This file is indexed.

/usr/include/trilinos/Tsqr_SequentialCholeskyQR.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_Tsqr_SequentialCholeskyQR_hpp
#define __TSQR_Tsqr_SequentialCholeskyQR_hpp

#include <Tsqr_MatView.hpp>
#include <Tsqr_CacheBlockingStrategy.hpp>
#include <Tsqr_CacheBlocker.hpp>
#include <Tsqr_Util.hpp>

#include <Teuchos_BLAS.hpp>
#include <Teuchos_LAPACK.hpp>

#include <string>
#include <utility>
#include <vector>

namespace TSQR {

  /// \class SequentialCholeskyQR
  /// \brief Cache-blocked sequential implementation of CholeskyQR.
  ///
  /// CholeskyQR works like this: given an input matrix A with no
  /// fewer rows than columns,
  /// - Compute the Gram matrix of A: \f$H = A^* A\f$
  /// - Compute the (upper triangular) Cholesky factorization of H:
  ///   \f$H = R^* R\f$
  /// - Compute \f$Q = A R^{-1}\f$
  template<class LocalOrdinal, class Scalar>
  class SequentialCholeskyQR {
  private:
    typedef MatView< LocalOrdinal, Scalar > mat_view_type;
    typedef ConstMatView< LocalOrdinal, Scalar > const_mat_view_type;
    typedef Teuchos::BLAS<LocalOrdinal, Scalar> blas_type;
    typedef Teuchos::LAPACK<LocalOrdinal, Scalar> lapack_type;

  public:
    typedef Scalar scalar_type;
    typedef LocalOrdinal ordinal_type;

    /// \typedef FactorOutput
    /// \brief Return value of \c factor().
    ///
    /// Here, FactorOutput is just a minimal object whose value is
    /// irrelevant, so that this class' interface looks like that of
    /// \c SequentialTsqr.
    typedef int FactorOutput;

    //! Cache size hint (in bytes).
    size_t cache_size_hint () const { return strategy_.cache_size_hint(); }

    /// \brief Constructor
    ///
    /// \param theCacheSizeHint [in] Cache size hint in bytes.  If 0,
    ///   the implementation will pick a reasonable size, which may be
    ///   queried by calling cache_size_hint().
    SequentialCholeskyQR (const size_t theCacheSizeHint = 0) :
      strategy_ (theCacheSizeHint)
    {}

    /// \brief Whether the R factor has a nonnegative diagonal.
    ///
    /// The \c factor() method computes a QR factorization of the
    /// input matrix A.  Some, but not all methods for computing a QR
    /// factorization produce an R factor with a nonnegative diagonal.
    /// This class' implementation does, because the R factor comes
    /// from a Cholesky factorization.
    bool QR_produces_R_factor_with_nonnegative_diagonal () const {
      return true;
    }

    /// \brief Compute the QR factorization of the matrix A.
    ///
    /// Compute the QR factorization of the nrows by ncols matrix A,
    /// with nrows >= ncols, stored either in column-major order (the
    /// default) or as contiguous column-major cache blocks, with
    /// leading dimension lda >= nrows.
    FactorOutput
    factor (const LocalOrdinal nrows,
            const LocalOrdinal ncols,
            const Scalar A[],
            const LocalOrdinal lda,
            Scalar R[],
            const LocalOrdinal ldr,
            const bool contiguous_cache_blocks = false)
    {
      using Teuchos::NO_TRANS;
      CacheBlocker<LocalOrdinal, Scalar> blocker (nrows, ncols, strategy_);
      blas_type blas;
      lapack_type lapack;

      std::vector<Scalar> work (ncols);
      Matrix<LocalOrdinal, Scalar> ATA (ncols, ncols, Scalar(0));
      FactorOutput retval (0);

      if (contiguous_cache_blocks)
        {
          // Compute ATA := A^T * A, by iterating through the cache
          // blocks of A from top to bottom.
          //
          // We say "A_rest" because it points to the remaining part of
          // the matrix left to process; at the beginning, the "remaining"
          // part is the whole matrix, but that will change as the
          // algorithm progresses.
          mat_view_type A_rest (nrows, ncols, A, lda);
          // This call modifies A_rest (but not the actual matrix
          // entries; just the dimensions and current position).
          mat_view_type A_cur = blocker.split_top_block (A_rest, contiguous_cache_blocks);
          // Process the first cache block: ATA := A_cur^T * A_cur
          //
          // FIXME (mfh 08 Oct 2014) Shouldn't this be CONJ_TRANS?
          blas.GEMM (Teuchos::TRANS, NO_TRANS, ncols, ncols, A_cur.nrows (),
                     Scalar (1), A_cur.get (), A_cur.lda (), A_cur.get (),
                     A_cur.lda (), Scalar (0), ATA.get (), ATA.lda ());
          // Process the remaining cache blocks in order.
          while (! A_rest.empty ()) {
            A_cur = blocker.split_top_block (A_rest, contiguous_cache_blocks);
            // ATA := ATA + A_cur^T * A_cur
            //
            // FIXME (mfh 08 Oct 2014) Shouldn't this be CONJ_TRANS?
            blas.GEMM (Teuchos::TRANS, NO_TRANS, ncols, ncols, A_cur.nrows (),
                       Scalar (1), A_cur.get (), A_cur.lda (), A_cur.get (),
                       A_cur.lda (), Scalar (1), ATA.get (), ATA.lda ());
          }
        }
      else {
        // Compute ATA := A^T * A, using a single BLAS call.
        //
        // FIXME (mfh 08 Oct 2014) Shouldn't this be CONJ_TRANS?
        blas.GEMM (Teuchos::TRANS, NO_TRANS, ncols, ncols, nrows,
                   Scalar (1), A, lda, A, lda,
                   Scalar (0), ATA.get (), ATA.lda ());
      }

      // Compute the Cholesky factorization of ATA in place, so that
      // A^T * A = R^T * R, where R is ncols by ncols upper
      // triangular.
      int info = 0;
      lapack.POTRF ('U', ncols, ATA.get(), ATA.lda(), &info);
      // FIXME (mfh 22 June 2010) The right thing to do here would be
      // to resort to a rank-revealing factorization, as Stathopoulos
      // and Wu (2002) do with their CholeskyQR + symmetric
      // eigensolver factorization.
      if (info != 0)
        throw std::runtime_error("Cholesky factorization failed");

      // Copy out the R factor
      fill_matrix (ncols, ncols, R, ldr, Scalar(0));
      copy_upper_triangle (ncols, ncols, R, ldr, ATA.get(), ATA.lda());

      // Compute A := A * R^{-1}.  We do this in place in A, using
      // BLAS' TRSM with the R factor (form POTRF) stored in the upper
      // triangle of ATA.
      {
        using Teuchos::NO_TRANS;
        using Teuchos::NON_UNIT_DIAG;
        using Teuchos::RIGHT_SIDE;
        using Teuchos::UPPER_TRI;

        mat_view_type A_rest (nrows, ncols, A, lda);
        // This call modifies A_rest.
        mat_view_type A_cur = blocker.split_top_block (A_rest, contiguous_cache_blocks);

        // Compute A_cur / R (Matlab notation for A_cur * R^{-1}) in place.
        blas.TRSM (RIGHT_SIDE, UPPER_TRI, NO_TRANS, NON_UNIT_DIAG,
                   A_cur.nrows (), ncols, Scalar (1), ATA.get (), ATA.lda (),
                   A_cur.get (), A_cur.lda ());

        // Process the remaining cache blocks in order.
        while (! A_rest.empty ()) {
          A_cur = blocker.split_top_block (A_rest, contiguous_cache_blocks);
          blas.TRSM (RIGHT_SIDE, UPPER_TRI, NO_TRANS, NON_UNIT_DIAG,
                     A_cur.nrows (), ncols, Scalar (1), ATA.get (), ATA.lda (),
                     A_cur.get (), A_cur.lda ());
        }
      }

      return retval;
    }

    /// \param factor_output [in] Not used; just here to match the
    ///   interface of SequentialTsqr.
    void
    explicit_Q (const LocalOrdinal nrows,
                const LocalOrdinal ncols_Q,
                const Scalar Q[],
                const LocalOrdinal ldq,
                const FactorOutput& factor_output,
                const LocalOrdinal ncols_C,
                Scalar C[],
                const LocalOrdinal ldc,
                const bool contiguous_cache_blocks = false)
    {
      if (ncols_Q != ncols_C)
        throw std::logic_error("SequentialCholeskyQR::explicit_Q() "
                               "does not work if ncols_C != ncols_Q");
      const LocalOrdinal ncols = ncols_Q;

      if (contiguous_cache_blocks) {
        CacheBlocker< LocalOrdinal, Scalar > blocker (nrows, ncols, strategy_);
        mat_view_type C_rest (nrows, ncols, C, ldc);
        const_mat_view_type Q_rest (nrows, ncols, Q, ldq);

        mat_view_type C_cur = blocker.split_top_block (C_rest, contiguous_cache_blocks);
        const_mat_view_type Q_cur = blocker.split_top_block (Q_rest, contiguous_cache_blocks);

        while (! C_rest.empty ()) {
          deep_copy (Q_cur, C_cur);
        }
      }
      else {
        mat_view_type C_view (nrows, ncols, C, ldc);
        deep_copy (C_view, const_mat_view_type (nrows, ncols, Q, ldq));
      }
    }


    /// Cache-block the given A_in matrix, writing the results to A_out.
    void
    cache_block (const LocalOrdinal nrows,
                 const LocalOrdinal ncols,
                 Scalar A_out[],
                 const Scalar A_in[],
                 const LocalOrdinal lda_in) const
    {
      CacheBlocker< LocalOrdinal, Scalar > blocker (nrows, ncols, strategy_);
      blocker.cache_block (nrows, ncols, A_out, A_in, lda_in);
    }


    /// "Un"-cache-block the given A_in matrix, writing the results to A_out.
    void
    un_cache_block (const LocalOrdinal nrows,
                    const LocalOrdinal ncols,
                    Scalar A_out[],
                    const LocalOrdinal lda_out,
                    const Scalar A_in[]) const
    {
      CacheBlocker< LocalOrdinal, Scalar > blocker (nrows, ncols, strategy_);
      blocker.un_cache_block (nrows, ncols, A_out, lda_out, A_in);
    }

    //! Fill the nrows by ncols matrix A with zeros.
    void
    fill_with_zeros (const LocalOrdinal nrows,
                     const LocalOrdinal ncols,
                     Scalar A[],
                     const LocalOrdinal lda,
                     const bool contiguous_cache_blocks = false)
    {
      CacheBlocker< LocalOrdinal, Scalar > blocker (nrows, ncols, strategy_);
      blocker.fill_with_zeros (nrows, ncols, A, lda, contiguous_cache_blocks);
    }

    /// \brief Return a view of the topmost cache block (on the
    ///   calling MPI process, if in an MPI parallel mode) of the
    ///   given matrix C.
    ///
    /// \note The returned view is not necessarily square, though it
    ///   must have at least as many rows as columns.  For a square
    ///   ncols by ncols block, as needed in TSQR::Tsqr::apply(), if
    ///   the output is ret, do mat_view_type(ncols, ncols, ret.get(),
    ///   ret.lda()) to get an ncols by ncols block.
    template< class MatrixViewType >
    MatrixViewType
    top_block (const MatrixViewType& C,
               const bool contiguous_cache_blocks = false) const
    {
      // The CacheBlocker object knows how to construct a view of the
      // top cache block of C.  This is complicated because cache
      // blocks (in C) may or may not be stored contiguously.  If they
      // are stored contiguously, the CacheBlocker knows the right
      // layout, based on the cache blocking strategy.
      CacheBlocker< LocalOrdinal, Scalar > blocker (C.nrows(), C.ncols(), strategy_);

      // C_top_block is a view of the topmost cache block of C.
      // C_top_block should have >= ncols rows, otherwise either cache
      // blocking is broken or the input matrix C itself had fewer
      // rows than columns.
      MatrixViewType C_top_block = blocker.top_block (C, contiguous_cache_blocks);
      if (C_top_block.nrows() < C_top_block.ncols())
        throw std::logic_error ("C\'s topmost cache block has fewer rows than "
                                "columns");
      return C_top_block;
    }

  private:
    CacheBlockingStrategy< LocalOrdinal, Scalar > strategy_;
  };

} // namespace TSQR

#endif // __TSQR_Tsqr_SequentialCholeskyQR_hpp