/usr/include/trilinos/Tsqr_ParTest.hpp is in libtrilinos-tpetra-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_Test_DistTest_hpp
#define __TSQR_Test_DistTest_hpp
#include <Tsqr_ConfigDefs.hpp>
#include <Tsqr_Random_NormalGenerator.hpp>
#include <Tsqr_verifyTimerConcept.hpp>
#include <Tsqr_generateStack.hpp>
#include <Tsqr_DistTsqr.hpp>
#include <Tsqr_GlobalTimeStats.hpp>
#include <Tsqr_GlobalVerify.hpp>
#include <Tsqr_printGlobalMatrix.hpp>
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <vector>
namespace TSQR {
namespace Test {
/// \class DistTsqrVerifier
/// \brief Generic version of \c DistTsqr accuracy test.
///
template<class Ordinal, class Scalar>
class DistTsqrVerifier {
TSQR::Random::NormalGenerator<Ordinal, Scalar> gen_;
Teuchos::RCP<MessengerBase<Ordinal> > const ordinalComm_;
Teuchos::RCP<MessengerBase<Scalar> > const scalarComm_;
std::string scalarTypeName_;
std::ostream& out_;
std::ostream& err_;
const bool testFactorExplicit_, testFactorImplicit_;
const bool humanReadable_, printMatrices_, debug_;
public:
typedef Ordinal ordinal_type;
typedef Scalar scalar_type;
typedef typename Teuchos::ScalarTraits<scalar_type>::magnitudeType magnitude_type;
typedef typename std::vector<magnitude_type> result_type;
typedef Matrix<ordinal_type, scalar_type> matrix_type;
/// \brief Constructor, with custom seed value
///
/// \param scalarComm [in/out] Communicator object over which to
/// test.
/// \param seed [in] 4-element vector; the random seed input of
/// TSQR::Random::NormalGenerator (which see, since there are
/// restrictions on the set of valid seeds)
/// \param scalarTypeName [in] Human-readable name of the Scalar
/// template type parameter
/// \param out [out] Output stream to which to write results
/// \param err [out] Output stream to which to write any
/// debugging outputs (if applicable) or errors
/// \param testFactorExplicit [in] Whether to test
/// DistTsqr::factorExplicit()
/// \param testFactorImplicit [in] Whether to test
/// DistTsqr::factor() and DistTsqr::explicit_Q()
/// \param humanReadable [in] Whether printed results should be
/// easy for humans to read (vs. easy for parsers to parse)
/// \param debug [in] Whether to write verbose debug output to
/// err
DistTsqrVerifier (const Teuchos::RCP<MessengerBase<Ordinal> >& ordinalComm,
const Teuchos::RCP<MessengerBase<Scalar> >& scalarComm,
const std::vector<int>& seed,
const std::string& scalarTypeName,
std::ostream& out,
std::ostream& err,
const bool testFactorExplicit,
const bool testFactorImplicit,
const bool humanReadable,
const bool printMatrices,
const bool debug) :
gen_ (seed),
ordinalComm_ (ordinalComm),
scalarComm_ (scalarComm),
scalarTypeName_ (scalarTypeName),
out_ (out),
err_ (err),
testFactorExplicit_ (testFactorExplicit),
testFactorImplicit_ (testFactorImplicit),
humanReadable_ (humanReadable),
printMatrices_ (printMatrices),
debug_ (debug)
{}
/// \brief Constructor, with default seed value
///
/// This constructor sets a default seed (for the pseudorandom
/// number generator), which is the same seed (0,0,0,1) each
/// time.
///
/// \param scalarComm [in/out] Communicator object over which to
/// test.
/// \param scalarTypeName [in] Human-readable name of the Scalar
/// template type parameter
/// \param out [out] Output stream to which to write results
/// \param err [out] Output stream to which to write any
/// debugging outputs (if applicable) or errors
/// \param testFactorExplicit [in] Whether to test
/// DistTsqr::factorExplicit()
/// \param testFactorImplicit [in] Whether to test
/// DistTsqr::factor() and DistTsqr::explicit_Q()
/// \param humanReadable [in] Whether printed results should be
/// easy for humans to read (vs. easy for parsers to parse)
/// \param debug [in] Whether to write verbose debug output to
/// err
DistTsqrVerifier (const Teuchos::RCP<MessengerBase<Ordinal> >& ordinalComm,
const Teuchos::RCP<MessengerBase<Scalar> >& scalarComm,
const std::string& scalarTypeName,
std::ostream& out,
std::ostream& err,
const bool testFactorExplicit,
const bool testFactorImplicit,
const bool humanReadable,
const bool printMatrices,
const bool debug) :
ordinalComm_ (ordinalComm),
scalarComm_ (scalarComm),
scalarTypeName_ (scalarTypeName),
out_ (out),
err_ (err),
testFactorExplicit_ (testFactorExplicit),
testFactorImplicit_ (testFactorImplicit),
humanReadable_ (humanReadable),
printMatrices_ (printMatrices),
debug_ (debug)
{}
/// \brief Get seed vector for pseudorandom number generator
///
/// Fill seed (changing size of vector as necessary) with the
/// seed vector used by the pseudorandom number generator. You
/// can use this to resume the pseudorandom number stream from
/// where you last were.
void
getSeed (std::vector<int>& seed) const
{
gen_.getSeed (seed);
}
/// \brief Run the DistTsqr accuracy test
///
/// \param numCols [in] Number of columns in the matrix to test.
/// Number of rows := (# MPI processors) * ncols.
void
verify (const Ordinal numCols,
const std::string& additionalFieldNames,
const std::string& additionalData,
const bool printFieldNames)
{
using std::endl;
const int myRank = scalarComm_->rank();
if (debug_)
{
scalarComm_->barrier();
if (myRank == 0)
err_ << "Verifying DistTsqr:" << endl;
scalarComm_->barrier();
}
// Generate test problem.
Matrix< Ordinal, Scalar > A_local, Q_local, R;
testProblem (A_local, Q_local, R, numCols);
if (debug_)
{
scalarComm_->barrier();
if (myRank == 0)
err_ << "-- Generated test problem." << endl;
scalarComm_->barrier();
}
// Set up TSQR implementation.
DistTsqr<Ordinal, Scalar> par;
par.init (scalarComm_);
if (debug_)
{
scalarComm_->barrier();
if (myRank == 0)
err_ << "-- DistTsqr object initialized" << endl << endl;
}
// Whether we've printed field names (i.e., column headers)
// yet. Only matters for non-humanReadable output.
bool printedFieldNames = false;
// Test DistTsqr::factor() and DistTsqr::explicit_Q().
if (testFactorImplicit_)
{
// Factor the matrix A (copied into R, which will be
// overwritten on output)
typedef typename DistTsqr<Ordinal, Scalar>::FactorOutput
factor_output_type;
factor_output_type factorOutput = par.factor (R.view());
if (debug_)
{
scalarComm_->barrier();
if (myRank == 0)
err_ << "-- Finished DistTsqr::factor" << endl;
}
// Compute the explicit Q factor
par.explicit_Q (numCols, Q_local.get(), Q_local.lda(), factorOutput);
if (debug_)
{
scalarComm_->barrier();
if (myRank == 0)
err_ << "-- Finished DistTsqr::explicit_Q" << endl;
}
// Verify the factorization
result_type result =
global_verify (numCols, numCols, A_local.get(), A_local.lda(),
Q_local.get(), Q_local.lda(), R.get(), R.lda(),
scalarComm_.get());
if (debug_)
{
scalarComm_->barrier();
if (myRank == 0)
err_ << "-- Finished global_verify" << endl;
}
reportResults ("DistTsqr", numCols, result,
additionalFieldNames, additionalData,
printFieldNames && (! printedFieldNames));
if (printFieldNames && (! printedFieldNames))
printedFieldNames = true;
}
// Test DistTsqr::factorExplicit()
if (testFactorExplicit_)
{
// Factor the matrix and compute the explicit Q factor, both
// in a single operation.
par.factorExplicit (R.view(), Q_local.view());
if (debug_)
{
scalarComm_->barrier();
if (myRank == 0)
err_ << "-- Finished DistTsqr::factorExplicit" << endl;
}
if (printMatrices_)
{
if (myRank == 0)
err_ << std::endl << "Computed Q factor:" << std::endl;
printGlobalMatrix (err_, Q_local, scalarComm_.get(), ordinalComm_.get());
if (myRank == 0)
{
err_ << std::endl << "Computed R factor:" << std::endl;
print_local_matrix (err_, R.nrows(), R.ncols(), R.get(), R.lda());
err_ << std::endl;
}
}
// Verify the factorization
result_type result =
global_verify (numCols, numCols, A_local.get(), A_local.lda(),
Q_local.get(), Q_local.lda(), R.get(), R.lda(),
scalarComm_.get());
if (debug_)
{
scalarComm_->barrier();
if (myRank == 0)
err_ << "-- Finished global_verify" << endl;
}
reportResults ("DistTsqrRB", numCols, result,
additionalFieldNames, additionalData,
printFieldNames && (! printedFieldNames));
if (printFieldNames && (! printedFieldNames))
printedFieldNames = true;
}
}
private:
/// Report verification results. Call on ALL MPI processes, not
/// just Rank 0.
///
/// \param method [in] String to print before reporting results
/// \param numCols [in] Number of columns in the matrix tested.
/// \param result [in] (relative residual, orthogonality)
void
reportResults (const std::string& method,
const Ordinal numCols,
const result_type& result,
const std::string& additionalFieldNames,
const std::string& additionalData,
const bool printFieldNames)
{
using std::endl;
const int numProcs = scalarComm_->size();
const int myRank = scalarComm_->rank();
if (myRank == 0)
{
if (humanReadable_)
{
out_ << method << " accuracy results:" << endl
<< "Scalar type = " << scalarTypeName_ << endl
<< "Number of columns = " << numCols << endl
<< "Number of (MPI) processes = " << numProcs << endl
<< "Absolute residual $\\| A - Q R \\|_2: "
<< result[0] << endl
<< "Absolute orthogonality $\\| I - Q^* Q \\|_2$: "
<< result[1] << endl
<< "Test matrix norm $\\| A \\|_F$: "
<< result[2] << endl;
}
else
{
// Use scientific notation for floating-point numbers
out_ << std::scientific;
if (printFieldNames)
{
out_ << "%method,scalarType,numCols,numProcs"
",absFrobResid,absFrobOrthog,frobA";
if (! additionalFieldNames.empty())
out_ << "," << additionalFieldNames;
out_ << endl;
}
out_ << method
<< "," << scalarTypeName_
<< "," << numCols
<< "," << numProcs
<< "," << result[0]
<< "," << result[1]
<< "," << result[2];
if (! additionalData.empty())
out_ << "," << additionalData;
out_ << endl;
}
}
}
void
testProblem (Matrix< Ordinal, Scalar >& A_local,
Matrix< Ordinal, Scalar >& Q_local,
Matrix< Ordinal, Scalar >& R,
const Ordinal numCols)
{
const Ordinal numRowsLocal = numCols;
// A_local: Space for the matrix A to factor -- local to each
// processor.
//
// A_global: Global matrix (only nonempty on Proc 0); only
// used temporarily.
Matrix< Ordinal, Scalar > A_global;
// This modifies A_local on all procs, and A_global on Proc 0.
par_tsqr_test_problem (gen_, A_local, A_global, numCols, scalarComm_);
if (printMatrices_)
{
const int myRank = scalarComm_->rank();
if (myRank == 0)
err_ << "Input matrix A:" << std::endl;
printGlobalMatrix (err_, A_local, scalarComm_.get(), ordinalComm_.get());
if (myRank == 0)
err_ << std::endl;
}
// Copy the test problem input into R, since the factorization
// will overwrite it in place with the final R factor.
R.reshape (numCols, numCols);
R.fill (Scalar (0));
deep_copy (R, A_local);
// Prepare space in which to construct the explicit Q factor
// (local component on this processor)
Q_local.reshape (numRowsLocal, numCols);
Q_local.fill (Scalar(0));
}
};
/// \class DistTsqrBenchmarker
/// \brief Generic version of \c DistTsqr performance test.
///
template< class Ordinal, class Scalar, class TimerType >
class DistTsqrBenchmarker {
TSQR::Random::NormalGenerator< Ordinal, Scalar > gen_;
Teuchos::RCP< MessengerBase< Scalar > > scalarComm_;
Teuchos::RCP< MessengerBase< double > > doubleComm_;
std::string scalarTypeName_;
std::ostream& out_;
std::ostream& err_;
const bool testFactorExplicit_, testFactorImplicit_;
const bool humanReadable_, debug_;
public:
typedef Ordinal ordinal_type;
typedef Scalar scalar_type;
typedef typename Teuchos::ScalarTraits< scalar_type >::magnitudeType magnitude_type;
typedef TimerType timer_type;
/// \brief Constructor, with custom seed value
///
/// \param scalarComm [in/out] Communicator object over which
/// to test.
/// \param doubleComm [in/out] Communicator object for doubles,
/// used for finding the min and max of timing results over
/// all the MPI processes.
/// \param seed [in] 4-element vector; the random seed input of
/// TSQR::Random::NormalGenerator (which see, since there are
/// restrictions on the set of valid seeds)
/// \param scalarTypeName [in] Human-readable name of the Scalar
/// template type parameter
/// \param out [out] Output stream to which to write results
/// \param err [out] Output stream to which to write any
/// debugging outputs (if applicable) or errors
/// \param testFactorExplicit [in] Whether to test
/// DistTsqr::factorExplicit()
/// \param testFactorImplicit [in] Whether to test
/// DistTsqr::factor() and DistTsqr::explicit_Q()
/// \param humanReadable [in] Whether printed results should be
/// easy for humans to read (vs. easy for parsers to parse)
/// \param debug [in] Whether to write verbose debug output to
/// err
DistTsqrBenchmarker (const Teuchos::RCP< MessengerBase< Scalar > >& scalarComm,
const Teuchos::RCP< MessengerBase< double > >& doubleComm,
const std::vector<int>& seed,
const std::string& scalarTypeName,
std::ostream& out,
std::ostream& err,
const bool testFactorExplicit,
const bool testFactorImplicit,
const bool humanReadable,
const bool debug) :
gen_ (seed),
scalarComm_ (scalarComm),
doubleComm_ (doubleComm),
scalarTypeName_ (scalarTypeName),
out_ (out),
err_ (err),
testFactorExplicit_ (testFactorExplicit),
testFactorImplicit_ (testFactorImplicit),
humanReadable_ (humanReadable),
debug_ (debug)
{}
/// \brief Constructor, with default seed value
///
/// This constructor sets a default seed (for the pseudorandom
/// number generator), which is the same seed (0,0,0,1) each
/// time.
///
/// \param scalarComm [in/out] Communicator object over which
/// to test.
/// \param doubleComm [in/out] Communicator object for doubles,
/// used for finding the min and max of timing results over
/// all the MPI processes.
/// \param scalarTypeName [in] Human-readable name of the Scalar
/// template type parameter
/// \param out [out] Output stream to which to write results
/// \param err [out] Output stream to which to write any
/// debugging outputs (if applicable) or errors
/// \param testFactorExplicit [in] Whether to test
/// DistTsqr::factorExplicit()
/// \param testFactorImplicit [in] Whether to test
/// DistTsqr::factor() and DistTsqr::explicit_Q()
/// \param humanReadable [in] Whether printed results should be
/// easy for humans to read (vs. easy for parsers to parse)
/// \param debug [in] Whether to write verbose debug output to
/// err
DistTsqrBenchmarker (const Teuchos::RCP< MessengerBase< Scalar > >& scalarComm,
const Teuchos::RCP< MessengerBase< double > >& doubleComm,
const std::string& scalarTypeName,
std::ostream& out,
std::ostream& err,
const bool testFactorExplicit,
const bool testFactorImplicit,
const bool humanReadable,
const bool debug) :
scalarComm_ (scalarComm),
doubleComm_ (doubleComm),
scalarTypeName_ (scalarTypeName),
out_ (out),
err_ (err),
testFactorExplicit_ (testFactorExplicit),
testFactorImplicit_ (testFactorImplicit),
humanReadable_ (humanReadable),
debug_ (debug)
{}
/// \brief Get seed vector for pseudorandom number generator
///
/// Fill seed (changing size of vector as necessary) with the
/// seed vector used by the pseudorandom number generator. You
/// can use this to resume the pseudorandom number stream from
/// where you last were.
void
getSeed (std::vector<int>& seed) const
{
gen_.getSeed (seed);
}
/// \brief Run the DistTsqr benchmark
///
/// \param numTrials [in] Number of times to repeat the computation
/// in a single timing run
/// \param numCols [in] Number of columns in the matrix to test.
/// Number of rows := (# MPI processors) * ncols
void
benchmark (const int numTrials,
const Ordinal numCols,
const std::string& additionalFieldNames,
const std::string& additionalData,
const bool printFieldNames)
{
using std::endl;
// Set up test problem.
Matrix< Ordinal, Scalar > A_local, Q_local, R;
testProblem (A_local, Q_local, R, numCols);
// Set up TSQR implementation.
DistTsqr<Ordinal, Scalar> par;
par.init (scalarComm_);
// Whether we've printed field names (i.e., column headers)
// yet. Only matters for non-humanReadable output.
bool printedFieldNames = false;
if (testFactorImplicit_)
{
std::string timerName ("DistTsqr");
typedef typename DistTsqr<Ordinal, Scalar>::FactorOutput
factor_output_type;
// Throw away some number of runs, because some MPI libraries
// (recent versions of OpenMPI at least) do autotuning for the
// first few collectives calls.
const int numThrowAwayRuns = 5;
for (int runNum = 0; runNum < numThrowAwayRuns; ++runNum)
{
// Factor the matrix A (copied into R, which will be
// overwritten on output)
factor_output_type factorOutput = par.factor (R.view());
// Compute the explicit Q factor
par.explicit_Q (numCols, Q_local.get(), Q_local.lda(), factorOutput);
}
// Now do the actual timing runs. Benchmark DistTsqr
// (factor() and explicit_Q()) for numTrials trials.
timer_type timer (timerName);
timer.start();
for (int trialNum = 0; trialNum < numTrials; ++trialNum)
{
// Factor the matrix A (copied into R, which will be
// overwritten on output)
factor_output_type factorOutput = par.factor (R.view());
// Compute the explicit Q factor
par.explicit_Q (numCols, Q_local.get(), Q_local.lda(), factorOutput);
}
// Cumulative timing on this MPI process.
// "Cumulative" means the elapsed time of numTrials executions.
const double localCumulativeTiming = timer.stop();
// reportResults() must be called on all processes, since this
// figures out the min and max timings over all processes.
reportResults (timerName, numTrials, numCols, localCumulativeTiming,
additionalFieldNames, additionalData,
printFieldNames && (! printedFieldNames));
if (printFieldNames && (! printedFieldNames))
printedFieldNames = true;
}
if (testFactorExplicit_)
{
std::string timerName ("DistTsqrRB");
// Throw away some number of runs, because some MPI libraries
// (recent versions of OpenMPI at least) do autotuning for the
// first few collectives calls.
const int numThrowAwayRuns = 5;
for (int runNum = 0; runNum < numThrowAwayRuns; ++runNum)
{
par.factorExplicit (R.view(), Q_local.view());
}
// Benchmark DistTsqr::factorExplicit() for numTrials trials.
timer_type timer (timerName);
timer.start();
for (int trialNum = 0; trialNum < numTrials; ++trialNum)
{
par.factorExplicit (R.view(), Q_local.view());
}
// Cumulative timing on this MPI process.
// "Cumulative" means the elapsed time of numTrials executions.
const double localCumulativeTiming = timer.stop();
// Report cumulative (not per-invocation) timing results
reportResults (timerName, numTrials, numCols, localCumulativeTiming,
additionalFieldNames, additionalData,
printFieldNames && (! printedFieldNames));
if (printFieldNames && (! printedFieldNames))
printedFieldNames = true;
// Per-invocation timings (for factorExplicit() benchmark
// only). localTimings were computed on this MPI process;
// globalTimings are statistical summaries of those over
// all MPI processes. We only collect that data for
// factorExplicit().
std::vector< TimeStats > localTimings;
std::vector< TimeStats > globalTimings;
par.getFactorExplicitTimings (localTimings);
for (std::vector< TimeStats >::size_type k = 0; k < localTimings.size(); ++k)
globalTimings.push_back (globalTimeStats (*doubleComm_, localTimings[k]));
std::vector< std::string > timingLabels;
par.getFactorExplicitTimingLabels (timingLabels);
if (humanReadable_)
out_ << timerName << " per-invocation benchmark results:" << endl;
const std::string labelLabel ("label,scalarType");
for (std::vector< std::string >::size_type k = 0; k < timingLabels.size(); ++k)
{
// Only print column headers (i.e., field names) once, if at all.
const bool printHeaders = (k == 0) && printFieldNames;
globalTimings[k].print (out_, humanReadable_,
timingLabels[k] + "," + scalarTypeName_,
labelLabel, printHeaders);
}
}
}
private:
/// Report timing results to the given output stream
///
/// \param method [in] String to print before reporting results
/// \param numTrials [in] Number of times to repeat the computation
/// in a single timing run
/// \param numCols [in] Number of columns in the matrix to test.
/// Number of rows := (# MPI processors) * ncols
/// \param timing [in] Total benchmark time, as measured on this
/// MPI process. This may differ on each process; we report
/// the min and the max.
///
/// \warning Call on ALL MPI processes, not just Rank 0!
void
reportResults (const std::string& method,
const int numTrials,
const ordinal_type numCols,
const double localTiming,
const std::string& additionalFieldNames,
const std::string& additionalData,
const bool printFieldNames)
{
using std::endl;
// Find min and max timing over all MPI processes
TimeStats localStats;
localStats.update (localTiming);
TimeStats globalStats = globalTimeStats (*doubleComm_, localStats);
// Only Rank 0 prints the final results.
const bool printResults = (doubleComm_->rank() == 0);
if (printResults)
{
const int numProcs = doubleComm_->size();
if (humanReadable_)
{
out_ << method << " cumulative benchmark results (total time over all trials):" << endl
<< "Scalar type = " << scalarTypeName_ << endl
<< "Number of columns = " << numCols << endl
<< "Number of (MPI) processes = " << numProcs << endl
<< "Number of trials = " << numTrials << endl
<< "Min timing (in seconds) = " << globalStats.min() << endl
<< "Mean timing (in seconds) = " << globalStats.mean() << endl
<< "Max timing (in seconds) = " << globalStats.max() << endl
<< endl;
}
else
{
// Use scientific notation for floating-point numbers
out_ << std::scientific;
if (printFieldNames)
{
out_ << "%method,scalarType,numCols,numProcs,numTrials"
<< ",minTiming,meanTiming,maxTiming";
if (! additionalFieldNames.empty())
out_ << "," << additionalFieldNames;
out_ << endl;
}
out_ << method
<< "," << scalarTypeName_
<< "," << numCols
<< "," << numProcs
<< "," << numTrials
<< "," << globalStats.min()
<< "," << globalStats.mean()
<< "," << globalStats.max();
if (! additionalData.empty())
out_ << "," << additionalData;
out_ << endl;
}
}
}
void
testProblem (Matrix< Ordinal, Scalar >& A_local,
Matrix< Ordinal, Scalar >& Q_local,
Matrix< Ordinal, Scalar >& R,
const Ordinal numCols)
{
const Ordinal numRowsLocal = numCols;
// A_local: Space for the matrix A to factor -- local to each
// processor.
//
// A_global: Global matrix (only nonempty on Proc 0); only
// used temporarily.
Matrix< Ordinal, Scalar > A_global;
// This modifies A_local on all procs, and A_global on Proc 0.
par_tsqr_test_problem (gen_, A_local, A_global, numCols, scalarComm_);
// Copy the test problem input into R, since the factorization
// will overwrite it in place with the final R factor.
R.reshape (numCols, numCols);
deep_copy (R, A_local);
// Prepare space in which to construct the explicit Q factor
// (local component on this processor)
Q_local.reshape (numRowsLocal, numCols);
Q_local.fill (Scalar(0));
}
/// Make sure that timer_type satisfies the TimerType concept.
///
static void
conceptChecks ()
{
verifyTimerConcept< timer_type >();
}
};
} // namespace Test
} // namespace TSQR
#endif // __TSQR_Test_DistTest_hpp
|