - nrows_bottom;
ordinal_type lda_bottom, lda_rest;
if (b_contiguous_blocks)
{
lda_bottom = nrows_bottom;
lda_rest = nrows() - nrows_bottom;
A_bottom_ptr = A_rest_ptr + nrows_rest * ncols();
}
else
{
lda_bottom = lda();
lda_rest = lda();
A_bottom_ptr = A_rest_ptr + nrows_rest;
}
ConstMatView A_bottom (nrows_bottom, ncols(), A_bottom_ptr, lda_bottom);
A_ = A_rest_ptr;
nrows_ = nrows_rest;
lda_ = lda_rest;
return A_bottom;
}
bool operator== (const ConstMatView& rhs) const {
return nrows() == rhs.nrows() && ncols() == rhs.ncols() &&
lda() == rhs.lda() && get() == rhs.get();
}
bool operator!= (const ConstMatView& rhs) const {
return nrows() != rhs.nrows() || ncols() != rhs.ncols() ||
lda() != rhs.lda() || get() != rhs.get();
}
private:
ordinal_type nrows_, ncols_, lda_;
pointer_type A_;
};
} // namespace TSQR
#endif // __TSQR_Tsqr_MatView_hpp
|