This file is indexed.

/usr/include/vigra/histogram.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/************************************************************************/
/*                                                                      */
/*               Copyright 2011-2012 by Ullrich Koethe                  */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_HISTOGRAM_HXX
#define VIGRA_HISTOGRAM_HXX

#include "config.hxx"
#include "array_vector.hxx"
#include <algorithm>

namespace vigra {

/** \brief Set histogram options.

    HistogramOptions objects are used to pass histogram options to other objects. This \ref acc_hist_options "example" shows how it is is used to pass histogram options to an accumulator chain.
*/
class HistogramOptions
{
  public:

    /** \brief Lower bound for linear range mapping from values to indices. */
    double minimum;

    /** \brief Upper bound for linear range mapping from values to indices. */
    double maximum;

    /** \brief Total number of bins in the histogram. */
    int binCount;

    /** \brief If true, range mapping bounds are defined by minimum and maximum of the data. */
    bool local_auto_init;
    
    /** Initialize members with default values:

	- minimum, maximum = 0.0
	- binCount = 64
	- local_auto_init = false
    */
    HistogramOptions()
    : minimum(0.0), maximum(0.0),
      binCount(64),
      local_auto_init(false)
    {}
    
    /** Set minimum = mi and maximum = ma. Requirement: mi < ma.
    */
    HistogramOptions & setMinMax(double mi, double ma)
    {
        vigra_precondition(mi < ma,
            "HistogramOptions::setMinMax(): min < max required.");
        minimum = mi;
        maximum = ma;
        return *this;
    }

    /** Set binCount = c. Requirement: c > 0.
    */
    HistogramOptions & setBinCount(int c)
    {
        vigra_precondition(c > 0,
            "HistogramOptions::setBinCount(): binCount > 0 required.");
        binCount = c;
        return *this;
    }

    /** Set local_auto_init = true. Requirement: setMinMax() must not have been called before. */
    HistogramOptions & regionAutoInit()
    {
        vigra_precondition(!validMinMax(),
            "HistogramOptions::regionAutoInit(): you must not call setMinMax() when auto initialization is desired.");
        local_auto_init = true;
        return *this;
    }

    /** Set local_auto_init = false. Requirement: setMinMax() must not have been called before. */
    HistogramOptions & globalAutoInit()
    {
        vigra_precondition(!validMinMax(),
            "HistogramOptions::globalAutoInit(): you must not call setMinMax() when auto initialization is desired.");
        local_auto_init = false;
        return *this;
    }
    
    /** Return minimum < maximum.
    */
    bool validMinMax() const
    {
        return minimum < maximum;
    }
};

template <class DataType, class BinType>
class HistogramView
{
    BinType * bins_;
    int size_, stride_;
    DataType offset_;
    double scale_, scaleInverse_;
    
  public:
    HistogramView(DataType const & min, DataType const & max, int binCount, 
                  BinType * bins = 0, int stride = 1)
    : bins_(bins),
      size_(binCount),
      stride_(stride),
      offset_(min),
      scale_(double(binCount) / (max - min)),
      scaleInverse_(1.0 / scale_)
    {}
    
    HistogramView & setData(BinType * bins , int stride = 1)
    {
        bins_ = bins;
        stride_ = stride;
        return *this;
    }
    
    HistogramView & reset()
    {
        if(hasData())
            for(int k=0; k<size_; ++k)
                *(bins_ +k*stride_) = BinType();
        return *this;
    }
    
    void getBinCenters(ArrayVector<DataType> * centers) const
    {
        double invScale = 1.0 / scale_;
        for(int k=0; k < size_; ++k)
        {
            (*centers)[k] = mapItemInverse(k + 0.5) ;
        }
    }
    
    int size() const
    {
        return size_;
    }
    
    bool hasData() const
    {
        return bins_ != 0;
    }
    
    BinType const & operator[](int k) const
    {
        return *(bins_ + k*stride_);
    }

	double mapItem(DataType const & d) const
	{
		return scale_ * (d - offset_);
	}
    
	DataType mapItemInverse(double d) const
	{
		return DataType(d * scaleInverse_ + offset_);
	}
    
    void add(DataType const & d, BinType weight = NumericTraits<BinType>::one())
    {
        get(int(mapItem(d))) += weight;
    }

  protected:

	BinType & get(int index)
	{
        if(index < 0)
            index = 0;
        if(index >= size_)
            index = size_ - 1;
		return *(bins_ + index*stride_);
	}
};

template <class T>
class TrapezoidKernel
{
  public:
    typedef T value_type;
    
    T operator[](double f) const
    {
        if(f < -0.5)
            return 0.5*(f + 1.5);
        if(f > 0.5)
            return 0.5*(1.5 - f);
        return 0.5;
    }
    
    double radius() const
    {
        return 1.5;
    }
    
    T findMaximum(double l, double c, double r) const
    {
        double curv = -2.0*c + r + l;
        if(curv == 0.0)
            return T(-0.5);
        double extr = 0.5*(l-r) / curv;
        if(curv < 0.0)
        {
            return extr < -0.5
                       ? T(-0.5)
                       : extr > 0.5
                              ? T(0.5)
                              : T(extr);
        }
        else
        {
            return extr < 0.0
                       ? T(0.5)
                       : T(-0.5);
        }
    }
    
    bool findMode(double l, double c, double r, double * m) const
    {
        double curv = -2.0*c + r + l;
        if(curv >= 0.0)
            return false;
        *m = 0.5*(l-r) / curv;
        if(*m < -0.5 || *m > 0.5)
            return false;
        return true;
    }
};

template <class DataType, class KernelType>
class KernelHistogramView
: public HistogramView<DataType, typename KernelType::value_type>
{
    KernelType kernel_;
    int radius_;
    
  public:
  
    typedef typename KernelType::value_type BinType;
    typedef HistogramView<DataType, BinType> BaseType;

    KernelHistogramView(DataType const & min, DataType const & max, int binCount, 
                        BinType * bins = 0, int stride = 1)
    : BaseType(min, max, binCount, bins, stride),
      radius_(kernel_.radius()-0.5) // FIXME: this needs generalization
    {}
    
    void add(DataType const & d, BinType weight = NumericTraits<BinType>::one())
    {
        double mapped = this->mapItem(d);
        double f = mapped - std::floor(mapped) - kernel_.radius();
        int center = int(mapped);
        
        for(int k=center+radius_; k>=center-radius_; --k, f += 1.0)
        {   
            this->get(k) += weight*kernel_[f];
		}
    }
    
    DataType findMode() const
    {
        double mmax = 0, vmax = 0, m;
        
        for(int k=0; k<this->size(); ++k)
        {
            double l = k > 0
                         ? (*this)[k-1]
                         : 0.0;
            double c = (*this)[k];
            double r = k < this->size() - 1
                         ? (*this)[k+1]
                         : 0.0;
            if(kernel_.findMode(l, c, r, &m))
            {
                double v = l*kernel_[m+1.0] + c*kernel_[m] + r*kernel_[m-1.0];
                if(vmax < v)
                {
                    mmax = m + k + 0.5;
                    vmax = v;
                }
            }
        }
        return this->mapItemInverse(mmax);
    }
    
    template <class Array>
    void findModes(Array * modes)
    {
        double m;
        for(int k=0; k<this->size(); ++k)
        {
            double l = k > 0
                         ? (*this)[k-1]
                         : 0.0;
            double c = (*this)[k];
            double r = k < this->size() - 1
                         ? (*this)[k+1]
                         : 0.0;
            if(kernel_.findMode(l, c, r, &m))
            {
                double v = l*kernel_[m+1.0] + c*kernel_[m] + r*kernel_[m-1.0];
                modes->push_back(std::make_pair(this->mapItemInverse(m + k + 0.5), v));
            }
        }
    }
};

template <class DataType, class BinType>
class Histogram
: public HistogramView<DataType, BinType>
{
  public:
    typedef HistogramView<DataType, BinType> BaseType;
    ArrayVector<BinType> data_;
    
  public:
    Histogram(DataType const & min, DataType const & max, int binCount, 
                  BinType * bins = 0, int stride = 1)
    : BaseType(min, max, binCount),
      data_(binCount)
    {
        this->setData(&data_[0]);
    }
    
    Histogram const & reset()
    {
        this->setData(&data_[0]);
        BaseType::reset();
        return *this;
    }
 };

} // namespace vigra

#endif // VIGRA_HISTOGRAM_HXX