/usr/include/vigra/numerictraits.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 | /************************************************************************/
/* */
/* Copyright 1998-2002 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_NUMERICTRAITS_HXX
#define VIGRA_NUMERICTRAITS_HXX
#include <climits>
#include <limits>
#include <cfloat>
#include <complex>
#include "metaprogramming.hxx"
#include "sized_int.hxx"
/********************************************************/
/* */
/* NumericTraits */
/* */
/********************************************************/
/** \page NumericPromotionTraits Numeric and Promotion Traits
Meta-information about arithmetic types.
<UL style="list-style-image:url(documents/bullet.gif)">
<LI> \ref NumericTraits
<BR> <em>Unary traits for promotion, conversion, creation of arithmetic objects</em>
<LI> \ref PromoteTraits
<BR> <em>Binary traits for promotion of arithmetic objects</em>
<LI> \ref SquareRootTraits
<BR> <em>Unary traits for the calculation of the square root of arithmetic objects</em>
<LI> \ref NormTraits
<BR> <em>Unary traits for the calculation of the norm and squared norm of arithmetic objects</em>
</UL>
These traits classes contain information that is used by generic
algorithms and data structures to determine intermediate and result
types of numerical calculations, to convert between different
representations of arithmetic types, and to create certain important
constants of each type. Thus, algorithms and data structures
operating that need arithmetic operations can be made more
independent from the actual data representation.
NumericTraits are implemented as template specializations of one
arithmetic type, while PromoteTraits are specialized for a pair of
arithmetic types that shall be combined in one operation.
*/
/** \page NumericTraits template<> struct NumericTraits<ArithmeticType>
Unary traits for promotion, conversion, creation of arithmetic objects.
<b>\#include</b> \<vigra/numerictraits.hxx\>
This traits class is used derive important properties of
an arithmetic type. Consider the following algorithm:
\code
// calculate the sum of a sequence of bytes
int sumBytes(unsigned char * begin, unsigned char * end)
{
int result = 0;
for(; begin != end; ++begin) result += *begin;
return result;
}
\endcode
The return type of this function can not be 'unsigned char' because
the summation would very likely overflow. Since we know the source
type, we can easily choose 'int' as an appropriate return type.
Likewise, we would have chosen 'float' if we had to sum a
sequence of floats. If we want to make this
algorithm generic, we would like to derive the appropriate return
type automatically. This can be done with NumericTraits.
The code would look like this (we use \ref DataAccessors to
read the data from the sequence):
\code
// calculate the sum of any sequence
template <class Iterator, class Accessor>
typename vigra::NumericTraits<typename Accessor::value_type>::Promote
sumSequence(Iterator begin, Iterator end, Accessor a)
{
// an abbreviation
typedef vigra::NumericTraits<typename Accessor::value_type> SrcTraits;
// find out result type
typedef typename SrcTraits::Promote ResultType;
// init result to zero
ResultType result = vigra::NumericTraits<ResultType>::zero();
for(; begin != end; ++begin)
{
// cast current item to ResultType and add
result += SrcTraits::toPromote(a(begin));
}
return result;
}
\endcode
In this example NumericTraits is not only used to deduce the
ReturnType of the operation, but also to initialize it with the
constant 'zero'. This is necessary since we do not know in general,
which expression must be used to obtain a zero of some arbitrary
type - '<TT>ResultType result = 0;</TT>' would only work if the
ResultType had an constructor taking an '<TT>int</TT>' argument, and we
would not even have any guarantee as to what the semantics of this
constructor are. In addition, the traits are used to cast the
source type into the promote type.
Similarly, an algorithm that needs multiplication would use the
return type <TT>RealPromote</TT> and the functions <TT>one()</TT> and
<TT>toRealPromote()</TT>. The following members are defined in
<b> <TT>NumericTraits<ArithmeticType></TT></b>:
<table>
<tr><td>
<b> <TT>typedef ... Type;</TT></b>
</td><td>
the type itself
</td></tr>
<tr><td>
<b> <TT>typedef ... Promote;</TT></b>
</td><td>
promote type for addition and subtraction
</td></tr>
<tr><td>
<b> <TT>typedef ... RealPromote;</TT></b>
</td><td>
promote type for multiplication and division with a real number
(only defined if <TT>ArithmeticType</TT> supports these operations)
</td></tr>
<tr><td>
<b> <TT>typedef ... ComplexPromote;</TT></b>
</td><td>
promote type for complex arithmetic
</td></tr>
<tr><td>
<b> <TT>typedef ... ValueType;</TT></b>
</td><td>
for scalar types: the type itself<br>
otherwise: typename Type::value_type (if defined)
</td></tr>
<tr><td>
<b> <TT>static Promote toPromote(ArithmeticType v);</TT></b>
</td><td>
convert to <TT>Promote</TT> type
</td></tr>
<tr><td>
<b> <TT>static RealPromote toRealPromote(ArithmeticType v);</TT></b>
</td><td>
convert to <TT>RealPromote</TT> type
(only defined if <TT>ArithmeticType</TT> supports multiplication)
</td></tr>
<tr><td>
<b> <TT>static ArithmeticType fromPromote(Promote v);</TT></b>
</td><td>
convert from <TT>Promote</TT> type
if <TT>v</TT> is outside the range of <TT>ArithmeticType</TT> it is clipped;
</td></tr>
<tr><td>
<b> <TT>static ArithmeticType fromRealPromote(RealPromote v);</TT></b>
</td><td>
convert from <TT>RealPromote</TT> type
(only defined if
<TT>ArithmeticType</TT> supports multiplication)
if <TT>ArithmeticType</TT> is an integral type, the result is rounded
if <TT>v</TT> is outside the range of <TT>ArithmeticType</TT> it is clipped
</td></tr>
<tr><td>
<b> <TT>static ArithmeticType zero();</TT></b>
</td><td>
create neutral element of addition
i.e. <TT>(ArithmeticType a = ...,</TT>
<TT> a + NumericTraits<ArithmeticType>::zero() == a)</TT>
must always yield <TT>true</TT>
</td></tr>
<tr><td>
<b> <TT>static ArithmeticType nonZero();</TT></b>
</td><td>
create a non-zero element (if multiplication is defined, this yields one())
i.e. <TT>(ArithmeticType a = ...,</TT>
<TT> a + NumericTraits<ArithmeticType>::nonZero() == a)</TT>
must always yield <TT>false</TT>
</td></tr>
<tr><td>
<b> <TT>static ArithmeticType min();</TT></b>
</td><td>
the smallest number representable in this type.<br>
Only available if isOrdered is VigraTrueType. For integral types,
this equals <TT>INT_MIN</TT> etc., for real valued types it is <TT>-FLT_MAX</TT>
etc. (<b>not</b> <TT>FLT_MIN</TT> -- this is the smallest positive <tt>float</tt>)
</td></tr>
<tr><td>
<b> <TT>static ArithmeticType max();</TT></b>
</td><td>
the largest number representable in this type.<br>
Only available if isOrdered is VigraTrueType. For integral types,
this equals <TT>INT_MAX</TT> etc., for real valued types it is <TT>FLT_MAX</TT>
etc.
</td></tr>
<tr><td>
<b> <TT>static ArithmeticType one();</TT></b>
</td><td>
create neutral element of multiplication
(only defined if <TT>ArithmeticType</TT> supports multiplication)
i.e. <TT>(ArithmeticType a = ...,</TT>
<TT> a * NumericTraits<ArithmeticType>::one() == a)</TT>
must always yield <TT>true</TT>
</td></tr>
<tr><td>
<b> <TT>typedef ... isIntegral;</TT></b>
</td><td>
VigraTrueType if <TT>ArithmeticType</TT> is an integral type,
VigraFalseType otherwise
</td></tr>
<tr><td>
<b> <TT>typedef ... isScalar;</TT></b>
</td><td>
VigraTrueType if <TT>ArithmeticType</TT> is a scalar type,
VigraFalseType otherwise
</td></tr>
<tr><td>
<tr><td>
<b> <TT>typedef ... isSigned;</TT></b>
</td><td>
VigraTrueType if <TT>ArithmeticType</TT> is a signed type,
VigraFalseType otherwise
</td></tr>
<tr><td>
<tr><td>
<b> <TT>typedef ... isOrdered;</TT></b>
</td><td>
VigraTrueType if <TT>ArithmeticType</TT> supports operator<(),
VigraFalseType otherwise
</td></tr>
<tr><td>
<b> <TT>typedef ... isComplex;</TT></b>
</td><td>
VigraTrueType if <TT>ArithmeticType</TT> is a complex number,
VigraFalseType otherwise
</td></tr>
<tr><td>
</table>
NumericTraits for the built-in types are defined in <b>\#include</b> \<vigra/numerictraits.hxx\>
Namespace: vigra
*/
/** \page PromoteTraits template<> struct PromoteTraits<ArithmeticType1, ArithmeticType2>
Binary traits for promotion of arithmetic objects.
<b>\#include</b> \<vigra/numerictraits.hxx\>
This traits class is used to determine the appropriate result type
of arithmetic expressions which depend of two arguments. Consider
the following function:
\code
template <class T>
T min(T t1, T t2)
{
return (t1 < t2) ? t1 : t2;
}
\endcode
This template is only applicable if both arguments have the same
type. However, sometimes we may want to use the function in cases
where the argument types differ. Then we can deduce the appropriate
return type by using <TT>PromoteTraits</TT>:
\code
template <class T1, class T2>
typename vigra::PromoteTraits<T1, T2>::Promote
min(T1 t1, T2 t2)
{
return (t1 < t2) ? vigra::PromoteTraits<T1, T2>::toPromote(t1) :
vigra::PromoteTraits<T1, T2>::toPromote(t2);
}
\endcode
In addition, the traits class provide static functions to cast the
arguments to the promote type. For example, if <TT>T1</TT> were <TT>int</TT> and
<TT>T2</TT> were <TT>float</TT>, the <TT>Promote</TT> type would be <TT>float</TT>.
The following members are defined in
<b> <TT>PromoteTraits<ArithmeticType1, ArithmeticType2></TT></b>:
<table>
<tr>
<td>
<b> <TT>typedef ... Promote;</TT></b>
</td><td>
promote type
</td></tr>
<tr><td>
<b> <TT>static Promote toPromote(ArithmeticType1 v);</TT></b>
<b> <TT>static Promote toPromote(ArithmeticType2 v);</TT></b>
</td><td>
convert to <TT>Promote</TT> type
</td></tr>
</table>
PromoteTraits for the built-in types are defined in <b>\#include</b> \<vigra/numerictraits.hxx\>
Namespace: vigra
*/
/** \page SquareRootTraits template<> struct SquareRootTraits<ArithmeticType>
Unary traits for the calculation of the square root of arithmetic objects.
<b>\#include</b> \<vigra/numerictraits.hxx\>
This traits class is used to determine appropriate argument and result types
for the function sqrt(). These traits are typically used like this:
\code
ArithmeticType t = ...;
SquareRootTraits<ArithmeticType>::SquareRootResult r =
sqrt((SquareRootTraits<ArithmeticType>::SquareRootArgument)t);
\endcode
This approach avoids 'ambiguous overload errors' when taking the square root of
an integer type. It also takes care of determining the proper result of the
sqrt() function of \ref vigra::FixedPoint and of the norm() function, when
it is implemented via sqrt(squaredNorm(x)).
The following members are defined in <b> <TT>SquareRootTraits<ArithmeticType></TT></b>:
<table>
<tr><td>
<b> <TT>typedef ArithmeticType Type;</TT></b>
</td><td>
the type itself
</td></tr>
<tr><td>
<b> <TT>typedef ... SquareRootArgument;</TT></b>
</td><td>
required argument type for srqt(), i.e. <tt>sqrt((SquareRootArgument)x)</tt>
</td></tr>
<tr><td>
<b> <TT>typedef ... SquareRootResult;</TT></b>
</td><td>
result of <tt>sqrt((SquareRootArgument)x)</tt>
</td></tr>
</table>
NormTraits for the built-in types are defined in <b>\#include</b> \<vigra/numerictraits.hxx\>
Namespace: vigra
*/
/** \page NormTraits template<> struct NormTraits<ArithmeticType>
Unary traits for the calculation of the norm and squared norm of arithmetic objects.
<b>\#include</b> \<vigra/numerictraits.hxx\>
This traits class is used to determine appropriate result types
for the functions norm() and squaredNorm(). These functions are always
declared like this (where <tt>ArithmeticType</tt> is a type that supports a norm):
\code
NormTraits<ArithmeticType>::NormType norm(ArithmeticType const & t);
NormTraits<ArithmeticType>::SquaredNormType squaredNorm(ArithmeticType const & t);
\endcode
The following members are defined in <b> <TT>NormTraits<ArithmeticType></TT></b>:
<table>
<tr><td>
<b> <TT>typedef ArithmeticType Type;</TT></b>
</td><td>
the type itself
</td></tr>
<tr><td>
<b> <TT>typedef ... SquaredNormType;</TT></b>
</td><td>
result of <tt>squaredNorm(ArithmeticType)</tt>
</td></tr>
<tr><td>
<b> <TT>typedef ... NormType;</TT></b>
</td><td>
result of <tt>norm(ArithmeticType)</tt><br>
Usually equal to <tt>SquareRootTraits<SquaredNormType>::SquareRootResult</tt>
</td></tr>
</table>
NormTraits for the built-in types are defined in <b>\#include</b> \<vigra/numerictraits.hxx\>
Namespace: vigra
*/
namespace vigra {
namespace detail {
template <typename s, typename t>
inline static t clamp_integer_to_unsigned(s value, t maximum) {
return
value <= s() ?
t() :
(value >= static_cast<s>(maximum) ? maximum : static_cast<t>(value));
}
template <typename s, typename t>
inline static t clamp_integer_to_signed(s value, t minimum, t maximum) {
return
value <= static_cast<s>(minimum) ?
minimum :
(value >= static_cast<s>(maximum) ? maximum : static_cast<t>(value));
}
template <typename s, typename t>
inline static t clamp_float_to_unsigned(s value, t maximum) {
return
value <= s() ?
t() :
(value >= static_cast<s>(maximum) ? maximum : static_cast<t>(value + 0.5));
}
template <typename s, typename t>
inline static t clamp_float_to_signed(s value, t minimum, t maximum) {
if (value >= s()) {
return value >= static_cast<s>(maximum) ? maximum : static_cast<t>(value + 0.5);
} else {
return value <= static_cast<s>(minimum) ? minimum : static_cast<t>(value - 0.5);
}
}
} // end namespace detail
struct Error_NumericTraits_not_specialized_for_this_case { };
struct Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char { };
template<class A>
struct NumericTraits
{
typedef Error_NumericTraits_not_specialized_for_this_case Type;
typedef Error_NumericTraits_not_specialized_for_this_case Promote;
typedef Error_NumericTraits_not_specialized_for_this_case UnsignedPromote;
typedef Error_NumericTraits_not_specialized_for_this_case RealPromote;
typedef Error_NumericTraits_not_specialized_for_this_case ComplexPromote;
typedef Error_NumericTraits_not_specialized_for_this_case ValueType;
typedef Error_NumericTraits_not_specialized_for_this_case isScalar;
typedef Error_NumericTraits_not_specialized_for_this_case isIntegral;
typedef Error_NumericTraits_not_specialized_for_this_case isSigned;
typedef Error_NumericTraits_not_specialized_for_this_case isOrdered;
typedef Error_NumericTraits_not_specialized_for_this_case isComplex;
};
template<>
struct NumericTraits<char>
{
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char Type;
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char Promote;
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char UnsignedPromote;
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char RealPromote;
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char ComplexPromote;
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char ValueType;
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char isScalar;
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char isIntegral;
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char isSigned;
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char isOrdered;
typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char isComplex;
};
#ifndef NO_BOOL
template<>
struct NumericTraits<bool>
{
typedef bool Type;
typedef int Promote;
typedef unsigned int UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraFalseType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static bool zero() { return false; }
static bool one() { return true; }
static bool nonZero() { return true; }
static bool min() { return false; }
static bool max() { return true; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = false , maxConst = true };
#else
static const bool minConst = false;
static const bool maxConst = true;
#endif
static Promote toPromote(bool v) { return v ? 1 : 0; }
static RealPromote toRealPromote(bool v) { return v ? 1.0 : 0.0; }
static bool fromPromote(Promote v) {
return (v == 0) ? false : true;
}
static bool fromRealPromote(RealPromote v) {
return (v == 0.0) ? false : true;
}
};
#endif
template<>
struct NumericTraits<signed char>
{
typedef signed char Type;
typedef int Promote;
typedef unsigned int UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraTrueType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static signed char zero() { return 0; }
static signed char one() { return 1; }
static signed char nonZero() { return 1; }
static signed char min() { return SCHAR_MIN; }
static signed char max() { return SCHAR_MAX; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = SCHAR_MIN, maxConst = SCHAR_MIN };
#else
static const signed char minConst = SCHAR_MIN;
static const signed char maxConst = SCHAR_MIN;
#endif
static Promote toPromote(signed char v) { return v; }
static RealPromote toRealPromote(signed char v) { return v; }
static signed char fromPromote(Promote v) {
return detail::clamp_integer_to_signed<Promote, signed char>(v, SCHAR_MIN, SCHAR_MAX);
}
static signed char fromRealPromote(RealPromote v) {
return detail::clamp_float_to_signed<RealPromote, signed char>(v, SCHAR_MIN, SCHAR_MAX);
}
};
template<>
struct NumericTraits<unsigned char>
{
typedef unsigned char Type;
typedef int Promote;
typedef unsigned int UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraFalseType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static unsigned char zero() { return 0; }
static unsigned char one() { return 1; }
static unsigned char nonZero() { return 1; }
static unsigned char min() { return 0; }
static unsigned char max() { return UCHAR_MAX; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = 0, maxConst = UCHAR_MAX };
#else
static const unsigned char minConst = 0;
static const unsigned char maxConst = UCHAR_MAX;
#endif
static Promote toPromote(unsigned char v) { return v; }
static RealPromote toRealPromote(unsigned char v) { return v; }
static unsigned char fromPromote(Promote v) {
return detail::clamp_integer_to_unsigned<Promote, unsigned char>(v, UCHAR_MAX);
}
static unsigned char fromRealPromote(RealPromote v) {
return detail::clamp_float_to_unsigned<RealPromote, unsigned char>(v, UCHAR_MAX);
}
};
template<>
struct NumericTraits<short int>
{
typedef short int Type;
typedef int Promote;
typedef unsigned int UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraTrueType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static short int zero() { return 0; }
static short int one() { return 1; }
static short int nonZero() { return 1; }
static short int min() { return SHRT_MIN; }
static short int max() { return SHRT_MAX; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = SHRT_MIN, maxConst = SHRT_MAX };
#else
static const short int minConst = SHRT_MIN;
static const short int maxConst = SHRT_MAX;
#endif
static Promote toPromote(short int v) { return v; }
static RealPromote toRealPromote(short int v) { return v; }
static short int fromPromote(Promote v) {
return detail::clamp_integer_to_signed<Promote, short int>(v, SHRT_MIN, SHRT_MAX);
}
static short int fromRealPromote(RealPromote v) {
return detail::clamp_float_to_signed<RealPromote, short int>(v, SHRT_MIN, SHRT_MAX);
}
};
template<>
struct NumericTraits<short unsigned int>
{
typedef short unsigned int Type;
typedef int Promote;
typedef unsigned int UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraFalseType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static short unsigned int zero() { return 0; }
static short unsigned int one() { return 1; }
static short unsigned int nonZero() { return 1; }
static short unsigned int min() { return 0; }
static short unsigned int max() { return USHRT_MAX; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = 0, maxConst = USHRT_MAX };
#else
static const short unsigned int minConst = 0;
static const short unsigned int maxConst = USHRT_MAX;
#endif
static Promote toPromote(short unsigned int v) { return v; }
static RealPromote toRealPromote(short unsigned int v) { return v; }
static short unsigned int fromPromote(Promote v) {
return detail::clamp_integer_to_unsigned<Promote, short unsigned int>(v, USHRT_MAX);
}
static short unsigned int fromRealPromote(RealPromote v) {
return detail::clamp_float_to_unsigned<RealPromote, short unsigned int>(v, USHRT_MAX);
}
};
template<>
struct NumericTraits<int>
{
typedef int Type;
typedef int Promote;
typedef unsigned int UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraTrueType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static int zero() { return 0; }
static int one() { return 1; }
static int nonZero() { return 1; }
static int min() { return INT_MIN; }
static int max() { return INT_MAX; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = INT_MIN, maxConst = INT_MAX };
#else
static const int minConst = INT_MIN;
static const int maxConst = INT_MAX;
#endif
static Promote toPromote(int v) { return v; }
static RealPromote toRealPromote(int v) { return v; }
static int fromPromote(Promote v) { return v; }
static int fromRealPromote(RealPromote v) {
return detail::clamp_float_to_signed<RealPromote, int>(v, INT_MIN, INT_MAX);
}
};
template<>
struct NumericTraits<unsigned int>
{
typedef unsigned int Type;
typedef unsigned int Promote;
typedef unsigned int UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraFalseType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static unsigned int zero() { return 0; }
static unsigned int one() { return 1; }
static unsigned int nonZero() { return 1; }
static unsigned int min() { return 0; }
static unsigned int max() { return UINT_MAX; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = 0, maxConst = UINT_MAX };
#else
static const unsigned int minConst = 0;
static const unsigned int maxConst = UINT_MAX;
#endif
static Promote toPromote(unsigned int v) { return v; }
static RealPromote toRealPromote(unsigned int v) { return v; }
static unsigned int fromPromote(Promote v) { return v; }
static unsigned int fromRealPromote(RealPromote v) {
return detail::clamp_float_to_unsigned<RealPromote, unsigned int>(v, UINT_MAX);
}
};
template<>
struct NumericTraits<long>
{
typedef long Type;
typedef long Promote;
typedef unsigned long UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraTrueType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static long zero() { return 0; }
static long one() { return 1; }
static long nonZero() { return 1; }
static long min() { return LONG_MIN; }
static long max() { return LONG_MAX; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = LONG_MIN, maxConst = LONG_MAX };
#else
static const long minConst = LONG_MIN;
static const long maxConst = LONG_MAX;
#endif
static Promote toPromote(long v) { return v; }
static RealPromote toRealPromote(long v) { return static_cast<RealPromote>(v); }
static long fromPromote(Promote v) { return v; }
static long fromRealPromote(RealPromote v) {
return detail::clamp_float_to_signed<RealPromote, long>(v, LONG_MIN, LONG_MAX);
}
};
template<>
struct NumericTraits<unsigned long>
{
typedef unsigned long Type;
typedef unsigned long Promote;
typedef unsigned long UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraFalseType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static unsigned long zero() { return 0; }
static unsigned long one() { return 1; }
static unsigned long nonZero() { return 1; }
static unsigned long min() { return 0; }
static unsigned long max() { return ULONG_MAX; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = 0, maxConst = ULONG_MAX };
#else
static const unsigned long minConst = 0;
static const unsigned long maxConst = ULONG_MAX;
#endif
static Promote toPromote(unsigned long v) { return v; }
static RealPromote toRealPromote(unsigned long v) { return static_cast<RealPromote>(v); }
static unsigned long fromPromote(Promote v) { return v; }
static unsigned long fromRealPromote(RealPromote v) {
return detail::clamp_float_to_unsigned<RealPromote, unsigned long>(v, ULONG_MAX);
}
};
#ifdef LLONG_MAX
template<>
struct NumericTraits<long long>
{
typedef long long Type;
typedef long long Promote;
typedef unsigned long long UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraTrueType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static long long zero() { return 0; }
static long long one() { return 1; }
static long long nonZero() { return 1; }
static long long min() { return LLONG_MIN; }
static long long max() { return LLONG_MAX; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = LLONG_MIN, maxConst = LLONG_MAX };
#else
static const long long minConst = LLONG_MIN;
static const long long maxConst = LLONG_MAX;
#endif
static Promote toPromote(long long v) { return v; }
static RealPromote toRealPromote(long long v) { return (RealPromote)v; }
static long long fromPromote(Promote v) { return v; }
static long long fromRealPromote(RealPromote v) {
return detail::clamp_float_to_signed<RealPromote, long long>(v, LLONG_MIN, LLONG_MAX);
}
};
template<>
struct NumericTraits<unsigned long long>
{
typedef unsigned long long Type;
typedef unsigned long long Promote;
typedef unsigned long long UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraTrueType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraFalseType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static unsigned long long zero() { return 0; }
static unsigned long long one() { return 1; }
static unsigned long long nonZero() { return 1; }
static unsigned long long min() { return 0; }
static unsigned long long max() { return ULLONG_MAX; }
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
enum { minConst = 0, maxConst = ULLONG_MAX };
#else
static const unsigned long long minConst = 0;
static const unsigned long long maxConst = ULLONG_MAX;
#endif
static Promote toPromote(unsigned long long v) { return v; }
static RealPromote toRealPromote(unsigned long long v) { return (RealPromote)v; }
static unsigned long long fromPromote(Promote v) { return v; }
static unsigned long long fromRealPromote(RealPromote v) {
return detail::clamp_float_to_unsigned<RealPromote, unsigned long long>(v, ULLONG_MAX);
}
};
#endif // LLONG_MAX
template<>
struct NumericTraits<float>
{
typedef float Type;
typedef float Promote;
typedef float UnsignedPromote;
typedef float RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraFalseType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraTrueType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static float zero() { return 0.0; }
static float one() { return 1.0; }
static float nonZero() { return 1.0; }
static float epsilon() { return FLT_EPSILON; }
static float smallestPositive() { return FLT_MIN; }
static float min() { return -FLT_MAX; }
static float max() { return FLT_MAX; }
static Promote toPromote(float v) { return v; }
static RealPromote toRealPromote(float v) { return v; }
static float fromPromote(Promote v) { return v; }
static float fromRealPromote(RealPromote v) { return v; }
};
template<>
struct NumericTraits<double>
{
typedef double Type;
typedef double Promote;
typedef double UnsignedPromote;
typedef double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraFalseType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraTrueType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static double zero() { return 0.0; }
static double one() { return 1.0; }
static double nonZero() { return 1.0; }
static double epsilon() { return DBL_EPSILON; }
static double smallestPositive() { return DBL_MIN; }
static double min() { return -DBL_MAX; }
static double max() { return DBL_MAX; }
static Promote toPromote(double v) { return v; }
static RealPromote toRealPromote(double v) { return v; }
static double fromPromote(Promote v) { return v; }
static double fromRealPromote(RealPromote v) { return v; }
};
template<>
struct NumericTraits<long double>
{
typedef long double Type;
typedef long double Promote;
typedef long double UnsignedPromote;
typedef long double RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef Type ValueType;
typedef VigraFalseType isIntegral;
typedef VigraTrueType isScalar;
typedef VigraTrueType isSigned;
typedef VigraTrueType isOrdered;
typedef VigraFalseType isComplex;
static long double zero() { return 0.0; }
static long double one() { return 1.0; }
static long double nonZero() { return 1.0; }
static long double epsilon() { return LDBL_EPSILON; }
static long double smallestPositive() { return LDBL_MIN; }
static long double min() { return -LDBL_MAX; }
static long double max() { return LDBL_MAX; }
static Promote toPromote(long double v) { return v; }
static RealPromote toRealPromote(long double v) { return v; }
static long double fromPromote(Promote v) { return v; }
static long double fromRealPromote(RealPromote v) { return v; }
};
#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION
template<class T>
struct NumericTraits<std::complex<T> >
{
typedef std::complex<T> Type;
typedef std::complex<typename NumericTraits<T>::Promote> Promote;
typedef std::complex<typename NumericTraits<T>::UnsignedPromote> UnsignedPromote;
typedef std::complex<typename NumericTraits<T>::RealPromote> RealPromote;
typedef std::complex<RealPromote> ComplexPromote;
typedef T ValueType;
typedef VigraFalseType isIntegral;
typedef VigraFalseType isScalar;
typedef typename NumericTraits<T>::isSigned isSigned;
typedef VigraFalseType isOrdered;
typedef VigraTrueType isComplex;
static Type zero() { return Type(0.0); }
static Type one() { return Type(1.0); }
static Type nonZero() { return one(); }
static Type epsilon() { return Type(NumericTraits<T>::epsilon()); }
static Type smallestPositive() { return Type(NumericTraits<T>::smallestPositive()); }
static Promote toPromote(Type const & v) { return v; }
static Type fromPromote(Promote const & v) { return v; }
static Type fromRealPromote(RealPromote v) { return Type(v); }
};
#endif // NO_PARTIAL_TEMPLATE_SPECIALIZATION
/********************************************************/
/* */
/* SquareRootTraits */
/* */
/********************************************************/
template<class T>
struct SquareRootTraits
{
typedef T Type;
typedef typename NumericTraits<T>::RealPromote SquareRootResult;
typedef typename NumericTraits<T>::RealPromote SquareRootArgument;
};
/********************************************************/
/* */
/* NormTraits */
/* */
/********************************************************/
struct Error_NormTraits_not_specialized_for_this_case { };
template<class T>
struct NormTraits
{
typedef T Type;
typedef Error_NormTraits_not_specialized_for_this_case SquaredNormType;
typedef Error_NormTraits_not_specialized_for_this_case NormType;
};
#define VIGRA_DEFINE_NORM_TRAITS(T) \
template <> struct NormTraits<T> { \
typedef T Type; \
typedef NumericTraits<T>::Promote SquaredNormType; \
typedef T NormType; \
};
VIGRA_DEFINE_NORM_TRAITS(bool)
VIGRA_DEFINE_NORM_TRAITS(signed char)
VIGRA_DEFINE_NORM_TRAITS(unsigned char)
VIGRA_DEFINE_NORM_TRAITS(short)
VIGRA_DEFINE_NORM_TRAITS(unsigned short)
VIGRA_DEFINE_NORM_TRAITS(int)
VIGRA_DEFINE_NORM_TRAITS(unsigned int)
VIGRA_DEFINE_NORM_TRAITS(long)
VIGRA_DEFINE_NORM_TRAITS(unsigned long)
VIGRA_DEFINE_NORM_TRAITS(float)
VIGRA_DEFINE_NORM_TRAITS(double)
VIGRA_DEFINE_NORM_TRAITS(long double)
#ifdef LLONG_MAX
VIGRA_DEFINE_NORM_TRAITS(long long)
VIGRA_DEFINE_NORM_TRAITS(unsigned long long)
#endif // LLONG_MAX
#undef VIGRA_DEFINE_NORM_TRAITS
#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION
template<class T>
struct NormTraits<std::complex<T> >
{
typedef std::complex<T> Type;
typedef typename NormTraits<T>::SquaredNormType SquaredNormType;
typedef typename SquareRootTraits<SquaredNormType>::SquareRootResult NormType;
};
#endif // NO_PARTIAL_TEMPLATE_SPECIALIZATION
/********************************************************/
/* */
/* PromoteTraits */
/* */
/********************************************************/
namespace detail {
template <class T, class U>
struct PromoteType
{
static T & t();
static U & u();
// let C++ figure out the promote type by adding a T and an U
typedef typename SizeToType<sizeof(*typeToSize(t() + u()))>::result Promote;
static Promote toPromote(T t) { return Promote(t); }
static Promote toPromote(U u) { return Promote(u); }
};
template <class T>
struct PromoteType<T, T>
{
static T & t();
// let C++ figure out the promote type by adding two Ts
typedef typename SizeToType<sizeof(*typeToSize(t() + t()))>::result Promote;
static Promote toPromote(T t) { return Promote(t); }
};
} // namespace detail
struct Error_PromoteTraits_not_specialized_for_this_case { };
template<class A, class B>
struct PromoteTraits
{
typedef Error_PromoteTraits_not_specialized_for_this_case Promote;
};
#include "promote_traits.hxx"
#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION
template <class T>
struct PromoteTraits<std::complex<T>, std::complex<T> >
{
typedef std::complex<typename PromoteTraits<T, T>::Promote> Promote;
static Promote toPromote(std::complex<T> const & v) { return v; }
};
template <class T1, class T2>
struct PromoteTraits<std::complex<T1>, std::complex<T2> >
{
typedef std::complex<typename PromoteTraits<T1, T2>::Promote> Promote;
static Promote toPromote(std::complex<T1> const & v) { return v; }
static Promote toPromote(std::complex<T2> const & v) { return v; }
};
template <class T1, class T2>
struct PromoteTraits<std::complex<T1>, T2 >
{
typedef std::complex<typename PromoteTraits<T1, T2>::Promote> Promote;
static Promote toPromote(std::complex<T1> const & v) { return v; }
static Promote toPromote(T2 const & v) { return Promote(v); }
};
template <class T1, class T2>
struct PromoteTraits<T1, std::complex<T2> >
{
typedef std::complex<typename PromoteTraits<T1, T2>::Promote> Promote;
static Promote toPromote(T1 const & v) { return Promote(v); }
static Promote toPromote(std::complex<T2> const & v) { return v; }
};
#endif
namespace detail {
template <class T>
struct RequiresExplicitCast {
template <class U>
static U const & cast(U const & v)
{ return v; }
};
#if !defined(_MSC_VER) || _MSC_VER >= 1300
# define VIGRA_SPECIALIZED_CAST(type) \
template <> \
struct RequiresExplicitCast<type> { \
static type cast(float v) \
{ return NumericTraits<type>::fromRealPromote(v); } \
static type cast(double v) \
{ return NumericTraits<type>::fromRealPromote(v); } \
static type cast(type v) \
{ return v; } \
template <class U> \
static type cast(U v) \
{ return static_cast<type>(v); } \
\
};
#else
# define VIGRA_SPECIALIZED_CAST(type) \
template <> \
struct RequiresExplicitCast<type> { \
static type cast(float v) \
{ return NumericTraits<type>::fromRealPromote(v); } \
static type cast(double v) \
{ return NumericTraits<type>::fromRealPromote(v); } \
static type cast(signed char v) \
{ return v; } \
static type cast(unsigned char v) \
{ return v; } \
static type cast(short v) \
{ return v; } \
static type cast(unsigned short v) \
{ return v; } \
static type cast(int v) \
{ return v; } \
static type cast(unsigned int v) \
{ return v; } \
static type cast(long v) \
{ return v; } \
static type cast(unsigned long v) \
{ return v; } \
};
#endif
VIGRA_SPECIALIZED_CAST(signed char)
VIGRA_SPECIALIZED_CAST(unsigned char)
VIGRA_SPECIALIZED_CAST(short)
VIGRA_SPECIALIZED_CAST(unsigned short)
VIGRA_SPECIALIZED_CAST(int)
VIGRA_SPECIALIZED_CAST(unsigned int)
VIGRA_SPECIALIZED_CAST(long)
VIGRA_SPECIALIZED_CAST(unsigned long)
template <>
struct RequiresExplicitCast<bool> {
template <class U>
static bool cast(U v)
{ return v == NumericTraits<U>::zero()
? false
: true; }
};
template <>
struct RequiresExplicitCast<float> {
static float cast(int v)
{ return (float)v; }
static float cast(unsigned int v)
{ return (float)v; }
static float cast(long v)
{ return (float)v; }
static float cast(unsigned long v)
{ return (float)v; }
static float cast(long long v)
{ return (float)v; }
static float cast(unsigned long long v)
{ return (float)v; }
static float cast(double v)
{ return (float)v; }
static float cast(long double v)
{ return (float)v; }
template <class U>
static U cast(U v)
{ return v; }
};
template <>
struct RequiresExplicitCast<double> {
static double cast(Int64 v)
{ return (double)v; }
static double cast(UInt64 v)
{ return (double)v; }
template <class U>
static U cast(U v)
{ return v; }
};
#undef VIGRA_SPECIALIZED_CAST
} // namespace detail
} // namespace vigra
#endif // VIGRA_NUMERICTRAITS_HXX
|