/usr/include/vigra/histogram.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 | /************************************************************************/
/* */
/* Copyright 2011-2012 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_HISTOGRAM_HXX
#define VIGRA_HISTOGRAM_HXX
#include "config.hxx"
#include "array_vector.hxx"
#include <algorithm>
namespace vigra {
/** \brief Set histogram options.
HistogramOptions objects are used to pass histogram options to other objects. This \ref acc_hist_options "example" shows how it is is used to pass histogram options to an accumulator chain.
*/
class HistogramOptions
{
public:
/** \brief Lower bound for linear range mapping from values to indices. */
double minimum;
/** \brief Upper bound for linear range mapping from values to indices. */
double maximum;
/** \brief Total number of bins in the histogram. */
int binCount;
/** \brief If true, range mapping bounds are defined by minimum and maximum of the data. */
bool local_auto_init;
/** Initialize members with default values:
- minimum, maximum = 0.0
- binCount = 64
- local_auto_init = false
*/
HistogramOptions()
: minimum(0.0), maximum(0.0),
binCount(64),
local_auto_init(false)
{}
/** Set minimum = mi and maximum = ma. Requirement: mi < ma.
*/
HistogramOptions & setMinMax(double mi, double ma)
{
vigra_precondition(mi < ma,
"HistogramOptions::setMinMax(): min < max required.");
minimum = mi;
maximum = ma;
return *this;
}
/** Set binCount = c. Requirement: c > 0.
*/
HistogramOptions & setBinCount(int c)
{
vigra_precondition(c > 0,
"HistogramOptions::setBinCount(): binCount > 0 required.");
binCount = c;
return *this;
}
/** Set local_auto_init = true. Requirement: setMinMax() must not have been called before. */
HistogramOptions & regionAutoInit()
{
vigra_precondition(!validMinMax(),
"HistogramOptions::regionAutoInit(): you must not call setMinMax() when auto initialization is desired.");
local_auto_init = true;
return *this;
}
/** Set local_auto_init = false. Requirement: setMinMax() must not have been called before. */
HistogramOptions & globalAutoInit()
{
vigra_precondition(!validMinMax(),
"HistogramOptions::globalAutoInit(): you must not call setMinMax() when auto initialization is desired.");
local_auto_init = false;
return *this;
}
/** Return minimum < maximum.
*/
bool validMinMax() const
{
return minimum < maximum;
}
};
template <class DataType, class BinType>
class HistogramView
{
BinType * bins_;
int size_, stride_;
DataType offset_;
double scale_, scaleInverse_;
public:
HistogramView(DataType const & min, DataType const & max, int binCount,
BinType * bins = 0, int stride = 1)
: bins_(bins),
size_(binCount),
stride_(stride),
offset_(min),
scale_(double(binCount) / (max - min)),
scaleInverse_(1.0 / scale_)
{}
HistogramView & setData(BinType * bins , int stride = 1)
{
bins_ = bins;
stride_ = stride;
return *this;
}
HistogramView & reset()
{
if(hasData())
for(int k=0; k<size_; ++k)
*(bins_ +k*stride_) = BinType();
return *this;
}
void getBinCenters(ArrayVector<DataType> * centers) const
{
double invScale = 1.0 / scale_;
for(int k=0; k < size_; ++k)
{
(*centers)[k] = mapItemInverse(k + 0.5) ;
}
}
int size() const
{
return size_;
}
bool hasData() const
{
return bins_ != 0;
}
BinType const & operator[](int k) const
{
return *(bins_ + k*stride_);
}
double mapItem(DataType const & d) const
{
return scale_ * (d - offset_);
}
DataType mapItemInverse(double d) const
{
return DataType(d * scaleInverse_ + offset_);
}
void add(DataType const & d, BinType weight = NumericTraits<BinType>::one())
{
get(int(mapItem(d))) += weight;
}
protected:
BinType & get(int index)
{
if(index < 0)
index = 0;
if(index >= size_)
index = size_ - 1;
return *(bins_ + index*stride_);
}
};
template <class T>
class TrapezoidKernel
{
public:
typedef T value_type;
T operator[](double f) const
{
if(f < -0.5)
return 0.5*(f + 1.5);
if(f > 0.5)
return 0.5*(1.5 - f);
return 0.5;
}
double radius() const
{
return 1.5;
}
T findMaximum(double l, double c, double r) const
{
double curv = -2.0*c + r + l;
if(curv == 0.0)
return T(-0.5);
double extr = 0.5*(l-r) / curv;
if(curv < 0.0)
{
return extr < -0.5
? T(-0.5)
: extr > 0.5
? T(0.5)
: T(extr);
}
else
{
return extr < 0.0
? T(0.5)
: T(-0.5);
}
}
bool findMode(double l, double c, double r, double * m) const
{
double curv = -2.0*c + r + l;
if(curv >= 0.0)
return false;
*m = 0.5*(l-r) / curv;
if(*m < -0.5 || *m > 0.5)
return false;
return true;
}
};
template <class DataType, class KernelType>
class KernelHistogramView
: public HistogramView<DataType, typename KernelType::value_type>
{
KernelType kernel_;
int radius_;
public:
typedef typename KernelType::value_type BinType;
typedef HistogramView<DataType, BinType> BaseType;
KernelHistogramView(DataType const & min, DataType const & max, int binCount,
BinType * bins = 0, int stride = 1)
: BaseType(min, max, binCount, bins, stride),
radius_(kernel_.radius()-0.5) // FIXME: this needs generalization
{}
void add(DataType const & d, BinType weight = NumericTraits<BinType>::one())
{
double mapped = this->mapItem(d);
double f = mapped - std::floor(mapped) - kernel_.radius();
int center = int(mapped);
for(int k=center+radius_; k>=center-radius_; --k, f += 1.0)
{
this->get(k) += weight*kernel_[f];
}
}
DataType findMode() const
{
double mmax = 0, vmax = 0, m;
for(int k=0; k<this->size(); ++k)
{
double l = k > 0
? (*this)[k-1]
: 0.0;
double c = (*this)[k];
double r = k < this->size() - 1
? (*this)[k+1]
: 0.0;
if(kernel_.findMode(l, c, r, &m))
{
double v = l*kernel_[m+1.0] + c*kernel_[m] + r*kernel_[m-1.0];
if(vmax < v)
{
mmax = m + k + 0.5;
vmax = v;
}
}
}
return this->mapItemInverse(mmax);
}
template <class Array>
void findModes(Array * modes)
{
double m;
for(int k=0; k<this->size(); ++k)
{
double l = k > 0
? (*this)[k-1]
: 0.0;
double c = (*this)[k];
double r = k < this->size() - 1
? (*this)[k+1]
: 0.0;
if(kernel_.findMode(l, c, r, &m))
{
double v = l*kernel_[m+1.0] + c*kernel_[m] + r*kernel_[m-1.0];
modes->push_back(std::make_pair(this->mapItemInverse(m + k + 0.5), v));
}
}
}
};
template <class DataType, class BinType>
class Histogram
: public HistogramView<DataType, BinType>
{
public:
typedef HistogramView<DataType, BinType> BaseType;
ArrayVector<BinType> data_;
public:
Histogram(DataType const & min, DataType const & max, int binCount,
BinType * bins = 0, int stride = 1)
: BaseType(min, max, binCount),
data_(binCount)
{
this->setData(&data_[0]);
}
Histogram const & reset()
{
this->setData(&data_[0]);
BaseType::reset();
return *this;
}
};
} // namespace vigra
#endif // VIGRA_HISTOGRAM_HXX
|