This file is indexed.

/usr/include/vigra/impex.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
/************************************************************************/
/*                                                                      */
/*               Copyright 2001-2002 by Gunnar Kedenburg                */
/*        Copyright 2012 Christoph Spiel and Ullrich Koethe             */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/


/**
 * \file  impex.hxx
 * \brief image import and export functions
 *
 * This module implements functions importImage() and exportImage().
 * The matching implementation for any given datatype is selected by
 * template meta code.
 *
 */

#ifndef VIGRA_IMPEX_HXX
#define VIGRA_IMPEX_HXX

#include "stdimage.hxx"
#include "imageinfo.hxx"
#include "impexbase.hxx"
#include "multi_shape.hxx"

namespace vigra
{
/** \addtogroup VigraImpex
 * @{
*/
    namespace detail
    {
        template <class ValueType,
                  class ImageIterator, class ImageAccessor>
        void
        read_image_band(Decoder* decoder,
                        ImageIterator image_iterator, ImageAccessor image_accessor)
        {
            typedef typename ImageIterator::row_iterator ImageRowIterator;

            const unsigned width(decoder->getWidth());
            const unsigned height(decoder->getHeight());
            const unsigned offset(decoder->getOffset());

            for (unsigned y = 0U; y != height; ++y)
            {
                decoder->nextScanline();

                const ValueType* scanline = static_cast<const ValueType*>(decoder->currentScanlineOfBand(0));

                ImageRowIterator is(image_iterator.rowIterator());
                const ImageRowIterator is_end(is + width);

                while (is != is_end)
                {
                    image_accessor.set(*scanline, is);
                    scanline += offset;
                    ++is;
                }

                ++image_iterator.y;
            }
        }


        template <class ValueType,
                  class ImageIterator, class ImageAccessor>
        void
        read_image_bands(Decoder* decoder,
                         ImageIterator image_iterator, ImageAccessor image_accessor)
        {
            typedef typename ImageIterator::row_iterator ImageRowIterator;

            const unsigned width(decoder->getWidth());
            const unsigned height(decoder->getHeight());
            const unsigned bands(decoder->getNumBands());
            const unsigned offset(decoder->getOffset());
            const unsigned accessor_size(image_accessor.size(image_iterator));
            
            // OPTIMIZATION: Specialization for the most common case
            // of an RGB-image, i.e. 3 channels.
            if (accessor_size == 3U)
            {
                const ValueType* scanline_0;
                const ValueType* scanline_1;
                const ValueType* scanline_2;

                for (unsigned y = 0U; y != height; ++y)
                {
                    decoder->nextScanline();

                    scanline_0 = static_cast<const ValueType*>(decoder->currentScanlineOfBand(0));
                    
                    if(bands == 1)
                    {
                        scanline_1 = scanline_0;
                        scanline_2 = scanline_0;
                    }
                    else
                    {
                        scanline_1 = static_cast<const ValueType*>(decoder->currentScanlineOfBand(1));
                        scanline_2 = static_cast<const ValueType*>(decoder->currentScanlineOfBand(2));
                    }
                    
                    ImageRowIterator is(image_iterator.rowIterator());
                    const ImageRowIterator is_end(is + width);

                    while (is != is_end)
                    {
                        image_accessor.setComponent(*scanline_0, is, 0);
                        image_accessor.setComponent(*scanline_1, is, 1);
                        image_accessor.setComponent(*scanline_2, is, 2);

                        scanline_0 += offset;
                        scanline_1 += offset;
                        scanline_2 += offset;

                        ++is;
                    }

                    ++image_iterator.y;
                }
            }
            else
            {
                std::vector<const ValueType*> scanlines(accessor_size);

                for (unsigned y = 0U; y != height; ++y)
                {
                    decoder->nextScanline();
                    
                    scanlines[0] = static_cast<const ValueType*>(decoder->currentScanlineOfBand(0));

                    if(bands == 1)
                    {
                        for (unsigned i = 1U; i != accessor_size; ++i)
                        {
                            scanlines[i] = scanlines[0];
                        }
                    }
                    else
                    {
                        for (unsigned i = 1U; i != accessor_size; ++i)
                        {
                            scanlines[i] = static_cast<const ValueType*>(decoder->currentScanlineOfBand(i));
                        }
                    }
                    
                    ImageRowIterator is(image_iterator.rowIterator());
                    const ImageRowIterator is_end(is + width);

                    while (is != is_end)
                    {
                        for (unsigned i = 0U; i != accessor_size; ++i)
                        {
                            image_accessor.setComponent(*scanlines[i], is, static_cast<int>(i));
                            scanlines[i] += offset;
                        }
                        ++is;
                    }

                    ++image_iterator.y;
                }
            }
        }


        template <class ImageIterator, class ImageAccessor>
        void
        importImage(const ImageImportInfo& import_info,
                    ImageIterator image_iterator, ImageAccessor image_accessor,
                    /* isScalar? */ VigraTrueType)
        {
            VIGRA_UNIQUE_PTR<Decoder> decoder(vigra::decoder(import_info));

            switch (pixel_t_of_string(decoder->getPixelType()))
            {
            case UNSIGNED_INT_8:
                read_image_band<UInt8>(decoder.get(), image_iterator, image_accessor);
                break;
            case UNSIGNED_INT_16:
                read_image_band<UInt16>(decoder.get(), image_iterator, image_accessor);
                break;
            case UNSIGNED_INT_32:
                read_image_band<UInt32>(decoder.get(), image_iterator, image_accessor);
                break;
            case SIGNED_INT_16:
                read_image_band<Int16>(decoder.get(), image_iterator, image_accessor);
                break;
            case SIGNED_INT_32:
                read_image_band<Int32>(decoder.get(), image_iterator, image_accessor);
                break;
            case IEEE_FLOAT_32:
                read_image_band<float>(decoder.get(), image_iterator, image_accessor);
                break;
            case IEEE_FLOAT_64:
                read_image_band<double>(decoder.get(), image_iterator, image_accessor);
                break;
            default:
                vigra_fail("detail::importImage<scalar>: not reached");
            }

            decoder->close();
        }


        template <class ImageIterator, class ImageAccessor>
        void
        importImage(const ImageImportInfo& import_info,
                    ImageIterator image_iterator, ImageAccessor image_accessor,
                    /* isScalar? */ VigraFalseType)
        {
            vigra_precondition(import_info.numBands() == image_accessor.size(image_iterator) ||
                               import_info.numBands() == 1,
                "importImage(): Number of channels in input and destination image don't match.");

            VIGRA_UNIQUE_PTR<Decoder> decoder(vigra::decoder(import_info));
            
            switch (pixel_t_of_string(decoder->getPixelType()))
            {
            case UNSIGNED_INT_8:
                read_image_bands<UInt8>(decoder.get(), image_iterator, image_accessor);
                break;
            case UNSIGNED_INT_16:
                read_image_bands<UInt16>(decoder.get(), image_iterator, image_accessor);
                break;
            case UNSIGNED_INT_32:
                read_image_bands<UInt32>(decoder.get(), image_iterator, image_accessor);
                break;
            case SIGNED_INT_16:
                read_image_bands<Int16>(decoder.get(), image_iterator, image_accessor);
                break;
            case SIGNED_INT_32:
                read_image_bands<Int32>(decoder.get(), image_iterator, image_accessor);
                break;
            case IEEE_FLOAT_32:
                read_image_bands<float>(decoder.get(), image_iterator, image_accessor);
                break;
            case IEEE_FLOAT_64:
                read_image_bands<double>(decoder.get(), image_iterator, image_accessor);
                break;
            default:
                vigra_fail("vigra::detail::importImage<non-scalar>: not reached");
            }

            decoder->close();
        }

        template<class ValueType,
                 class ImageIterator, class ImageAccessor, class ImageScaler>
        void
        write_image_band(Encoder* encoder,
                         ImageIterator image_upper_left, ImageIterator image_lower_right, ImageAccessor image_accessor,
                         const ImageScaler& image_scaler)
        {
            typedef typename ImageIterator::row_iterator ImageRowIterator;

            typedef RequiresExplicitCast<ValueType> explicit_cast;

            vigra_precondition(image_lower_right.x >= image_upper_left.x,
                               "vigra::detail::write_image_band: negative width");
            vigra_precondition(image_lower_right.y >= image_upper_left.y,
                               "vigra::detail::write_image_band: negative height");

            const unsigned width(static_cast<unsigned>(image_lower_right.x - image_upper_left.x));
            const unsigned height(static_cast<unsigned>(image_lower_right.y - image_upper_left.y));

            encoder->setWidth(width);
            encoder->setHeight(height);
            encoder->setNumBands(1);
            encoder->finalizeSettings();

            const unsigned offset(encoder->getOffset()); // correct offset only _after_ finalizeSettings()

            // IMPLEMENTATION NOTE: We avoid calling the default
            // constructor to allow classes ImageIterator that do not
            // define one.
            ImageIterator image_iterator(image_upper_left);

            for (unsigned y = 0U; y != height; ++y)
            {
                ValueType* scanline = static_cast<ValueType*>(encoder->currentScanlineOfBand(0));

                ImageRowIterator is(image_iterator.rowIterator());
                const ImageRowIterator is_end(is + width);

                while (is != is_end)
                {
                    *scanline = explicit_cast::cast(image_scaler(image_accessor(is)));
                    scanline += offset;
                    ++is;
                }

                encoder->nextScanline();

                ++image_iterator.y;
            }
        }


        template<class ValueType,
                 class ImageIterator, class ImageAccessor, class ImageScaler>
        void
        write_image_bands(Encoder* encoder,
                          ImageIterator image_upper_left, ImageIterator image_lower_right, ImageAccessor image_accessor,
                          const ImageScaler& image_scaler)
        {
            typedef typename ImageIterator::row_iterator ImageRowIterator;
            typedef RequiresExplicitCast<ValueType> explicit_cast;

            vigra_precondition(image_lower_right.x >= image_upper_left.x,
                               "vigra::detail::write_image_bands: negative width");
            vigra_precondition(image_lower_right.y >= image_upper_left.y,
                               "vigra::detail::write_image_bands: negative height");

            const unsigned width(static_cast<unsigned>(image_lower_right.x - image_upper_left.x));
            const unsigned height(static_cast<unsigned>(image_lower_right.y - image_upper_left.y));
            const unsigned accessor_size(image_accessor.size(image_upper_left));

            encoder->setWidth(width);
            encoder->setHeight(height);
            encoder->setNumBands(accessor_size);
            encoder->finalizeSettings();

            const unsigned offset(encoder->getOffset()); // correct offset only _after_ finalizeSettings()

            // IMPLEMENTATION NOTE: We avoid calling the default
            // constructor to allow classes ImageIterator that do not
            // define one.
            ImageIterator image_iterator(image_upper_left);

            // OPTIMIZATION: Specialization for the most common case
            // of an RGB-image, i.e. 3 channels.
            if (accessor_size == 3U)
            {
                ValueType* scanline_0;
                ValueType* scanline_1;
                ValueType* scanline_2;

                for (unsigned y = 0U; y != height; ++y)
                {
                    scanline_0 = static_cast<ValueType*>(encoder->currentScanlineOfBand(0));
                    scanline_1 = static_cast<ValueType*>(encoder->currentScanlineOfBand(1));
                    scanline_2 = static_cast<ValueType*>(encoder->currentScanlineOfBand(2));

                    ImageRowIterator is(image_iterator.rowIterator());
                    const ImageRowIterator is_end(is + width);

                    while (is != is_end)
                    {
                        *scanline_0 = explicit_cast::cast(image_scaler(image_accessor.getComponent(is, 0)));
                        *scanline_1 = explicit_cast::cast(image_scaler(image_accessor.getComponent(is, 1)));
                        *scanline_2 = explicit_cast::cast(image_scaler(image_accessor.getComponent(is, 2)));

                        scanline_0 += offset;
                        scanline_1 += offset;
                        scanline_2 += offset;

                        ++is;
                    }

                    encoder->nextScanline();

                    ++image_iterator.y;
                }
            }
            else
            {
                std::vector<ValueType*> scanlines(accessor_size);

                for (unsigned y = 0U; y != height; ++y)
                {
                    for (unsigned i = 0U; i != accessor_size; ++i)
                    {
                        scanlines[i] = static_cast<ValueType*>(encoder->currentScanlineOfBand(i));
                    }

                    ImageRowIterator is(image_iterator.rowIterator());
                    const ImageRowIterator is_end(is + width);

                    while (is != is_end)
                    {
                        for (unsigned i = 0U; i != accessor_size; ++i)
                        {
                            *scanlines[i] = explicit_cast::cast(image_scaler(image_accessor.getComponent(is, static_cast<int>(i))));
                            scanlines[i] += offset;
                        }
                        ++is;
                    }

                    encoder->nextScanline();

                    ++image_iterator.y;
                }
            }
        }


        template <class ImageIterator, class ImageAccessor>
        void
        exportImage(ImageIterator image_upper_left, ImageIterator image_lower_right, ImageAccessor image_accessor,
                    const ImageExportInfo& export_info,
                    /* isScalar? */ VigraTrueType)
        {
            typedef typename ImageAccessor::value_type ImageValueType;

            VIGRA_UNIQUE_PTR<Encoder> encoder(vigra::encoder(export_info));

            std::string pixel_type(export_info.getPixelType());
            const bool downcast(negotiatePixelType(encoder->getFileType(), TypeAsString<ImageValueType>::result(), pixel_type));
            const pixel_t type(pixel_t_of_string(pixel_type));

            encoder->setPixelType(pixel_type);

            const range_t image_source_range(find_source_value_range(export_info,
                                                                     image_upper_left, image_lower_right, image_accessor));
            const range_t destination_range(find_destination_value_range(export_info, type));

            if ((downcast || export_info.hasForcedRangeMapping()) &&
                (image_source_range.first != destination_range.first || image_source_range.second != destination_range.second))
            {
                const linear_transform image_rescaler(image_source_range, destination_range);

                switch (type)
                {
                case UNSIGNED_INT_8:
                    write_image_band<UInt8>(encoder.get(),
                                            image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case UNSIGNED_INT_16:
                    write_image_band<UInt16>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case UNSIGNED_INT_32:
                    write_image_band<UInt32>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case SIGNED_INT_16:
                    write_image_band<Int16>(encoder.get(),
                                            image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case SIGNED_INT_32:
                    write_image_band<Int32>(encoder.get(),
                                            image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case IEEE_FLOAT_32:
                    write_image_band<float>(encoder.get(),
                                            image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case IEEE_FLOAT_64:
                    write_image_band<double>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                default:
                    vigra_fail("vigra::detail::exportImage<scalar>: not reached");
                }
            }
            else
            {
                switch (type)
                {
                case UNSIGNED_INT_8:
                    write_image_band<UInt8>(encoder.get(),
                                            image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case UNSIGNED_INT_16:
                    write_image_band<UInt16>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case UNSIGNED_INT_32:
                    write_image_band<UInt32>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case SIGNED_INT_16:
                    write_image_band<Int16>(encoder.get(),
                                            image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case SIGNED_INT_32:
                    write_image_band<Int32>(encoder.get(),
                                            image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case IEEE_FLOAT_32:
                    write_image_band<float>(encoder.get(),
                                            image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case IEEE_FLOAT_64:
                    write_image_band<double>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                default:
                    vigra_fail("vigra::detail::exportImage<scalar>: not reached");
                }
            }

            encoder->close();
        }


        template <class ImageIterator, class ImageAccessor>
        void
        exportImage(ImageIterator image_upper_left, ImageIterator image_lower_right, ImageAccessor image_accessor,
                    const ImageExportInfo& export_info,
                    /* isScalar? */ VigraFalseType)
        {
            typedef typename ImageAccessor::value_type ImageBaseType;
            typedef typename ImageBaseType::value_type ImageValueType;

            VIGRA_UNIQUE_PTR<Encoder> encoder(vigra::encoder(export_info));

            std::string pixel_type(export_info.getPixelType());
            const bool downcast(negotiatePixelType(encoder->getFileType(), TypeAsString<ImageValueType>::result(), pixel_type));
            const pixel_t type(pixel_t_of_string(pixel_type));

            encoder->setPixelType(pixel_type);

            vigra_precondition(isBandNumberSupported(encoder->getFileType(), image_accessor.size(image_upper_left)),
                               "exportImage(): file format does not support requested number of bands (color channels)");

            const range_t image_source_range(find_source_value_range(export_info,
                                                                     image_upper_left, image_lower_right, image_accessor));
            const range_t destination_range(find_destination_value_range(export_info, pixel_t_of_string(pixel_type)));

            if ((downcast || export_info.hasForcedRangeMapping()) &&
                (image_source_range.first != destination_range.first || image_source_range.second != destination_range.second))
            {
                const linear_transform image_rescaler(image_source_range, destination_range);

                switch (type)
                {
                case UNSIGNED_INT_8:
                    write_image_bands<UInt8>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case UNSIGNED_INT_16:
                    write_image_bands<UInt16>(encoder.get(),
                                              image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case UNSIGNED_INT_32:
                    write_image_bands<UInt32>(encoder.get(),
                                              image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case SIGNED_INT_16:
                    write_image_bands<Int16>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case SIGNED_INT_32:
                    write_image_bands<Int32>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case IEEE_FLOAT_32:
                    write_image_bands<float>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                case IEEE_FLOAT_64:
                    write_image_bands<double>(encoder.get(),
                                              image_upper_left, image_lower_right, image_accessor, image_rescaler);
                    break;
                default:
                    vigra_fail("vigra::detail::exportImage<non-scalar>: not reached");
                }
            }
            else
            {
                switch (type)
                {
                case UNSIGNED_INT_8:
                    write_image_bands<UInt8>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case UNSIGNED_INT_16:
                    write_image_bands<UInt16>(encoder.get(),
                                              image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case UNSIGNED_INT_32:
                    write_image_bands<UInt32>(encoder.get(),
                                              image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case SIGNED_INT_16:
                    write_image_bands<Int16>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case SIGNED_INT_32:
                    write_image_bands<Int32>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case IEEE_FLOAT_32:
                    write_image_bands<float>(encoder.get(),
                                             image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                case IEEE_FLOAT_64:
                    write_image_bands<double>(encoder.get(),
                                              image_upper_left, image_lower_right, image_accessor, identity());
                    break;
                default:
                    vigra_fail("vigra::detail::exportImage<non-scalar>: not reached");
                }
            }

            encoder->close();
        }
    }  // end namespace detail

    /** 
    \brief Read an image from a file.
   
    If the first parameter is \ref vigra::ImageImportInfo, this function assumes that the destination
    image has already the appropriate shape. If the first parameter is a string, the destination
    must be a \ref vigra::MultiArray reference, which will be reshaped automatically.
    
    If the input image has only a single band, but the destination has multiple bands (e.g. is an RGB
    image), all bands will receive the same data. When a multi-band file is read into a single-band 
    destination array, only the first band is read. Any other mismatch between the number of bands in
    input and output is an error and will throw a precondition exception.
    
    <B>Declarations</B>
   
    pass 2D array views:
    \code
    namespace vigra {
        // read the data into an array view of appropriate size
        template <class T, class S>
        void
        importImage(ImageImportInfo const & import_info,
                    MultiArrayView<2, T, S> image);

        // resize the given array and then read the data
        template <class T, class A>
        void
        importImage(char const * filename,
                    MultiArray<2, T, A> & image);

        template <class T, class A>
        void
        importImage(std::string const & filename,
                    MultiArray<2, T, A> & image);
    }
    \endcode
   
    \deprecatedAPI{importImage}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class ImageIterator, class Accessor>
        void
        importImage(const ImageImportInfo& importInfo,
                    ImageIterator imageIterator, Accessor imageAccessor)
    }
    \endcode
    Use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class ImageIterator, class Accessor>
        void
        importImage(const ImageImportInfo& importInfo,
                    const pair<ImageIterator, Accessor>& image)
    }
    \endcode
    \deprecatedEnd
   
    <b> Usage:</b>
   
    <B>\#include</B> \<vigra/impex.hxx\><br/>
    Namespace: vigra

    \code
    ImageImportInfo info("myimage.gif");

    if (info.isGrayscale())
    {
        // create byte image of appropriate size
        MultiArray<2, unsigned char> image(info.width(), info.height());

        importImage(info, image);
        ...
    }
    else
    {
        // create byte RGB image of appropriate size
        MultiArray<2, RGBValue<unsigned char> > image(info.width(), info.height());

        importImage(info, image);
        ...
    }
    \endcode
    When the type of input image is already known, this can be shortened:
    \code
    // create empty float image
    MultiArray<2, float> image;
    
    // resize image and read the data
    importImage("myimage.png", image);
    \endcode

    \deprecatedUsage{importImage}
    \code
        ImageImportInfo info("myimage.gif");
   
        if (info.isGrayscale())
        {
            // create byte image of appropriate size
            BImage image(info.width(), info.height());
   
            importImage(info, destImage(image));
            ...
        }
        else
        {
            // create byte RGB image of appropriate size
            BRGBImage image(info.width(), info.height());
   
            importImage(info, destImage(image));
            ...
        }
    \endcode
    \deprecatedEnd
   
    <B>Preconditions</B>
   
    - The image file must be readable.
    - The required support library must be installed (if the table doesn't specify an external library, 
      VIGRA supports the format natively).
    - The file type must be one of the following:
   
    <table cellspacing="10">
    <tr align="left">
    <th>Type</th><th> Extension </th><th> Name                           </th><th> Support Library </th>
    </tr><tr>
       <td> BMP  </td><td> bmp       </td><td> Microsoft Windows bitmap image file                        </td><td> </td>
       </tr><tr>
       <td> EXR  </td><td> exr       </td><td> OpenEXR high dynamic range image format                    </td><td> libopenexr </td>
       </tr><tr>
       <td> GIF  </td><td> gif       </td><td> CompuServe graphics interchange format, 8-bit color        </td><td> </td>
       </tr><tr>
       <td> HDR  </td><td> hdr       </td><td> Radiance RGBE high dynamic range image format              </td><td> </td>
       </tr><tr>
       <td> JPEG </td><td> jpg, jpeg </td><td> Joint Photographic Experts Group JFIF format, 24-bit color </td><td> libjpeg </td>
       </tr><tr>
       <td> PBM  </td><td> pbm       </td><td> Portable bitmap format (black and white)                   </td><td> </td>
       </tr><tr>
       <td> PGM  </td><td> pgm       </td><td> Portable graymap format (gray scale)                       </td><td> </td>
       </tr><tr>
       <td> PNG  </td><td> png       </td><td> Portable Network Graphic                                   </td><td> libpng </td>
       </tr><tr>
       <td> PNM  </td><td> pnm       </td><td> Portable anymap                                            </td><td> </td>
       </tr><tr>
       <td> PPM  </td><td> ppm       </td><td> Portable pixmap format (color)                             </td><td> </td>
       </tr><tr>
       <td> SUN  </td><td> ras       </td><td> SUN Rasterfile                                             </td><td> </td>
       </tr><tr>
       <td> TIFF </td><td> tif, tiff </td><td> Tagged Image File Format                                   </td><td> libtiff </td>
       </tr><tr>
       <td> VIFF </td><td> xv        </td><td> Khoros Visualization image file                            </td><td> </td>
       </table>
*/
    doxygen_overloaded_function(template <...> void importImage)


    template <class ImageIterator, class ImageAccessor>
    inline void
    importImage(const ImageImportInfo& import_info,
                ImageIterator image_iterator, ImageAccessor image_accessor)
    {
        typedef typename ImageAccessor::value_type ImageValueType;
        typedef typename NumericTraits<ImageValueType>::isScalar is_scalar;

        detail::importImage(import_info,
                    image_iterator, image_accessor,
                    is_scalar());
    }


    template <class ImageIterator, class ImageAccessor>
    inline void
    importImage(ImageImportInfo const & import_info,
                pair<ImageIterator, ImageAccessor> image)
    {
        importImage(import_info,
                    image.first, image.second);
    }

    template <class T, class S>
    inline void
    importImage(ImageImportInfo const & import_info,
                MultiArrayView<2, T, S> image)
    {
        vigra_precondition(import_info.shape() == image.shape(),
            "importImage(): shape mismatch between input and output.");
        importImage(import_info, destImage(image));
    }

    template <class T, class A>
    inline void
    importImage(char const * name,
                MultiArray<2, T, A> & image)
    {
        ImageImportInfo info(name);
        image.reshape(info.shape());
        importImage(info, destImage(image));
    }

    template <class T, class A>
    inline void
    importImage(std::string const & name,
                MultiArray<2, T, A> & image)
    {
        importImage(name.c_str(), image);
    }

    /** \brief Write an image to a file.
    
    The file can be specified either by a file name or by a \ref vigra::ImageExportInfo object.
    In the latter case, you have much more control about how the file is written. By default,
    the file format to be created is guessed from the filename extension. This can be 
    overridden by an explicit file type in the ImageExportInfo object. If the file format
    supports compression (e.g. JPEG and TIFF), default compression parameters are used
    which can be overridden by the ImageExportInfo object.
    
    If the file format to be created supports the pixel type of the source image, this
    pixel type will be kept in the file (e.g. <tt>float</tt> can be stored by TIFF without 
    conversion) unless the ImageExportInfo object
    explicitly requests a different storage type. If the array's pixel type is not supported by 
    the file format, the pixel values are transformed to the range 0..255 and
    converted to <tt>unsigned char</tt>, unless another mapping is explicitly requested by
    the ImageExportInfo object.  
    
    Currently, the following file formats are supported.  The pixel types given in brackets
    are those that are written without conversion:
        - BMP: Microsoft Windows bitmap image file (pixel types: UINT8 as gray and RGB);
        - GIF: CompuServe graphics interchange format, 8-bit color (pixel types: UINT8 as gray and RGB);
        - JPEG: Joint Photographic Experts Group JFIF format, compressed 24-bit color
                (pixel types: UINT8 as gray and RGB), only available if libjpeg is installed;
        - PNG: Portable Network Graphic (pixel types: UINT8 and UINT16 with up to 4 channels),
                only available if libpng is installed;
        - PBM: Portable bitmap format (black and white);
        - PGM: Portable graymap format (pixel types: UINT8, INT16, INT32 as gray scale);
        - PNM: Portable anymap (pixel types: UINT8, INT16, INT32 as gray and RGB);
        - PPM: Portable pixmap format (pixel types: UINT8, INT16, INT32 as RGB);
        - SUN: SUN Rasterfile (pixel types: UINT8 as gray and RGB);
        - TIFF: Tagged Image File Format
              (pixel types: UINT8, INT16, INT32, FLOAT, DOUBLE with up to 4 channels),
              only available if libtiff is installed;
        - VIFF: Khoros Visualization image file
              (pixel types: UINT8, INT16, INT32, FLOAT, DOUBLE with arbitrary many channels);
    
    <B>Declarations</B>
    
    pass 2D array views:
    \code
    namespace vigra {
        template <class T, class S>
        void
        exportImage(MultiArrayView<2, T, S> const & image,
                    ImageExportInfo const & export_info);

        template <class T, class S>
        void
        exportImage(MultiArrayView<2, T, S> const & image,
                    char const * filename);

        template <class T, class S>
        void
        exportImage(MultiArrayView<2, T, S> const & image,
                    std::string const & filename);
    }
    \endcode
    
    \deprecatedAPI{exportImage}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class ImageIterator, class ImageAccessor>
        void
        exportImage(ImageIterator imageUpperLeft, ImageIterator imageLowerRight, ImageAccessor imageAccessor,
                    const ImageExportInfo& exportInfo)
    }
    \endcode
    Use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
        namespace vigra {
            template <class ImageIterator, class ImageAccessor>
            void exportImage(ImageIterator imageUpperLeft, ImageIterator imageLowerRight, ImageAccessor imageAccessor,
                             const ImageExportInfo& exportInfo)
        }
    \endcode
    \deprecatedEnd
    
    <b> Usage:</b>
    
    <B>\#include</B> \<vigra/impex.hxx\><br/>
    Namespace: vigra

    \code
    MultiArray<2, RGBValue<unsigned char> > image(width, height);
    ...

    // write as JPEG image, using compression quality 80
    exportImage(image,
                ImageExportInfo("my-image.jpg").setCompression("80"));

    // Force it to a particular pixel type.  The pixel type must be supported by the
    // desired image file format, otherwise an \ref vigra::PreconditionViolation
    // exception will be thrown.
    exportImage(image,
                ImageExportInfo("my-INT16-image.tif").setPixelType("INT16"));
    \endcode

    \deprecatedUsage{exportImage}
    \code
    BRGBImage image(width, height);
    ...

    // write as JPEG image, using compression quality 80
    exportImage(srcImageRange(image),
                ImageExportInfo("my-image.jpg").setCompression("80"));

    // Force it to a particular pixel type.  The pixel type must be supported by the
    // desired image file format, otherwise an \ref vigra::PreconditionViolation
    // exception will be thrown.
    exportImage(srcImageRange(image),
                ImageExportInfo("my-INT16-image.tif").setPixelType("INT16"));
    \endcode
    \deprecatedEnd
    
    <B>Preconditions</B>
    
    - The image file must be writable and
    - the file type must be one of the supported file types.
*/
    doxygen_overloaded_function(template <...> void exportImage)


    template <class ImageIterator, class ImageAccessor>
    inline void
    exportImage(ImageIterator image_upper_left, ImageIterator image_lower_right, ImageAccessor image_accessor,
                const ImageExportInfo& export_info)
    {
        typedef typename ImageAccessor::value_type ImageValueType;
        typedef typename NumericTraits<ImageValueType>::isScalar is_scalar;

        try
        {
            detail::exportImage(image_upper_left, image_lower_right, image_accessor,
                        export_info,
                        is_scalar());
        }
        catch (Encoder::TIFFCompressionException&)
        {
            ImageExportInfo info(export_info);

            info.setCompression("");
            detail::exportImage(image_upper_left, image_lower_right, image_accessor,
                                   info,
                                   is_scalar());
        }
    }

    template <class ImageIterator, class ImageAccessor>
    inline void
    exportImage(triple<ImageIterator, ImageIterator, ImageAccessor> image,
                ImageExportInfo const & export_info)
    {
        exportImage(image.first, image.second, image.third,
                    export_info);
    }

    template <class T, class S>
    inline void
    exportImage(MultiArrayView<2, T, S> const & image,
                ImageExportInfo const & export_info)
    {
        exportImage(srcImageRange(image), export_info);
    }

    template <class T, class S>
    inline void
    exportImage(MultiArrayView<2, T, S> const & image,
                char const * name)
    {
        ImageExportInfo export_info(name);
        exportImage(srcImageRange(image), export_info);
    }

    template <class T, class S>
    inline void
    exportImage(MultiArrayView<2, T, S> const & image,
                std::string const & name)
    {
        ImageExportInfo export_info(name.c_str());
        exportImage(srcImageRange(image), export_info);
    }

/** @} */

} // end namespace vigra

#endif // VIGRA_IMPEX_HXX