/usr/include/vigra/autodiff.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 | /************************************************************************/
/* */
/* Copyright 2012-2013 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_AUTODIFF_HXX
#define VIGRA_AUTODIFF_HXX
#include "tinyvector.hxx"
#include "mathutil.hxx"
#include <cmath>
namespace vigra {
namespace autodiff {
/** Number type for automatic differentiation.
<a href="http://en.wikipedia.org/wiki/Automatic_differentiation">Automatic differentiation</a>
allows one to compute the value of a numeric expression and its gradient
with respect to the expression's arguments automatically and in one go.
To support this, one needs a special number type that holds a scalar value
and the corresponding gradient vector of appropriate length. This is the
purpose of hte template class <tt>DualVector<T, N></tt>, where <tt>T</tt> is the
underlying numerical type (usually 'double'), and <tt>N</tt> denotes the
length of the gradient vector.
The standard arithmetic and algebraic functions are overloaded for
<tt>DualVector</tt> in order to implement the required arithmetic of
dual numbers. When you replace all arguments in a numeric expression
with the appropriate <tt>DualVector</tt> instances, the result will be
a <tt>DualVector</tt> that contains the result value and gradient of
the expression, evaluated at the point defined by the input values.
<b> Usage:</b>
<b>\#include</b> \<vigra/autodiff.hxx\><br>
Namespace: vigra::autodiff
\code
typedef DualVector<double, 2> N; // for expressions with two arguments
N x(1.0, 0); // first argument of the expression
N s(2.0, 1); // second argument of the expression
N y = exp(-0.5 * sq(x / s));
std::cout << "Evaluated exp(- x^2 / (2 s^2)) at x=1 and s = 2:\n";
std::cout << "result = " << y.value() <<", gradient = " << y.gradient() << "\n";
\endcode
Note that the second argument of the <tt>DualVector</tt> constructors specifies that
the derivative w.r.t 'x' shall be the element 0 of the gradient vector, and the
derivative w.r.t. 's' shall be element 1.
*/
template <class T, int N>
class DualVector
{
public:
typedef T value_type; ///< type of function values and gradient elements
typedef TinyVector<T, N> Gradient; ///< type of the gradient vector
T v;
Gradient d;
/** Zero initialization.
*/
DualVector()
: v(), d()
{}
/** Provide a value, but zero-initialize the gradient.
*/
explicit DualVector(T const & val)
: v(val), d()
{}
/** Initialize with given value and gradient.
*/
DualVector(T const & val, Gradient const & grad)
: v(val), d(grad)
{}
/** Shorthand for <tt>DualVector(val, Gradient(g0))</tt> when <tt>N == 1</tt>.
Not to be used when <tt>N != 1</tt>.
*/
DualVector(T const & val, T const & g0)
: v(val), d(g0)
{}
/** Shorthand for <tt>DualVector(val, Gradient(g0, g1))</tt> when <tt>N == 2</tt>.
Not to be used when <tt>N != 2</tt>.
*/
DualVector(T const & val, T const & g0, T const & g1)
: v(val), d(g0, g1)
{}
/** Initialize value to represent the argument number 'targetElement' in an
expression.
The derivative of the expression w.r.t. this variable will be element 'targetElement'
of the resulting gradient vector.
*/
DualVector(T const & val, int targetElement)
: v(val), d()
{
d[targetElement] = T(1.0);
}
/** Get current value.
*/
T value() const
{
return v;
}
/** Get current gradient.
*/
Gradient const & gradient() const
{
return d;
}
DualVector operator+() const
{
return *this;
}
DualVector operator-() const
{
return DualVector(-v, -d);
}
DualVector & operator+=(DualVector const & o)
{
d += o.d;
v += o.v;
return *this;
}
DualVector & operator+=(T const & o)
{
v += o;
return *this;
}
DualVector & operator-=(DualVector const & o)
{
d -= o.d;
v -= o.v;
return *this;
}
DualVector & operator-=(T const & o)
{
v -= o;
return *this;
}
DualVector & operator*=(DualVector const & o)
{
d = o.v * d + v * o.d;
v *= o.v;
return *this;
}
DualVector & operator*=(T const & o)
{
d *= o;
v *= o;
return *this;
}
DualVector & operator/=(DualVector const & o)
{
d = (o.v * d - v * o.d) / sq(o.v);
v /= o.v;
return *this;
}
DualVector & operator/=(T const & o)
{
d /= o;
v /= o;
return *this;
}
};
/** Given a vector 'v' of expression arguments, create the corresponding
vector of dual numbers for automatic differentiation.
*/
template <class T, int N>
TinyVector<DualVector<T, N>, N>
dualMatrix(TinyVector<T, N> const & v)
{
TinyVector<DualVector<T, N>, N> res;
for(int k=0; k<N; ++k)
{
res[k].v = v[k];
res[k].d[k] = T(1.0);
}
return res;
}
template <class T, int N>
inline DualVector<T, N> operator+(DualVector<T, N> v1, DualVector<T, N> const & v2)
{
return v1 += v2;
}
template <class T, int N>
inline DualVector<T, N> operator+(DualVector<T, N> v1, T v2)
{
return v1 += v2;
}
template <class T, int N>
inline DualVector<T, N> operator+(T v1, DualVector<T, N> v2)
{
return v2 += v1;
}
template <class T, int N>
inline DualVector<T, N> operator-(DualVector<T, N> v1, DualVector<T, N> const & v2)
{
return v1 -= v2;
}
template <class T, int N>
inline DualVector<T, N> operator-(DualVector<T, N> v1, T v2)
{
return v1 -= v2;
}
template <class T, int N>
inline DualVector<T, N> operator-(T v1, DualVector<T, N> const & v2)
{
return DualVector<T, N>(v1 - v2.v, -v2.d);
}
template <class T, int N>
inline DualVector<T, N> operator*(DualVector<T, N> v1, DualVector<T, N> const & v2)
{
return v1 *= v2;
}
template <class T, int N>
inline DualVector<T, N> operator*(DualVector<T, N> v1, T v2)
{
return v1 *= v2;
}
template <class T, int N>
inline DualVector<T, N> operator*(T v1, DualVector<T, N> v2)
{
return v2 *= v1;
}
template <class T, int N>
inline DualVector<T, N> operator/(DualVector<T, N> v1, DualVector<T, N> const & v2)
{
return v1 /= v2;
}
template <class T, int N>
inline DualVector<T, N> operator/(DualVector<T, N> v1, T v2)
{
return v1 /= v2;
}
template <class T, int N>
inline DualVector<T, N> operator/(T v1, DualVector<T, N> const & v2)
{
return DualVector<T, N>(v1 / v2.v, -v1*v2.d / sq(v2.v));
}
using vigra::abs;
// abs(x + h) => x + h or -(x + h)
template <typename T, int N>
inline DualVector<T, N> abs(DualVector<T, N> const & v)
{
return v.v < T(0.0) ? -v : v;
}
using std::fabs;
// abs(x + h) => x + h or -(x + h)
template <typename T, int N>
inline DualVector<T, N> fabs(DualVector<T, N> const & v)
{
return v.v < T(0.0) ? -v : v;
}
using std::log;
// log(a + h) => log(a) + h / a
template <typename T, int N>
inline DualVector<T, N> log(DualVector<T, N> v)
{
v.d /= v.v;
v.v = log(v.v);
return v;
}
using std::exp;
// exp(a + h) => exp(a) + exp(a) h
template <class T, int N>
inline DualVector<T, N> exp(DualVector<T, N> v)
{
v.v = exp(v.v);
v.d *= v.v;
return v;
}
using vigra::sqrt;
// sqrt(a + h) => sqrt(a) + h / (2 sqrt(a))
template <typename T, int N>
inline DualVector<T, N> sqrt(DualVector<T, N> v)
{
v.v = sqrt(v.v);
v.d /= T(2.0) * v.v;
return v;
}
using std::sin;
using std::cos;
// sin(a + h) => sin(a) + cos(a) h
template <typename T, int N>
inline DualVector<T, N> sin(DualVector<T, N> v)
{
v.d *= cos(v.v);
v.v = sin(v.v);
return v;
}
// cos(a + h) => cos(a) - sin(a) h
template <typename T, int N>
inline DualVector<T, N> cos(DualVector<T, N> v)
{
v.d *= -sin(v.v);
v.v = cos(v.v);
return v;
}
using vigra::sin_pi;
using vigra::cos_pi;
// sin_pi(a + h) => sin_pi(a) + pi cos_pi(a) h
template <typename T, int N>
inline DualVector<T, N> sin_pi(DualVector<T, N> v)
{
v.d *= M_PI*cos_pi(v.v);
v.v = sin_pi(v.v);
return v;
}
// cos_pi(a + h) => cos_pi(a) - pi sin_pi(a) h
template <typename T, int N>
inline DualVector<T, N> cos_pi(DualVector<T, N> v)
{
v.d *= -M_PI*sin_pi(v.v);
v.v = cos_pi(v.v);
return v;
}
using std::asin;
// asin(a + h) => asin(a) + 1 / sqrt(1 - a^2) h
template <typename T, int N>
inline DualVector<T, N> asin(DualVector<T, N> v)
{
v.d /= sqrt(T(1.0) - sq(v.v));
v.v = asin(v.v);
return v;
}
using std::acos;
// acos(a + h) => acos(a) - 1 / sqrt(1 - a^2) h
template <typename T, int N>
inline DualVector<T, N> acos(DualVector<T, N> v)
{
v.d /= -sqrt(T(1.0) - sq(v.v));
v.v = acos(v.v);
return v;
}
using std::tan;
// tan(a + h) => tan(a) + (1 + tan(a)^2) h
template <typename T, int N>
inline DualVector<T, N> tan(DualVector<T, N> v)
{
v.v = tan(v.v);
v.d *= T(1.0) + sq(v.v);
return v;
}
using std::atan;
// atan(a + h) => atan(a) + 1 / (1 + a^2) h
template <typename T, int N>
inline DualVector<T, N> atan(DualVector<T, N> v)
{
v.d /= T(1.0) + sq(v.v);
v.v = atan(v.v);
return v;
}
using std::sinh;
using std::cosh;
// sinh(a + h) => sinh(a) + cosh(a) h
template <typename T, int N>
inline DualVector<T, N> sinh(DualVector<T, N> v)
{
v.d *= cosh(v.v);
v.v = sinh(v.v);
return v;
}
// cosh(a + h) => cosh(a) + sinh(a) h
template <typename T, int N>
inline DualVector<T, N> cosh(DualVector<T, N> v)
{
v.d *= sinh(v.v);
v.v = cosh(v.v);
return v;
}
using std::tanh;
// tanh(a + h) => tanh(a) + (1 - tanh(a)^2) h
template <typename T, int N>
inline DualVector<T, N> tanh(DualVector<T, N> v)
{
v.v = tanh(v.v);
v.d *= T(1.0) - sq(v.v);
return v;
}
using vigra::sq;
// (a + h)^2 => a^2 + 2 a h
template <class T, int N>
inline DualVector<T, N> sq(DualVector<T, N> v)
{
v.d *= T(2.0)*v.v;
v.v *= v.v;
return v;
}
using std::atan2;
// atan2(b + db, a + da) => atan2(b, a) + (- b da + a db) / (a^2 + b^2)
template <typename T, int N>
inline DualVector<T, N> atan2(DualVector<T, N> v1, DualVector<T, N> const & v2)
{
v1.d = (v2.v * v1.d - v1.v * v2.d) / (sq(v1.v) + sq(v2.v));
v1.v = atan2(v1.v, v2.v);
return v1;
}
using vigra::pow;
// (a+da)^p => a^p + p*a^(p-1) da
template <typename T, int N>
inline DualVector<T, N> pow(DualVector<T, N> v, T p)
{
T pow_p_1 = pow(v.v, p-T(1.0));
v.d *= p * pow_p_1;
v.v *= pow_p_1;
return v;
}
// (a)^(p+dp) => a^p + a^p log(a) dp
template <typename T, int N>
inline DualVector<T, N> pow(T v, DualVector<T, N> p)
{
p.v = pow(v, p.v);
p.d *= p.v * log(v);
return p;
}
// (a+da)^(b+db) => a^b + b * a^(b-1) da + a^b log(a) * db
template <typename T, int N>
inline DualVector<T, N> pow(DualVector<T, N> v, DualVector<T, N> const & p)
{
T pow_p_1 = pow(v.v, p.v-T(1.0)),
pow_p = v.v * pow_p_1;
v.d = p.v * pow_p_1 * v.d + pow_p * log(v.v) * p.d;
v.v = pow_p;
return v;
}
using vigra::min;
template <class T, int N>
inline DualVector<T, N> min(DualVector<T, N> const & v1, DualVector<T, N> const & v2)
{
return v1.v < v2.v
? v1
: v2;
}
template <class T, int N>
inline DualVector<T, N> min(T v1, DualVector<T, N> const & v2)
{
return v1 < v2.v
? DualVector<T, N>(v1)
: v2;
}
template <class T, int N>
inline DualVector<T, N> min(DualVector<T, N> const & v1, T v2)
{
return v1.v < v2
? v1
: DualVector<T, N>(v2);
}
using vigra::max;
template <class T, int N>
inline DualVector<T, N> max(DualVector<T, N> const & v1, DualVector<T, N> const & v2)
{
return v1.v > v2.v
? v1
: v2;
}
template <class T, int N>
inline DualVector<T, N> max(T v1, DualVector<T, N> const & v2)
{
return v1 > v2.v
? DualVector<T, N>(v1)
: v2;
}
template <class T, int N>
inline DualVector<T, N> max(DualVector<T, N> const & v1, T v2)
{
return v1.v > v2
? v1
: DualVector<T, N>(v2);
}
template <class T, int N>
inline bool
operator==(DualVector<T, N> const & v1, DualVector<T, N> const & v2)
{
return v1.v == v2.v && v1.d == v2.d;
}
template <class T, int N>
inline bool
operator!=(DualVector<T, N> const & v1, DualVector<T, N> const & v2)
{
return v1.v != v2.v || v1.d != v2.d;
}
#define VIGRA_DUALVECTOR_RELATIONAL_OPERATORS(op) \
template <class T, int N> \
inline bool \
operator op(DualVector<T, N> const & v1, DualVector<T, N> const & v2) \
{ \
return v1.v op v2.v; \
} \
\
template <class T, int N> \
inline bool \
operator op(T v1, DualVector<T, N> const & v2) \
{ \
return v1 op v2.v; \
} \
\
template <class T, int N> \
inline bool \
operator op(DualVector<T, N> const & v1, T v2) \
{ \
return v1.v op v2; \
}
VIGRA_DUALVECTOR_RELATIONAL_OPERATORS(<)
VIGRA_DUALVECTOR_RELATIONAL_OPERATORS(<=)
VIGRA_DUALVECTOR_RELATIONAL_OPERATORS(>)
VIGRA_DUALVECTOR_RELATIONAL_OPERATORS(>=)
#undef VIGRA_DUALVECTOR_RELATIONAL_OPERATORS
template <class T, int N>
inline bool
closeAtTolerance(DualVector<T, N> const & v1, DualVector<T, N> const & v2,
T epsilon = NumericTraits<T>::epsilon())
{
return vigra::closeAtTolerance(v1.v, v2.v, epsilon) && vigra::closeAtTolerance(v1.d, v2.d, epsilon);
}
} // namespace autodiff
} // namespace vigra
namespace std {
/// stream output
template <class T, int N>
ostream &
operator<<(ostream & out, vigra::autodiff::DualVector<T, N> const & l)
{
out << l.v << " " << l.d;
return out;
}
} // namespace std
#endif // VIGRA_AUTODIFF_HXX
|