/usr/include/trilinos/Tsqr_SequentialCholeskyQR.hpp is in libtrilinos-tpetra-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_Tsqr_SequentialCholeskyQR_hpp
#define __TSQR_Tsqr_SequentialCholeskyQR_hpp
#include <Tsqr_MatView.hpp>
#include <Tsqr_CacheBlockingStrategy.hpp>
#include <Tsqr_CacheBlocker.hpp>
#include <Tsqr_Util.hpp>
#include <Teuchos_BLAS.hpp>
#include <Teuchos_LAPACK.hpp>
#include <string>
#include <utility>
#include <vector>
namespace TSQR {
/// \class SequentialCholeskyQR
/// \brief Cache-blocked sequential implementation of CholeskyQR.
///
/// CholeskyQR works like this: given an input matrix A with no
/// fewer rows than columns,
/// - Compute the Gram matrix of A: \f$H = A^* A\f$
/// - Compute the (upper triangular) Cholesky factorization of H:
/// \f$H = R^* R\f$
/// - Compute \f$Q = A R^{-1}\f$
template<class LocalOrdinal, class Scalar>
class SequentialCholeskyQR {
private:
typedef MatView< LocalOrdinal, Scalar > mat_view_type;
typedef ConstMatView< LocalOrdinal, Scalar > const_mat_view_type;
typedef Teuchos::BLAS<LocalOrdinal, Scalar> blas_type;
typedef Teuchos::LAPACK<LocalOrdinal, Scalar> lapack_type;
public:
typedef Scalar scalar_type;
typedef LocalOrdinal ordinal_type;
/// \typedef FactorOutput
/// \brief Return value of \c factor().
///
/// Here, FactorOutput is just a minimal object whose value is
/// irrelevant, so that this class' interface looks like that of
/// \c SequentialTsqr.
typedef int FactorOutput;
//! Cache size hint (in bytes).
size_t cache_size_hint () const { return strategy_.cache_size_hint(); }
/// \brief Constructor
///
/// \param theCacheSizeHint [in] Cache size hint in bytes. If 0,
/// the implementation will pick a reasonable size, which may be
/// queried by calling cache_size_hint().
SequentialCholeskyQR (const size_t theCacheSizeHint = 0) :
strategy_ (theCacheSizeHint)
{}
/// \brief Whether the R factor has a nonnegative diagonal.
///
/// The \c factor() method computes a QR factorization of the
/// input matrix A. Some, but not all methods for computing a QR
/// factorization produce an R factor with a nonnegative diagonal.
/// This class' implementation does, because the R factor comes
/// from a Cholesky factorization.
bool QR_produces_R_factor_with_nonnegative_diagonal () const {
return true;
}
/// \brief Compute the QR factorization of the matrix A.
///
/// Compute the QR factorization of the nrows by ncols matrix A,
/// with nrows >= ncols, stored either in column-major order (the
/// default) or as contiguous column-major cache blocks, with
/// leading dimension lda >= nrows.
FactorOutput
factor (const LocalOrdinal nrows,
const LocalOrdinal ncols,
const Scalar A[],
const LocalOrdinal lda,
Scalar R[],
const LocalOrdinal ldr,
const bool contiguous_cache_blocks = false)
{
using Teuchos::NO_TRANS;
CacheBlocker<LocalOrdinal, Scalar> blocker (nrows, ncols, strategy_);
blas_type blas;
lapack_type lapack;
std::vector<Scalar> work (ncols);
Matrix<LocalOrdinal, Scalar> ATA (ncols, ncols, Scalar(0));
FactorOutput retval (0);
if (contiguous_cache_blocks)
{
// Compute ATA := A^T * A, by iterating through the cache
// blocks of A from top to bottom.
//
// We say "A_rest" because it points to the remaining part of
// the matrix left to process; at the beginning, the "remaining"
// part is the whole matrix, but that will change as the
// algorithm progresses.
mat_view_type A_rest (nrows, ncols, A, lda);
// This call modifies A_rest (but not the actual matrix
// entries; just the dimensions and current position).
mat_view_type A_cur = blocker.split_top_block (A_rest, contiguous_cache_blocks);
// Process the first cache block: ATA := A_cur^T * A_cur
//
// FIXME (mfh 08 Oct 2014) Shouldn't this be CONJ_TRANS?
blas.GEMM (Teuchos::TRANS, NO_TRANS, ncols, ncols, A_cur.nrows (),
Scalar (1), A_cur.get (), A_cur.lda (), A_cur.get (),
A_cur.lda (), Scalar (0), ATA.get (), ATA.lda ());
// Process the remaining cache blocks in order.
while (! A_rest.empty ()) {
A_cur = blocker.split_top_block (A_rest, contiguous_cache_blocks);
// ATA := ATA + A_cur^T * A_cur
//
// FIXME (mfh 08 Oct 2014) Shouldn't this be CONJ_TRANS?
blas.GEMM (Teuchos::TRANS, NO_TRANS, ncols, ncols, A_cur.nrows (),
Scalar (1), A_cur.get (), A_cur.lda (), A_cur.get (),
A_cur.lda (), Scalar (1), ATA.get (), ATA.lda ());
}
}
else {
// Compute ATA := A^T * A, using a single BLAS call.
//
// FIXME (mfh 08 Oct 2014) Shouldn't this be CONJ_TRANS?
blas.GEMM (Teuchos::TRANS, NO_TRANS, ncols, ncols, nrows,
Scalar (1), A, lda, A, lda,
Scalar (0), ATA.get (), ATA.lda ());
}
// Compute the Cholesky factorization of ATA in place, so that
// A^T * A = R^T * R, where R is ncols by ncols upper
// triangular.
int info = 0;
lapack.POTRF ('U', ncols, ATA.get(), ATA.lda(), &info);
// FIXME (mfh 22 June 2010) The right thing to do here would be
// to resort to a rank-revealing factorization, as Stathopoulos
// and Wu (2002) do with their CholeskyQR + symmetric
// eigensolver factorization.
if (info != 0)
throw std::runtime_error("Cholesky factorization failed");
// Copy out the R factor
fill_matrix (ncols, ncols, R, ldr, Scalar(0));
copy_upper_triangle (ncols, ncols, R, ldr, ATA.get(), ATA.lda());
// Compute A := A * R^{-1}. We do this in place in A, using
// BLAS' TRSM with the R factor (form POTRF) stored in the upper
// triangle of ATA.
{
using Teuchos::NO_TRANS;
using Teuchos::NON_UNIT_DIAG;
using Teuchos::RIGHT_SIDE;
using Teuchos::UPPER_TRI;
mat_view_type A_rest (nrows, ncols, A, lda);
// This call modifies A_rest.
mat_view_type A_cur = blocker.split_top_block (A_rest, contiguous_cache_blocks);
// Compute A_cur / R (Matlab notation for A_cur * R^{-1}) in place.
blas.TRSM (RIGHT_SIDE, UPPER_TRI, NO_TRANS, NON_UNIT_DIAG,
A_cur.nrows (), ncols, Scalar (1), ATA.get (), ATA.lda (),
A_cur.get (), A_cur.lda ());
// Process the remaining cache blocks in order.
while (! A_rest.empty ()) {
A_cur = blocker.split_top_block (A_rest, contiguous_cache_blocks);
blas.TRSM (RIGHT_SIDE, UPPER_TRI, NO_TRANS, NON_UNIT_DIAG,
A_cur.nrows (), ncols, Scalar (1), ATA.get (), ATA.lda (),
A_cur.get (), A_cur.lda ());
}
}
return retval;
}
/// \param factor_output [in] Not used; just here to match the
/// interface of SequentialTsqr.
void
explicit_Q (const LocalOrdinal nrows,
const LocalOrdinal ncols_Q,
const Scalar Q[],
const LocalOrdinal ldq,
const FactorOutput& factor_output,
const LocalOrdinal ncols_C,
Scalar C[],
const LocalOrdinal ldc,
const bool contiguous_cache_blocks = false)
{
if (ncols_Q != ncols_C)
throw std::logic_error("SequentialCholeskyQR::explicit_Q() "
"does not work if ncols_C != ncols_Q");
const LocalOrdinal ncols = ncols_Q;
if (contiguous_cache_blocks) {
CacheBlocker< LocalOrdinal, Scalar > blocker (nrows, ncols, strategy_);
mat_view_type C_rest (nrows, ncols, C, ldc);
const_mat_view_type Q_rest (nrows, ncols, Q, ldq);
mat_view_type C_cur = blocker.split_top_block (C_rest, contiguous_cache_blocks);
const_mat_view_type Q_cur = blocker.split_top_block (Q_rest, contiguous_cache_blocks);
while (! C_rest.empty ()) {
deep_copy (Q_cur, C_cur);
}
}
else {
mat_view_type C_view (nrows, ncols, C, ldc);
deep_copy (C_view, const_mat_view_type (nrows, ncols, Q, ldq));
}
}
/// Cache-block the given A_in matrix, writing the results to A_out.
void
cache_block (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A_out[],
const Scalar A_in[],
const LocalOrdinal lda_in) const
{
CacheBlocker< LocalOrdinal, Scalar > blocker (nrows, ncols, strategy_);
blocker.cache_block (nrows, ncols, A_out, A_in, lda_in);
}
/// "Un"-cache-block the given A_in matrix, writing the results to A_out.
void
un_cache_block (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A_out[],
const LocalOrdinal lda_out,
const Scalar A_in[]) const
{
CacheBlocker< LocalOrdinal, Scalar > blocker (nrows, ncols, strategy_);
blocker.un_cache_block (nrows, ncols, A_out, lda_out, A_in);
}
//! Fill the nrows by ncols matrix A with zeros.
void
fill_with_zeros (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A[],
const LocalOrdinal lda,
const bool contiguous_cache_blocks = false)
{
CacheBlocker< LocalOrdinal, Scalar > blocker (nrows, ncols, strategy_);
blocker.fill_with_zeros (nrows, ncols, A, lda, contiguous_cache_blocks);
}
/// \brief Return a view of the topmost cache block (on the
/// calling MPI process, if in an MPI parallel mode) of the
/// given matrix C.
///
/// \note The returned view is not necessarily square, though it
/// must have at least as many rows as columns. For a square
/// ncols by ncols block, as needed in TSQR::Tsqr::apply(), if
/// the output is ret, do mat_view_type(ncols, ncols, ret.get(),
/// ret.lda()) to get an ncols by ncols block.
template< class MatrixViewType >
MatrixViewType
top_block (const MatrixViewType& C,
const bool contiguous_cache_blocks = false) const
{
// The CacheBlocker object knows how to construct a view of the
// top cache block of C. This is complicated because cache
// blocks (in C) may or may not be stored contiguously. If they
// are stored contiguously, the CacheBlocker knows the right
// layout, based on the cache blocking strategy.
CacheBlocker< LocalOrdinal, Scalar > blocker (C.nrows(), C.ncols(), strategy_);
// C_top_block is a view of the topmost cache block of C.
// C_top_block should have >= ncols rows, otherwise either cache
// blocking is broken or the input matrix C itself had fewer
// rows than columns.
MatrixViewType C_top_block = blocker.top_block (C, contiguous_cache_blocks);
if (C_top_block.nrows() < C_top_block.ncols())
throw std::logic_error ("C\'s topmost cache block has fewer rows than "
"columns");
return C_top_block;
}
private:
CacheBlockingStrategy< LocalOrdinal, Scalar > strategy_;
};
} // namespace TSQR
#endif // __TSQR_Tsqr_SequentialCholeskyQR_hpp
|