This file is indexed.

/usr/include/trilinos/Tsqr_Mgs.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_Tsqr_Mgs_hpp
#define __TSQR_Tsqr_Mgs_hpp

#include <algorithm>
#include <cassert>
#include <cmath>
#include <utility> // std::pair

#include <Tsqr_MessengerBase.hpp>
#include <Tsqr_Util.hpp>

#include <Teuchos_RCP.hpp>
#include <Teuchos_ScalarTraits.hpp>

// #define MGS_DEBUG 1
#ifdef MGS_DEBUG
#  include <iostream>
using std::cerr;
using std::endl;
#endif // MGS_DEBUG


namespace TSQR {

  /// \class MGS
  /// \brief Distributed-memory parallel implementation of Modified Gram-Schmidt.
  template<class LocalOrdinal, class Scalar>
  class MGS {
  public:
    typedef Scalar scalar_type;
    typedef LocalOrdinal ordinal_type;
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType magnitude_type;

    /// \brief Constructor
    ///
    /// \param messenger [in/out] Communicator wrapper instance.
    ///
    MGS (const Teuchos::RCP< MessengerBase< Scalar > >& messenger) :
      messenger_ (messenger) {}

    /// \brief Does the R factor have a nonnegative diagonal?
    ///
    /// MGS implements a QR factorization (of a distributed matrix).
    /// Some, but not all, QR factorizations produce an R factor whose
    /// diagonal may include negative entries.  This Boolean tells you
    /// whether MGS promises to compute an R factor whose diagonal
    /// entries are all nonnegative.
    ///
    bool QR_produces_R_factor_with_nonnegative_diagonal () const {
      return true;
    }

    //! Use Modified Gram-Schmidt to orthogonalize a matrix A in place.
    void
    mgs (const LocalOrdinal nrows_local,
         const LocalOrdinal ncols,
         Scalar A_local[],
         const LocalOrdinal lda_local,
         Scalar R[],
         const LocalOrdinal ldr);

  private:
    Teuchos::RCP<MessengerBase<Scalar> > messenger_;
  };


  namespace details {

    template<class LocalOrdinal, class Scalar>
    class MgsOps {
    public:
      typedef Teuchos::ScalarTraits<Scalar> STS;
      typedef typename STS::magnitudeType magnitude_type;

      MgsOps (const Teuchos::RCP< MessengerBase< Scalar > >& messenger) :
        messenger_ (messenger) {}

      void
      axpy (const LocalOrdinal nrows_local,
            const Scalar alpha,
            const Scalar x_local[],
            Scalar y_local[]) const
      {
        for (LocalOrdinal i = 0; i < nrows_local; ++i)
          y_local[i] = y_local[i] + alpha * x_local[i];
      }

      void
      scale (const LocalOrdinal nrows_local,
             Scalar x_local[],
             const Scalar denom) const
      {
        for (LocalOrdinal i = 0; i < nrows_local; ++i)
          x_local[i] = x_local[i] / denom;
      }

      /// $y^* \cdot x$: conjugate transpose when Scalar is complex,
      /// else regular transpose.
      Scalar
      dot (const LocalOrdinal nrows_local,
           const Scalar x_local[],
           const Scalar y_local[])
      {
        Scalar local_result (0);

#ifdef MGS_DEBUG
        // for (LocalOrdinal k = 0; k != nrows_local; ++k)
        //   cerr << "(x[" << k << "], y[" << k << "]) = (" << x_local[k] << "," << y_local[k] << ")" << " ";
        //   cerr << endl;
#endif // MGS_DEBUG

        for (LocalOrdinal i = 0; i < nrows_local; ++i)
          local_result += x_local[i] * STS::conjugate (y_local[i]);

#ifdef MGS_DEBUG
          // cerr << "-- Final value on this proc = " << local_result << endl;
#endif // MGS_DEBUG

        // FIXME (mfh 23 Apr 2010) Does MPI_SUM do the right thing for
        // complex or otherwise general MPI data types?  Perhaps an MPI_Op
        // should belong in the MessengerBase...
        return messenger_->globalSum (local_result);
      }

      magnitude_type
      norm2 (const LocalOrdinal nrows_local,
             const Scalar x_local[])
      {
        Scalar localResult (0);

        // Doing the right thing in the complex case requires taking
        // an absolute value.  We want to avoid this additional cost
        // in the real case, which is why we check is_complex.
        if (STS::isComplex)
          {
            for (LocalOrdinal i = 0; i < nrows_local; ++i)
              {
                const Scalar xi = STS::magnitude (x_local[i]);
                localResult += xi * xi;
              }
          }
        else
          {
            for (LocalOrdinal i = 0; i < nrows_local; ++i)
              {
                const Scalar xi = x_local[i];
                localResult += xi * xi;
              }
          }
        const Scalar globalResult = messenger_->globalSum (localResult);
        // sqrt doesn't make sense if the type of Scalar is complex,
        // even if the imaginary part of global_result is zero.
        return STS::squareroot (STS::magnitude (globalResult));
      }

      Scalar
      project (const LocalOrdinal nrows_local,
               const Scalar q_local[],
               Scalar v_local[])
      {
        const Scalar coeff = this->dot (nrows_local, v_local, q_local);
        this->axpy (nrows_local, -coeff, q_local, v_local);
        return coeff;
      }

    private:
      Teuchos::RCP< MessengerBase< Scalar > > messenger_;
    };
  } // namespace details


  template<class LocalOrdinal, class Scalar>
  void
  MGS<LocalOrdinal, Scalar>::mgs (const LocalOrdinal nrows_local,
                                  const LocalOrdinal ncols,
                                  Scalar A_local[],
                                  const LocalOrdinal lda_local,
                                  Scalar R[],
                                  const LocalOrdinal ldr)
  {
    details::MgsOps<LocalOrdinal, Scalar> ops (messenger_);

    for (LocalOrdinal j = 0; j < ncols; ++j)
      {
        Scalar* const v = &A_local[j*lda_local];
        for (LocalOrdinal i = 0; i < j; ++i)
          {
            const Scalar* const q = &A_local[i*lda_local];
            R[i + j*ldr] = ops.project (nrows_local, q, v);
#ifdef MGS_DEBUG
            if (my_rank == 0)
              cerr << "(i,j) = (" << i << "," << j << "): coeff = " << R[i + j*ldr] << endl;
#endif // MGS_DEBUG
          }
        const magnitude_type denom = ops.norm2 (nrows_local, v);
#ifdef MGS_DEBUG
          if (my_rank == 0)
            cerr << "j = " << j << ": denom = " << denom << endl;
#endif // MGS_DEBUG

        // FIXME (mfh 29 Apr 2010)
        //
        // NOTE IMPLICIT CAST.  This should work for complex numbers.
        // If it doesn't work for your Scalar data type, it means that
        // you need a different data type for the diagonal elements of
        // the R factor, than you need for the other elements.  This
        // is unlikely if we're comparing MGS against a Householder QR
        // factorization; I don't really understand how the latter
        // would work (not that it couldn't be given a sensible
        // interpretation) in the case of Scalars that aren't plain
        // old real or complex numbers.
        R[j + j*ldr] = Scalar (denom);
        ops.scale (nrows_local, v, denom);
      }
  }

} // namespace TSQR

#endif // __TSQR_Tsqr_Mgs_hpp