This file is indexed.

/usr/include/vigra/multi_math.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
/************************************************************************/
/*                                                                      */
/*               Copyright 2010-2011 by Ullrich Koethe                  */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_MULTI_MATH_HXX
#define VIGRA_MULTI_MATH_HXX

#include "multi_array.hxx"
#include "tinyvector.hxx"
#include "rgbvalue.hxx"
#include "mathutil.hxx"
#include <complex>

namespace vigra {

/** \defgroup MultiMathModule vigra::multi_math

    Namespace <tt>vigra::multi_math</tt> holds VIGRA's support for efficient arithmetic and algebraic functions on multi-dimensional arrays (that is, \ref MultiArrayView and its subclasses). All <tt>multi_math</tt> functions operate element-wise. If you need matrix multiplication, use \ref LinearAlgebraModule instead.
    
    In order to avoid overload ambiguities, multi-array arithmetic must be explicitly activated by
    \code
    using namespace vigra::multi_math;
    \endcode
    (this should not be done globally, but only in the scope where the functionality is actually used).
    
    You can then use the standard operators in the expected way:
    \code
    MultiArray<2, float> i(Shape2(100, 100)), j(Shape2(100, 100));
    
    MultiArray<2, float> h  = i + 4.0 * j;
                         h += (i.transpose() - j) / 2.0;
    \endcode
    etc. (supported operators are <tt>+ - * / ! ~ % && || == != &lt; &lt;= &gt; &gt;= &lt;&lt; &gt;&gt; & | ^ = += -= *= /=</tt>, with both scalar and array arguments). 
    
    Algebraic functions are available as well:
    \code
    h  = exp(-(sq(i) + sq(j)));
    h *= atan2(-i, j);
    \endcode
    The following functions are implemented: <tt>abs, erf, even, odd, sign, signi, round, roundi, sqrt, sqrti, sq, 
    norm, squaredNorm, gamma, loggamma, exp, log, log10, sin, sin_pi, cos, cos_pi, asin, acos, tan, atan, 
    floor, ceil, conj, real, imag, arg, atan2, pow, fmod, min, max</tt>, 
    provided the array's element type supports the respective function.
    
    Supported element types currently include the built-in numeric types, \ref TinyVector, \ref RGBValue, 
    <tt>std::complex</tt>, and \ref FFTWComplex.

    In addition, <tt>multi_math</tt> supports a number of functions that reduce arrays to scalars:
    \code
    double s = sum<double>(i);  // compute the sum of the elements, using 'double' as accumulator type
    double p = product<double>(abs(i));  // compute the product of the elements' absolute values
    
    bool a = any(i < 0.0);  // check if any element of i is negative
    bool b = all(i > 0.0);  // check if all elements of i are positive
    \endcode
    
    Expressions are expanded so that no temporary arrays have to be created. To optimize cache locality,
    loops are executed in the stride ordering of the left-hand-side array.
    
    <b>\#include</b> \<vigra/multi_math.hxx\>

    Namespace: vigra::multi_math
*/
namespace multi_math {

template <class ARG>
struct MultiMathOperand
{
    typedef typename ARG::result_type result_type;
    
    static const int ndim = ARG::ndim;
    
    MultiMathOperand(ARG const & a)
    : arg_(a)
    {}
        
    // Check if all arrays involved in the expression have compatible shapes
    // (including transparent expansion of singleton axes).
    // 's' is the shape of the LHS array. If 's' is zero (i.e. the LHS is 
    // not yet initialized), it is set to the maximal RHS shape.
    //
    template <class SHAPE>
    bool checkShape(SHAPE & s) const
    {
        return arg_.checkShape(s);
    }
    
    // increment the pointer of all RHS arrays along the given 'axis'
    void inc(unsigned int axis) const
    {
        arg_.inc(axis);
    }
    
    // reset the pointer of all RHS arrays along the given 'axis'
    void reset(unsigned int axis) const
    {
        arg_.reset(axis);
    }
    
    // get the value of the expression at the current pointer location
    result_type operator*() const
    {
        return *arg_;
    }
    
    // get the value of the expression at an offset of the current pointer location
    template <class SHAPE>
    result_type operator[](SHAPE const & s) const
    {
        return arg_[s];
    }
    
    ARG arg_;
};

template <unsigned int N, class T, class C>
struct MultiMathOperand<MultiArrayView<N, T, C> >
{
    typedef MultiMathOperand AllowOverload;    
    typedef typename MultiArrayShape<N>::type Shape;

    typedef T result_type;
    
    static const int ndim = (int)N;
    
    MultiMathOperand(MultiArrayView<N, T, C> const & a)
    : p_(a.data()),
      shape_(a.shape()),
      strides_(a.stride())
    {
        // allow for transparent expansion of singleton dimensions
        for(unsigned int k=0; k<N; ++k)
            if(shape_[k] == 1)
                strides_[k] = 0;
    }
    
    bool checkShape(Shape & s) const
    {
        // support:
        //   * transparent expansion of singleton dimensions
        //   * determining LHS shape in a constructor
        for(unsigned int k=0; k<N; ++k)
        {
            if(shape_[k] == 0)
            {
                return false;
            }
            else if(s[k] <= 1)
            {
                s[k] = shape_[k];
            }
            else if(shape_[k] > 1 && shape_[k] != s[k])
            {
                return false;
            }
        }
        return true;
    }
    
    T const & operator[](Shape const & s) const
    {
        return p_[dot(s, strides_)];
    }
    
    void inc(unsigned int axis) const
    {
        p_ += strides_[axis];
    }
    
    void reset(unsigned int axis) const
    {
        p_ -= shape_[axis]*strides_[axis];
    }
    
    result_type operator*() const
    {
        return *p_;
    }
    
    mutable T const * p_;
    Shape shape_, strides_;
};

template <unsigned int N, class T, class A>
struct MultiMathOperand<MultiArray<N, T, A> >
: public MultiMathOperand<MultiArrayView<N, T, UnstridedArrayTag> >
{
    typedef MultiMathOperand AllowOverload;
    
    MultiMathOperand(MultiArray<N, T, A> const & a)
    : MultiMathOperand<MultiArrayView<N, T, UnstridedArrayTag> >(a)
    {}
};

template <class T>
struct MultiMathScalarOperand
{
    typedef MultiMathOperand<T> AllowOverload;
    typedef T result_type;
    
    static const int ndim = 0;
    
    MultiMathScalarOperand(T const & v)
    : v_(v)
    {}
    
    template <class SHAPE>
    bool checkShape(SHAPE const &) const
    {
        return true;
    }
    
    template <class SHAPE>
    T const & operator[](SHAPE const &) const
    {
        return v_;
    }
    
    void inc(unsigned int /* axis */) const
    {}
    
    void reset(unsigned int /* axis */) const
    {}
    
    T const & operator*() const
    {
        return v_;
    }
    
    T v_;
};

#define VIGRA_CONSTANT_OPERAND(template_dcl, type) \
template template_dcl \
struct MultiMathOperand<type > \
: MultiMathScalarOperand<type > \
{ \
    MultiMathOperand(type const & v) \
    : MultiMathScalarOperand<type >(v) \
    {} \
};

VIGRA_CONSTANT_OPERAND(<>, signed char)
VIGRA_CONSTANT_OPERAND(<>, signed short)
VIGRA_CONSTANT_OPERAND(<>, signed int)
VIGRA_CONSTANT_OPERAND(<>, signed long)
VIGRA_CONSTANT_OPERAND(<>, signed long long)
VIGRA_CONSTANT_OPERAND(<>, unsigned char)
VIGRA_CONSTANT_OPERAND(<>, unsigned short)
VIGRA_CONSTANT_OPERAND(<>, unsigned int)
VIGRA_CONSTANT_OPERAND(<>, unsigned long)
VIGRA_CONSTANT_OPERAND(<>, unsigned long long)
VIGRA_CONSTANT_OPERAND(<>, float)
VIGRA_CONSTANT_OPERAND(<>, double)
VIGRA_CONSTANT_OPERAND(<>, long double)
VIGRA_CONSTANT_OPERAND(<class T>, std::complex<T>)

#define VIGRA_TINYVECTOR_ARGS <class T, int N>
#define VIGRA_TINYVECTOR_DECL TinyVector<T, N>
VIGRA_CONSTANT_OPERAND(VIGRA_TINYVECTOR_ARGS, VIGRA_TINYVECTOR_DECL)
#undef VIGRA_TINYVECTOR_ARGS
#undef VIGRA_TINYVECTOR_DECL

#define VIGRA_RGBVALUE_ARGS <class V, unsigned int R, unsigned int G, unsigned int B>
#define VIGRA_RGBVALUE_DECL RGBValue<V, R, G, B>
VIGRA_CONSTANT_OPERAND(VIGRA_RGBVALUE_ARGS, VIGRA_RGBVALUE_DECL)
#undef VIGRA_RGBVALUE_ARGS
#undef VIGRA_RGBVALUE_DECL

#undef VIGRA_CONSTANT_OPERAND

template <class O, class F>
struct MultiMathUnaryOperator
{
    typedef typename F::template Result<typename O::result_type>::type result_type;
    
    static const int ndim = O::ndim;
                                    
    MultiMathUnaryOperator(O const & o)
    : o_(o)
    {}
    
    template <class SHAPE>
    bool checkShape(SHAPE & s) const
    {
        return o_.checkShape(s);
    }
    
    //
    void inc(unsigned int axis) const
    {
        o_.inc(axis);
    }
    
    void reset(unsigned int axis) const
    {
        o_.reset(axis);
    }
    
    template <class POINT>
    result_type operator[](POINT const & p) const
    {
        return f_(o_[p]);
    }
    
    result_type operator*() const
    {
        return f_(*o_);
    }
    
    O o_;
    F f_;
};

#define VIGRA_MULTIMATH_UNARY_OPERATOR(NAME, FCT, OPNAME, RESTYPE) \
namespace math_detail { \
struct NAME \
{ \
    template <class T> \
    struct Result \
    { \
        typedef RESTYPE type; \
    }; \
     \
    template <class T> \
    typename Result<T>::type \
    operator()(T const & t) const \
    { \
        return FCT(t); \
    } \
}; \
} \
 \
template <unsigned int N, class T, class C> \
MultiMathOperand<MultiMathUnaryOperator<MultiMathOperand<MultiArrayView<N, T, C> >, \
                                        math_detail::NAME> > \
OPNAME(MultiArrayView<N, T, C> const & v) \
{ \
    typedef MultiMathOperand<MultiArrayView<N, T, C> > O; \
    typedef MultiMathUnaryOperator<O, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v)); \
} \
 \
template <unsigned int N, class T, class A> \
MultiMathOperand<MultiMathUnaryOperator<MultiMathOperand<MultiArray<N, T, A> >, \
                                        math_detail::NAME> > \
OPNAME(MultiArray<N, T, A> const & v) \
{ \
    typedef MultiMathOperand<MultiArray<N, T, A> > O; \
    typedef MultiMathUnaryOperator<O, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v)); \
} \
 \
template <class T> \
MultiMathOperand<MultiMathUnaryOperator<MultiMathOperand<T>, \
                                        math_detail::NAME> > \
OPNAME(MultiMathOperand<T> const & v) \
{ \
    typedef MultiMathOperand<T> O; \
    typedef MultiMathUnaryOperator<O, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v)); \
}

#define VIGRA_REALPROMOTE typename NumericTraits<T>::RealPromote

#ifndef DOXYGEN  // doxygen gets confused by these macros

VIGRA_MULTIMATH_UNARY_OPERATOR(Negate, -, operator-, T)
VIGRA_MULTIMATH_UNARY_OPERATOR(Not, !, operator!, T)
VIGRA_MULTIMATH_UNARY_OPERATOR(BitwiseNot, ~, operator~, T)

using vigra::abs;
VIGRA_MULTIMATH_UNARY_OPERATOR(Abs, vigra::abs, abs, typename NormTraits<T>::NormType)

using vigra::erf;
VIGRA_MULTIMATH_UNARY_OPERATOR(Erf, vigra::erf, erf, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Even, vigra::even, even, bool)
VIGRA_MULTIMATH_UNARY_OPERATOR(Odd, vigra::odd, odd, bool)
VIGRA_MULTIMATH_UNARY_OPERATOR(Sign, vigra::sign, sign, T)
VIGRA_MULTIMATH_UNARY_OPERATOR(Signi, vigra::signi, signi, int)

using vigra::round;
VIGRA_MULTIMATH_UNARY_OPERATOR(Round, vigra::round, round, T)

VIGRA_MULTIMATH_UNARY_OPERATOR(Roundi, vigra::roundi, roundi, int)
VIGRA_MULTIMATH_UNARY_OPERATOR(Sqrti, vigra::sqrti, sqrti, T)
VIGRA_MULTIMATH_UNARY_OPERATOR(Sq, vigra::sq, sq, typename NumericTraits<T>::Promote)
VIGRA_MULTIMATH_UNARY_OPERATOR(Norm, vigra::norm, norm, typename NormTraits<T>::NormType)
VIGRA_MULTIMATH_UNARY_OPERATOR(SquaredNorm, vigra::squaredNorm, squaredNorm, 
                               typename NormTraits<T>::SquaredNormType)
VIGRA_MULTIMATH_UNARY_OPERATOR(Sin_pi, vigra::sin_pi, sin_pi, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Cos_pi, vigra::cos_pi, cos_pi, VIGRA_REALPROMOTE)

using vigra::gamma;
VIGRA_MULTIMATH_UNARY_OPERATOR(Gamma, vigra::gamma, gamma, VIGRA_REALPROMOTE)

using vigra::loggamma;
VIGRA_MULTIMATH_UNARY_OPERATOR(Loggamma, vigra::loggamma, loggamma, VIGRA_REALPROMOTE)

VIGRA_MULTIMATH_UNARY_OPERATOR(Sqrt, std::sqrt, sqrt, VIGRA_REALPROMOTE)
using vigra::exp;
VIGRA_MULTIMATH_UNARY_OPERATOR(Exp, vigra::exp, exp, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Log, std::log, log, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Log10, std::log10, log10, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Sin, std::sin, sin, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Asin, std::asin, asin, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Cos, std::cos, cos, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Acos, std::acos, acos, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Tan, std::tan, tan, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Atan, std::atan, atan, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Floor, std::floor, floor, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_UNARY_OPERATOR(Ceil, std::ceil, ceil, VIGRA_REALPROMOTE)

VIGRA_MULTIMATH_UNARY_OPERATOR(Conj, conj, conj, T)
VIGRA_MULTIMATH_UNARY_OPERATOR(Real, real, real, typename T::value_type)
VIGRA_MULTIMATH_UNARY_OPERATOR(Imag, imag, imag, typename T::value_type)
VIGRA_MULTIMATH_UNARY_OPERATOR(Arg, arg, arg, typename T::value_type)

#endif //DOXYGEN

#undef VIGRA_REALPROMOTE
#undef VIGRA_MULTIMATH_UNARY_OPERATOR

template <class O1, class O2, class F>
struct MultiMathBinaryOperator
{
    typedef typename F::template Result<typename O1::result_type,
                                         typename O2::result_type>::type result_type;
                                    
    static const int ndim = O1::ndim > O2::ndim ? O1::ndim : O2::ndim;
    
    MultiMathBinaryOperator(O1 const & o1, O2 const & o2)
    : o1_(o1),
      o2_(o2)
    {}
    
    template <class SHAPE>
    bool checkShape(SHAPE & s) const
    {
        return o1_.checkShape(s) && o2_.checkShape(s);
    }
    
    template <class POINT>
    result_type operator[](POINT const & p) const
    {
        return f_(o1_[p], o2_[p]);
    }
    
    void inc(unsigned int axis) const
    {
        o1_.inc(axis);
        o2_.inc(axis);
    }
    
    void reset(unsigned int axis) const
    {
        o1_.reset(axis);
        o2_.reset(axis);
    }
    
    result_type operator*() const
    {
        return f_(*o1_, *o2_);
    }
    
    O1 o1_;
    O2 o2_;
    F f_;
};


// In the sequel, the nested type 'MultiMathOperand<T>::AllowOverload'
// ensures that template functions only participate in overload
// resolution when this type is defined, i.e. when T is a number 
// or array type. It thus prevents 'ambiguous overload' errors.
//
#define VIGRA_MULTIMATH_BINARY_OPERATOR(NAME, FCT, OPNAME, SEP, RESTYPE) \
\
namespace math_detail { \
struct NAME \
{ \
    template <class T1, class T2> \
    struct Result \
    { \
        typedef RESTYPE type; \
    }; \
    \
    template <class T1, class T2> \
    typename Result<T1, T2>::type \
    operator()(T1 const & t1, T2 const & t2) const \
    { \
        return FCT(t1 SEP t2); \
    } \
}; \
} \
 \
template <unsigned int N, class T1, class A1, class T2, class A2> \
MultiMathOperand<MultiMathBinaryOperator<MultiMathOperand<MultiArrayView<N, T1> >, \
                                         MultiMathOperand<MultiArrayView<N, T2> >, \
                                         math_detail::NAME> > \
OPNAME(MultiArray<N, T1, A1> const & v1, MultiArray<N, T2, A2> const & v2) \
{ \
    typedef MultiMathOperand<MultiArrayView<N, T1> > O1; \
    typedef MultiMathOperand<MultiArrayView<N, T2> > O2; \
    typedef MultiMathBinaryOperator<O1, O2, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP((MultiArrayView<N, T1> const &)v1, (MultiArrayView<N, T2> const &)v2)); \
} \
\
template <unsigned int N, class T1, class C1, class T2, class C2> \
MultiMathOperand<MultiMathBinaryOperator<MultiMathOperand<MultiArrayView<N, T1, C1> >, \
                                         MultiMathOperand<MultiArrayView<N, T2, C2> >, \
                                         math_detail::NAME> > \
OPNAME(MultiArrayView<N, T1, C1> const & v1, MultiArrayView<N, T2, C2> const & v2) \
{ \
    typedef MultiMathOperand<MultiArrayView<N, T1, C1> > O1; \
    typedef MultiMathOperand<MultiArrayView<N, T2, C2> > O2; \
    typedef MultiMathBinaryOperator<O1, O2, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v1, v2)); \
} \
\
template <unsigned int N, class T1, class T2, class C2> \
MultiMathOperand<MultiMathBinaryOperator<typename MultiMathOperand<T1>::AllowOverload, \
                                         MultiMathOperand<MultiArrayView<N, T2, C2> >, \
                                         math_detail::NAME> > \
OPNAME(T1 const & v1, MultiArrayView<N, T2, C2> const & v2) \
{ \
    typedef MultiMathOperand<T1> O1; \
    typedef MultiMathOperand<MultiArrayView<N, T2, C2> > O2; \
    typedef MultiMathBinaryOperator<O1, O2, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v1, v2)); \
} \
 \
template <unsigned int N, class T1, class C1, class T2> \
MultiMathOperand<MultiMathBinaryOperator<MultiMathOperand<MultiArrayView<N, T1, C1> >, \
                                         typename MultiMathOperand<T2>::AllowOverload, \
                                         math_detail::NAME> > \
OPNAME(MultiArrayView<N, T1, C1> const & v1, T2 const & v2) \
{ \
    typedef MultiMathOperand<MultiArrayView<N, T1, C1> > O1; \
    typedef MultiMathOperand<T2> O2; \
    typedef MultiMathBinaryOperator<O1, O2, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v1, v2)); \
} \
 \
template <unsigned int N, class T1, class T2, class C2> \
MultiMathOperand<MultiMathBinaryOperator<MultiMathOperand<T1>, \
                                         MultiMathOperand<MultiArrayView<N, T2, C2> >, \
                                         math_detail::NAME> > \
OPNAME(MultiMathOperand<T1> const & v1, MultiArrayView<N, T2, C2> const & v2) \
{ \
    typedef MultiMathOperand<T1> O1; \
    typedef MultiMathOperand<MultiArrayView<N, T2, C2> > O2; \
    typedef MultiMathBinaryOperator<O1, O2, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v1, v2)); \
} \
 \
template <unsigned int N, class T1, class C1, class T2> \
MultiMathOperand<MultiMathBinaryOperator<MultiMathOperand<MultiArrayView<N, T1, C1> >, \
                                         MultiMathOperand<T2>, \
                                         math_detail::NAME> > \
OPNAME(MultiArrayView<N, T1, C1> const & v1, MultiMathOperand<T2> const & v2) \
{ \
    typedef MultiMathOperand<MultiArrayView<N, T1, C1> > O1; \
    typedef MultiMathOperand<T2> O2; \
    typedef MultiMathBinaryOperator<O1, O2, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v1, v2)); \
} \
 \
template <class T1, class T2> \
MultiMathOperand<MultiMathBinaryOperator<MultiMathOperand<T1>, \
                                         MultiMathOperand<T2>, \
                                         math_detail::NAME> > \
OPNAME(MultiMathOperand<T1> const & v1, MultiMathOperand<T2> const & v2) \
{ \
    typedef MultiMathOperand<T1> O1; \
    typedef MultiMathOperand<T2> O2; \
    typedef MultiMathBinaryOperator<O1, O2, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v1, v2)); \
} \
\
template <class T1, class T2> \
MultiMathOperand<MultiMathBinaryOperator<typename MultiMathOperand<T1>::AllowOverload, \
                                         MultiMathOperand<T2>, \
                                         math_detail::NAME> > \
OPNAME(T1 const & v1, MultiMathOperand<T2> const & v2) \
{ \
    typedef MultiMathOperand<T1> O1; \
    typedef MultiMathOperand<T2> O2; \
    typedef MultiMathBinaryOperator<O1, O2, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v1, v2)); \
} \
\
template <class T1, class T2> \
MultiMathOperand<MultiMathBinaryOperator<MultiMathOperand<T1>, \
                                         typename MultiMathOperand<T2>::AllowOverload, \
                                         math_detail::NAME> > \
OPNAME(MultiMathOperand<T1> const & v1, T2 const & v2) \
{ \
    typedef MultiMathOperand<T1> O1; \
    typedef MultiMathOperand<T2> O2; \
    typedef MultiMathBinaryOperator<O1, O2, math_detail::NAME> OP; \
    return MultiMathOperand<OP>(OP(v1, v2)); \
}

#define VIGRA_NOTHING
#define VIGRA_COMMA ,
#define VIGRA_PROMOTE typename PromoteTraits<T1, T2>::Promote
#define VIGRA_REALPROMOTE typename PromoteTraits<typename NumericTraits<T1>::RealPromote, \
                                                 typename NumericTraits<T2>::RealPromote>::Promote

VIGRA_MULTIMATH_BINARY_OPERATOR(Plus, VIGRA_NOTHING, operator+, +, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Minus, VIGRA_NOTHING, operator-, -, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Multiplies, VIGRA_NOTHING, operator*, *, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Divides, VIGRA_NOTHING, operator/, /, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Modulo, VIGRA_NOTHING, operator%, %, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(And, VIGRA_NOTHING, operator&&, &&, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Or, VIGRA_NOTHING, operator||, ||, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Equal, VIGRA_NOTHING, operator==, ==, bool)
VIGRA_MULTIMATH_BINARY_OPERATOR(NotEqual, VIGRA_NOTHING, operator!=, !=, bool)
VIGRA_MULTIMATH_BINARY_OPERATOR(Less, VIGRA_NOTHING, operator<, <, bool)
VIGRA_MULTIMATH_BINARY_OPERATOR(LessEqual, VIGRA_NOTHING, operator<=, <=, bool)
VIGRA_MULTIMATH_BINARY_OPERATOR(Greater, VIGRA_NOTHING, operator>, >, bool)
VIGRA_MULTIMATH_BINARY_OPERATOR(GreaterEqual, VIGRA_NOTHING, operator>=, >=, bool)
VIGRA_MULTIMATH_BINARY_OPERATOR(Leftshift, VIGRA_NOTHING, operator<<, <<, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Rightshift, VIGRA_NOTHING, operator>>, >>, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(BitwiseAnd, VIGRA_NOTHING, operator&, &, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(BitwiseOr, VIGRA_NOTHING, operator|, |, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(BitwiseXor, VIGRA_NOTHING, operator^, ^, VIGRA_PROMOTE)

VIGRA_MULTIMATH_BINARY_OPERATOR(Atan2, std::atan2, atan2, VIGRA_COMMA, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Pow, vigra::pow, pow, VIGRA_COMMA, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Fmod, std::fmod, fmod, VIGRA_COMMA, VIGRA_REALPROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Min, std::min, min, VIGRA_COMMA, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Max, std::max, max, VIGRA_COMMA, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Minimum, std::min, minimum, VIGRA_COMMA, VIGRA_PROMOTE)
VIGRA_MULTIMATH_BINARY_OPERATOR(Maximum, std::max, maximum, VIGRA_COMMA, VIGRA_PROMOTE)

#undef VIGRA_NOTHING
#undef VIGRA_COMMA
#undef VIGRA_PROMOTE
#undef VIGRA_REALPROMOTE
#undef VIGRA_MULTIMATH_BINARY_OPERATOR

namespace math_detail {

// We pass 'strideOrder' to the recursion in order to make sure
// that the inner loop iterates over the output's major axis.
// Of course, this does not help when the RHS arrays are ordered 
// differently -- maybe it is better to find the most common order
// among all arguments (both RHS and LHS)?
//
template <unsigned int N, class Assign>
struct MultiMathExec
{
    enum { LEVEL = N-1 };
    
    template <class T, class Shape, class Expression>
    static void exec(T * data, Shape const & shape, Shape const & strides, 
                     Shape const & strideOrder, Expression const & e)
    {
        MultiArrayIndex axis = strideOrder[LEVEL];
        for(MultiArrayIndex k=0; k<shape[axis]; ++k, data += strides[axis], e.inc(axis))
        {
            MultiMathExec<N-1, Assign>::exec(data, shape, strides, strideOrder, e);
        }
        e.reset(axis);
        data -= shape[axis]*strides[axis];
    }
};

template <class Assign>
struct MultiMathExec<1, Assign>
{
    enum { LEVEL = 0 };
    
    template <class T, class Shape, class Expression>
    static void exec(T * data, Shape const & shape, Shape const & strides, 
                     Shape const & strideOrder, Expression const & e)
    {
        MultiArrayIndex axis = strideOrder[LEVEL];
        for(MultiArrayIndex k=0; k<shape[axis]; ++k, data += strides[axis], e.inc(axis))
        {
            Assign::assign(data, e);
        }
        e.reset(axis);
        data -= shape[axis]*strides[axis];
    }
};

#define VIGRA_MULTIMATH_ASSIGN(NAME, OP) \
struct MultiMath##NAME \
{ \
    template <class T, class Expression> \
    static void assign(T * data, Expression const & e) \
    { \
        *data OP vigra::detail::RequiresExplicitCast<T>::cast(*e); \
    } \
}; \
 \
template <unsigned int N, class T, class C, class Expression> \
void NAME(MultiArrayView<N, T, C> a, MultiMathOperand<Expression> const & e) \
{ \
    typename MultiArrayShape<N>::type shape(a.shape()); \
     \
    vigra_precondition(e.checkShape(shape), \
       "multi_math: shape mismatch in expression."); \
        \
    MultiMathExec<N, MultiMath##NAME>::exec(a.data(), a.shape(), a.stride(), \
                                            a.strideOrdering(), e); \
} \
 \
template <unsigned int N, class T, class A, class Expression> \
void NAME##OrResize(MultiArray<N, T, A> & a, MultiMathOperand<Expression> const & e) \
{ \
    typename MultiArrayShape<N>::type shape(a.shape()); \
     \
    vigra_precondition(e.checkShape(shape), \
       "multi_math: shape mismatch in expression."); \
        \
    if(a.size() == 0) \
        a.reshape(shape); \
         \
    MultiMathExec<N, MultiMath##NAME>::exec(a.data(), a.shape(), a.stride(), \
                                            a.strideOrdering(), e); \
}

VIGRA_MULTIMATH_ASSIGN(assign, =)
VIGRA_MULTIMATH_ASSIGN(plusAssign, +=)
VIGRA_MULTIMATH_ASSIGN(minusAssign, -=)
VIGRA_MULTIMATH_ASSIGN(multiplyAssign, *=)
VIGRA_MULTIMATH_ASSIGN(divideAssign, /=)

#undef VIGRA_MULTIMATH_ASSIGN

template <unsigned int N, class Assign>
struct MultiMathReduce
{
    enum { LEVEL = N-1 };
    
    template <class T, class Shape, class Expression>
    static void exec(T & t, Shape const & shape, Expression const & e)
    {
        for(MultiArrayIndex k=0; k<shape[LEVEL]; ++k, e.inc(LEVEL))
        {
            MultiMathReduce<N-1, Assign>::exec(t, shape, e);
        }
        e.reset(LEVEL);
    }
};

template <class Assign>
struct MultiMathReduce<1, Assign>
{
    enum { LEVEL = 0 };
    
    template <class T, class Shape, class Expression>
    static void exec(T & t, Shape const & shape, Expression const & e)
    {
        for(MultiArrayIndex k=0; k<shape[0]; ++k, e.inc(0))
        {
            Assign::assign(&t, e);
        }
        e.reset(0);
    }
};

struct MultiMathReduceAll
{
    template <class T, class Expression>
    static void assign(T * data, Expression const & e)
    {
        *data = *data && (*e != NumericTraits<typename Expression::result_type>::zero());
    }
};

struct MultiMathReduceAny
{
    template <class T, class Expression>
    static void assign(T * data, Expression const & e)
    {
        *data = *data || (*e != NumericTraits<typename Expression::result_type>::zero());
    }
};


} // namespace math_detail

template <class U, class T>
U
sum(MultiMathOperand<T> const & v, U res = NumericTraits<U>::zero()) 
{ 
    static const int ndim = MultiMathOperand<T>::ndim;
    typename MultiArrayShape<ndim>::type shape;
    v.checkShape(shape);
    math_detail::MultiMathReduce<ndim, math_detail::MultiMathplusAssign>::exec(res, shape, v);
    return res;
}

template <class U, unsigned int N, class T, class S>
U
sum(MultiArrayView<N, T, S> const & v, U res = NumericTraits<U>::zero()) 
{ 
    return v.template sum<U>() + res;
}

template <class U, class T>
U
product(MultiMathOperand<T> const & v, U res = NumericTraits<U>::one()) 
{ 
    static const int ndim = MultiMathOperand<T>::ndim;
    typename MultiArrayShape<ndim>::type shape;
    v.checkShape(shape);
    math_detail::MultiMathReduce<ndim, math_detail::MultiMathmultiplyAssign>::exec(res, shape, v);
    return res;
}

template <class U, unsigned int N, class T, class S>
U
product(MultiArrayView<N, T, S> const & v, U res = NumericTraits<U>::one()) 
{ 
    return v.template product<U>() * res;
}

template <class T>
bool
all(MultiMathOperand<T> const & v) 
{ 
    static const int ndim = MultiMathOperand<T>::ndim;
    typename MultiArrayShape<ndim>::type shape;
    v.checkShape(shape);
    bool res = true;
    math_detail::MultiMathReduce<ndim, math_detail::MultiMathReduceAll>::exec(res, shape, v);
    return res;
}

template <class T>
bool
any(MultiMathOperand<T> const & v) 
{ 
    static const int ndim = MultiMathOperand<T>::ndim;
    typename MultiArrayShape<ndim>::type shape;
    v.checkShape(shape);
    bool res = false;
    math_detail::MultiMathReduce<ndim, math_detail::MultiMathReduceAny>::exec(res, shape, v);
    return res;
}


}} // namespace vigra::multi_math

#endif // VIGRA_MULTI_MATH_HXX