This file is indexed.

/usr/include/vigra/numerictraits.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
/************************************************************************/
/*                                                                      */
/*               Copyright 1998-2002 by Ullrich Koethe                  */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */                
/*                                                                      */
/************************************************************************/
 
 
#ifndef VIGRA_NUMERICTRAITS_HXX
#define VIGRA_NUMERICTRAITS_HXX

#include <climits>
#include <limits>
#include <cfloat>
#include <complex>
#include "metaprogramming.hxx"
#include "sized_int.hxx"

/********************************************************/
/*                                                      */
/*                      NumericTraits                   */
/*                                                      */
/********************************************************/


/** \page NumericPromotionTraits Numeric and Promotion Traits

    Meta-information about arithmetic types.
    
    <UL style="list-style-image:url(documents/bullet.gif)">
    <LI> \ref NumericTraits
         <BR>&nbsp;&nbsp;&nbsp;<em>Unary traits for promotion, conversion, creation of arithmetic objects</em>
    <LI> \ref PromoteTraits
         <BR>&nbsp;&nbsp;&nbsp;<em>Binary traits for promotion of arithmetic objects</em>
    <LI> \ref SquareRootTraits
         <BR>&nbsp;&nbsp;&nbsp;<em>Unary traits for the calculation of the square root of arithmetic objects</em>
    <LI> \ref NormTraits
         <BR>&nbsp;&nbsp;&nbsp;<em>Unary traits for the calculation of the norm and squared norm of arithmetic objects</em>
    </UL>
    
    These traits classes contain information that is used by generic
    algorithms and data structures to determine intermediate and result
    types of numerical calculations, to convert between different 
    representations of arithmetic types, and to create certain important
    constants of each type. Thus, algorithms and data structures
    operating that need arithmetic operations can be made more
    independent from the actual data representation.
    
    NumericTraits are implemented as template specializations of one
    arithmetic type, while PromoteTraits are specialized for a pair of
    arithmetic types that shall be combined in one operation.    
*/

/** \page NumericTraits template<> struct NumericTraits<ArithmeticType>

    Unary traits for promotion, conversion, creation of arithmetic objects.

    <b>\#include</b> \<vigra/numerictraits.hxx\>

    This traits class is used derive important properties of
    an arithmetic type. Consider the following algorithm:
    
    \code
    // calculate the sum of a sequence of bytes
    int sumBytes(unsigned char * begin, unsigned char * end)
    {
        int result = 0;
        for(; begin != end; ++begin)  result += *begin;
        return result;
    }
    \endcode 
    
    The return type of this function can not be 'unsigned char' because
    the summation would very likely overflow. Since we know the source
    type, we can easily choose 'int' as an appropriate return type.
    Likewise, we would have chosen 'float' if we had to sum a 
    sequence of floats. If we want to make this 
    algorithm generic, we would like to derive the appropriate return 
    type automatically. This can be done with NumericTraits. 
    The code would look like this (we use \ref DataAccessors to 
    read the data from the sequence):
    
    \code
    // calculate the sum of any sequence
    template <class Iterator, class Accessor>
    typename vigra::NumericTraits<typename Accessor::value_type>::Promote
    sumSequence(Iterator begin, Iterator end, Accessor a)
    {
        // an abbreviation
        typedef vigra::NumericTraits<typename Accessor::value_type>  SrcTraits;
        
        // find out result type
        typedef typename SrcTraits::Promote ResultType;
      
        // init result to zero
        ResultType result = vigra::NumericTraits<ResultType>::zero();
    
        for(; begin != end; ++begin)
        {  
            // cast current item to ResultType and add
            result += SrcTraits::toPromote(a(begin));
        }
        
        return result;
    }
    \endcode
    
    In this example NumericTraits is not only used to deduce the 
    ReturnType of the operation, but also to initialize it with the
    constant 'zero'. This is necessary since we do not know in general,
    which expression must be used to obtain a zero of some arbitrary
    type - '<TT>ResultType result = 0;</TT>' would only work if the 
    ResultType had an constructor taking an '<TT>int</TT>' argument, and we 
    would not even have any guarantee as to what the semantics of this
    constructor are. In addition, the traits are used to cast the 
    source type into the promote type.
    
    Similarly, an algorithm that needs multiplication would use the 
    return type <TT>RealPromote</TT> and the functions <TT>one()</TT> and
    <TT>toRealPromote()</TT>. The following members are defined in 
    <b> <TT>NumericTraits<ArithmeticType></TT></b>:
    
    <table>
    <tr><td>
    <b> <TT>typedef ... Type;</TT></b>
    </td><td>
    
            the type itself 
        
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... Promote;</TT></b>
    </td><td>
    
            promote type for addition and subtraction 
        
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... RealPromote;</TT></b>
    </td><td>
            promote type for multiplication and division with a real number
    
    (only defined if <TT>ArithmeticType</TT> supports these operations) 
    
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... ComplexPromote;</TT></b>
    </td><td>
    
            promote type for complex arithmetic 
        
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... ValueType;</TT></b>
    </td><td>
    
            for scalar types: the type itself<br>
            otherwise: typename Type::value_type (if defined)
        
    </td></tr>
    <tr><td>
    <b> <TT>static Promote toPromote(ArithmeticType v);</TT></b>
    </td><td>
        convert to <TT>Promote</TT> type 
    
    </td></tr>
    <tr><td>
    <b> <TT>static RealPromote toRealPromote(ArithmeticType v);</TT></b>
    </td><td>
        convert to <TT>RealPromote</TT> type 

    (only defined if <TT>ArithmeticType</TT> supports multiplication) 
    
    </td></tr>
    <tr><td>
    <b> <TT>static ArithmeticType fromPromote(Promote v);</TT></b> 
    </td><td>
        convert from <TT>Promote</TT> type
    
    if <TT>v</TT> is outside the range of <TT>ArithmeticType</TT> it is clipped;

    </td></tr>
    <tr><td>
    <b> <TT>static ArithmeticType fromRealPromote(RealPromote v);</TT></b>
    </td><td>
        convert from <TT>RealPromote</TT> type 
    
    (only defined if 
    <TT>ArithmeticType</TT> supports multiplication)
    
    if <TT>ArithmeticType</TT> is an integral type, the result is rounded 
    
    if <TT>v</TT> is outside the range of <TT>ArithmeticType</TT> it is clipped
    
    </td></tr>
    <tr><td>
    <b> <TT>static ArithmeticType zero();</TT></b>
    </td><td>
    create neutral element of addition
    
    i.e. <TT>(ArithmeticType a = ...,</TT> 
    <TT>  a + NumericTraits<ArithmeticType>::zero() == a)</TT> 
    must always yield <TT>true</TT> 
    
    </td></tr>
    <tr><td>
    <b> <TT>static ArithmeticType nonZero();</TT></b>
    </td><td>
    create a non-zero element (if multiplication is defined, this yields one())
    
    i.e. <TT>(ArithmeticType a = ...,</TT> 
    <TT>  a + NumericTraits<ArithmeticType>::nonZero() == a)</TT> 
    must always yield <TT>false</TT> 
    
    </td></tr>
    <tr><td>
    <b> <TT>static ArithmeticType min();</TT></b>
    </td><td>
    the smallest number representable in this type.<br>
    Only available if isOrdered is VigraTrueType. For integral types,
    this equals <TT>INT_MIN</TT> etc., for real valued types it is <TT>-FLT_MAX</TT>
    etc. (<b>not</b> <TT>FLT_MIN</TT> -- this is the smallest positive <tt>float</tt>)
    
    </td></tr>
    <tr><td>
    <b> <TT>static ArithmeticType max();</TT></b>
    </td><td>
    the largest number representable in this type.<br>
    Only available if isOrdered is VigraTrueType. For integral types,
    this equals <TT>INT_MAX</TT> etc., for real valued types it is <TT>FLT_MAX</TT>
    etc.
    
    </td></tr>
    <tr><td>
    <b> <TT>static ArithmeticType one();</TT></b>
    </td><td>
    create neutral element of multiplication 
    
    (only defined if <TT>ArithmeticType</TT> supports multiplication)
    
    i.e. <TT>(ArithmeticType a = ...,</TT> 
    <TT>  a * NumericTraits<ArithmeticType>::one() == a)</TT> 
    must always yield <TT>true</TT> 
    
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... isIntegral;</TT></b>
    </td><td>
        VigraTrueType if <TT>ArithmeticType</TT> is an integral type, 
        VigraFalseType otherwise 
    
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... isScalar;</TT></b>
    </td><td>
        VigraTrueType if <TT>ArithmeticType</TT> is a scalar type, 
        VigraFalseType otherwise 
    
    </td></tr>
    <tr><td>
    <tr><td>
    <b> <TT>typedef ... isSigned;</TT></b>
    </td><td>
        VigraTrueType if <TT>ArithmeticType</TT> is a signed type, 
        VigraFalseType otherwise 
    
    </td></tr>
    <tr><td>
    <tr><td>
    <b> <TT>typedef ... isOrdered;</TT></b>
    </td><td>
        VigraTrueType if <TT>ArithmeticType</TT> supports operator<(), 
        VigraFalseType otherwise 
    
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... isComplex;</TT></b>
    </td><td>
        VigraTrueType if <TT>ArithmeticType</TT> is a complex number, 
        VigraFalseType otherwise 
    
    </td></tr>
    <tr><td>
    </table>
    
    NumericTraits for the built-in types are defined in <b>\#include</b> \<vigra/numerictraits.hxx\>
    
    Namespace: vigra
    
*/

/** \page PromoteTraits template<> struct PromoteTraits<ArithmeticType1, ArithmeticType2>

    Binary traits for promotion of arithmetic objects.
    
    <b>\#include</b> \<vigra/numerictraits.hxx\>

    This traits class is used to determine the appropriate result type
    of arithmetic expressions which depend of two arguments. Consider
    the following function:
    
    \code
    template <class T>
    T min(T t1, T t2)
    {
        return (t1 < t2) ? t1 : t2;
    }
    \endcode
    
    This template is only applicable if both arguments have the same
    type. However, sometimes we may want to use the function in cases
    where the argument types differ. Then we can deduce the appropriate
    return type by using <TT>PromoteTraits</TT>:
    
    \code
    template <class T1, class T2>
    typename vigra::PromoteTraits<T1, T2>::Promote
    min(T1 t1, T2 t2)
    {
        return (t1 < t2) ? vigra::PromoteTraits<T1, T2>::toPromote(t1) : 
                           vigra::PromoteTraits<T1, T2>::toPromote(t2);
    }    
    \endcode
    
    In addition, the traits class provide static functions to cast the
    arguments to the promote type. For example, if <TT>T1</TT> were <TT>int</TT> and 
    <TT>T2</TT> were <TT>float</TT>, the <TT>Promote</TT> type would be <TT>float</TT>. 
    The following members are defined in 
    <b> <TT>PromoteTraits<ArithmeticType1, ArithmeticType2></TT></b>:
    
    <table>
    <tr>
    <td>
    <b> <TT>typedef ... Promote;</TT></b>
    </td><td>
            promote type 
    </td></tr>
    <tr><td>
    <b> <TT>static Promote toPromote(ArithmeticType1 v);</TT></b> 
    
    <b> <TT>static Promote toPromote(ArithmeticType2 v);</TT></b>
    </td><td>
        convert to <TT>Promote</TT> type 
    </td></tr>
    </table>
    
    PromoteTraits for the built-in types are defined in <b>\#include</b> \<vigra/numerictraits.hxx\>
    
    Namespace: vigra
*/

/** \page SquareRootTraits template<> struct SquareRootTraits<ArithmeticType>

    Unary traits for the calculation of the square root of arithmetic objects.
    
    <b>\#include</b> \<vigra/numerictraits.hxx\>

    This traits class is used to determine appropriate argument and result types
    for the function sqrt(). These traits are typically used like this:
    
    \code
    ArithmeticType t = ...;
    SquareRootTraits<ArithmeticType>::SquareRootResult r = 
          sqrt((SquareRootTraits<ArithmeticType>::SquareRootArgument)t);
    \endcode
    
    This approach avoids 'ambiguous overload errors' when taking the square root of 
    an integer type. It also takes care of determining the proper result of the
    sqrt() function of \ref vigra::FixedPoint and of the norm() function, when
    it is implemented via sqrt(squaredNorm(x)).
    The following members are defined in <b> <TT>SquareRootTraits<ArithmeticType></TT></b>:
    
    <table>
    <tr><td>
    <b> <TT>typedef ArithmeticType Type;</TT></b>
    </td><td>
            the type itself
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... SquareRootArgument;</TT></b>
    </td><td>
            required argument type for srqt(), i.e. <tt>sqrt((SquareRootArgument)x)</tt>
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... SquareRootResult;</TT></b>
    </td><td>
            result of <tt>sqrt((SquareRootArgument)x)</tt>
    </td></tr>
    </table>
    
    NormTraits for the built-in types are defined in <b>\#include</b> \<vigra/numerictraits.hxx\>
    
    Namespace: vigra
*/

/** \page NormTraits template<> struct NormTraits<ArithmeticType>

    Unary traits for the calculation of the norm and squared norm of arithmetic objects.
    
    <b>\#include</b> \<vigra/numerictraits.hxx\>

    This traits class is used to determine appropriate result types
    for the functions norm() and squaredNorm(). These functions are always 
    declared like this (where <tt>ArithmeticType</tt> is a type that supports a norm):
    
    \code
    NormTraits<ArithmeticType>::NormType        norm(ArithmeticType const & t);
    NormTraits<ArithmeticType>::SquaredNormType squaredNorm(ArithmeticType const & t);
    \endcode
    
    The following members are defined in <b> <TT>NormTraits<ArithmeticType></TT></b>:
    
    <table>
    <tr><td>
    <b> <TT>typedef ArithmeticType Type;</TT></b>
    </td><td>
            the type itself
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... SquaredNormType;</TT></b>
    </td><td>
            result of <tt>squaredNorm(ArithmeticType)</tt>
    </td></tr>
    <tr><td>
    <b> <TT>typedef ... NormType;</TT></b>
    </td><td>
            result of <tt>norm(ArithmeticType)</tt><br>
            Usually equal to <tt>SquareRootTraits<SquaredNormType>::SquareRootResult</tt>
    </td></tr>
    </table>
    
    NormTraits for the built-in types are defined in <b>\#include</b> \<vigra/numerictraits.hxx\>
    
    Namespace: vigra
*/


namespace vigra {
    namespace detail {
        template <typename s, typename t>
        inline static t clamp_integer_to_unsigned(s value, t maximum) {
            return
                value <= s() ?
                t() :
                (value >= static_cast<s>(maximum) ? maximum : static_cast<t>(value));
        }

        template <typename s, typename t>
        inline static t clamp_integer_to_signed(s value, t minimum, t maximum) {
            return
                value <= static_cast<s>(minimum) ?
                minimum :
                (value >= static_cast<s>(maximum) ? maximum : static_cast<t>(value));
        }

        template <typename s, typename t>
        inline static t clamp_float_to_unsigned(s value, t maximum) {
            return
                value <= s() ?
                t() :
                (value >= static_cast<s>(maximum) ? maximum : static_cast<t>(value + 0.5));
        }

        template <typename s, typename t>
        inline static t clamp_float_to_signed(s value, t minimum, t maximum) {
            if (value >= s()) {
                return value >= static_cast<s>(maximum) ? maximum : static_cast<t>(value + 0.5);
            } else {
                return value <= static_cast<s>(minimum) ? minimum : static_cast<t>(value - 0.5);
            }
        }
    } // end namespace detail

struct Error_NumericTraits_not_specialized_for_this_case { };
struct Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char { };

template<class A>
struct NumericTraits
{
    typedef Error_NumericTraits_not_specialized_for_this_case Type;
    typedef Error_NumericTraits_not_specialized_for_this_case Promote;
    typedef Error_NumericTraits_not_specialized_for_this_case UnsignedPromote;
    typedef Error_NumericTraits_not_specialized_for_this_case RealPromote;
    typedef Error_NumericTraits_not_specialized_for_this_case ComplexPromote;
    typedef Error_NumericTraits_not_specialized_for_this_case ValueType;

    typedef Error_NumericTraits_not_specialized_for_this_case isScalar;
    typedef Error_NumericTraits_not_specialized_for_this_case isIntegral;
    typedef Error_NumericTraits_not_specialized_for_this_case isSigned;
    typedef Error_NumericTraits_not_specialized_for_this_case isOrdered;
    typedef Error_NumericTraits_not_specialized_for_this_case isComplex;
};

template<>
struct NumericTraits<char>
{
    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char Type;
    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char Promote;
    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char UnsignedPromote;
    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char RealPromote;
    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char ComplexPromote;
    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char ValueType;

    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char isScalar;
    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char isIntegral;
    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char isSigned;
    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char isOrdered;
    typedef Error_NumericTraits_char_is_not_a_numeric_type__use_signed_char_or_unsigned_char isComplex;
};

#ifndef NO_BOOL
template<>
struct NumericTraits<bool>
{
    typedef bool Type;
    typedef int Promote;
    typedef unsigned int UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraFalseType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static bool zero() { return false; }
    static bool one() { return true; }
    static bool nonZero() { return true; }
    static bool min() { return false; }
    static bool max() { return true; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = false , maxConst = true };
#else
    static const bool minConst = false;
    static const bool maxConst = true;
#endif
    
    static Promote toPromote(bool v) { return v ? 1 : 0; }
    static RealPromote toRealPromote(bool v) { return v ? 1.0 : 0.0; }
    static bool fromPromote(Promote v) { 
        return (v == 0) ? false : true; 
    }
    static bool fromRealPromote(RealPromote v) {
        return (v == 0.0) ? false : true; 
    }
};
#endif

template<>
struct NumericTraits<signed char>
{
    typedef signed char Type;
    typedef int Promote;
    typedef unsigned int UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraTrueType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static signed char zero() { return 0; }
    static signed char one() { return 1; }
    static signed char nonZero() { return 1; }
    static signed char min() { return SCHAR_MIN; }
    static signed char max() { return SCHAR_MAX; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = SCHAR_MIN, maxConst = SCHAR_MIN };
#else
    static const signed char minConst = SCHAR_MIN;
    static const signed char maxConst = SCHAR_MIN;
#endif
    
    static Promote toPromote(signed char v) { return v; }
    static RealPromote toRealPromote(signed char v) { return v; }
    static signed char fromPromote(Promote v) {
        return detail::clamp_integer_to_signed<Promote, signed char>(v, SCHAR_MIN, SCHAR_MAX);
    }
    static signed char fromRealPromote(RealPromote v) {
        return detail::clamp_float_to_signed<RealPromote, signed char>(v, SCHAR_MIN, SCHAR_MAX);
    }
};

template<>
struct NumericTraits<unsigned char>
{
    typedef unsigned char Type;
    typedef int Promote;
    typedef unsigned int UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraFalseType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static unsigned char zero() { return 0; }
    static unsigned char one() { return 1; }
    static unsigned char nonZero() { return 1; }
    static unsigned char min() { return 0; }
    static unsigned char max() { return UCHAR_MAX; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = 0, maxConst = UCHAR_MAX };
#else
    static const unsigned char minConst = 0;
    static const unsigned char maxConst = UCHAR_MAX;
#endif
    
    static Promote toPromote(unsigned char v) { return v; }
    static RealPromote toRealPromote(unsigned char v) { return v; }
    static unsigned char fromPromote(Promote v) {
        return detail::clamp_integer_to_unsigned<Promote, unsigned char>(v, UCHAR_MAX);
    }
    static unsigned char fromRealPromote(RealPromote v) {
        return detail::clamp_float_to_unsigned<RealPromote, unsigned char>(v, UCHAR_MAX);
    }
};

template<>
struct NumericTraits<short int>
{
    typedef short int Type;
    typedef int Promote;
    typedef unsigned int UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraTrueType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static short int zero() { return 0; }
    static short int one() { return 1; }
    static short int nonZero() { return 1; }
    static short int min() { return SHRT_MIN; }
    static short int max() { return SHRT_MAX; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = SHRT_MIN, maxConst = SHRT_MAX };
#else
    static const short int minConst = SHRT_MIN;
    static const short int maxConst = SHRT_MAX;
#endif
    
    static Promote toPromote(short int v) { return v; }
    static RealPromote toRealPromote(short int v) { return v; }
    static short int fromPromote(Promote v) {
        return detail::clamp_integer_to_signed<Promote, short int>(v, SHRT_MIN, SHRT_MAX);
    }
    static short int fromRealPromote(RealPromote v) {
        return detail::clamp_float_to_signed<RealPromote, short int>(v, SHRT_MIN, SHRT_MAX);
    }
};

template<>
struct NumericTraits<short unsigned int>
{
    typedef short unsigned int Type;
    typedef int Promote;
    typedef unsigned int UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraFalseType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;

    static short unsigned int zero() { return 0; }
    static short unsigned int one() { return 1; }
    static short unsigned int nonZero() { return 1; }
    static short unsigned int min() { return 0; }
    static short unsigned int max() { return USHRT_MAX; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = 0, maxConst = USHRT_MAX };
#else
    static const short unsigned int minConst = 0;
    static const short unsigned int maxConst = USHRT_MAX;
#endif

    static Promote toPromote(short unsigned int v) { return v; }
    static RealPromote toRealPromote(short unsigned int v) { return v; }
    static short unsigned int fromPromote(Promote v) {
        return detail::clamp_integer_to_unsigned<Promote, short unsigned int>(v, USHRT_MAX);
    }
    static short unsigned int fromRealPromote(RealPromote v) {
        return detail::clamp_float_to_unsigned<RealPromote, short unsigned int>(v, USHRT_MAX);
    }
};

template<>
struct NumericTraits<int>
{
    typedef int Type;
    typedef int Promote;
    typedef unsigned int UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraTrueType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;

    static int zero() { return 0; }
    static int one() { return 1; }
    static int nonZero() { return 1; }
    static int min() { return INT_MIN; }
    static int max() { return INT_MAX; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = INT_MIN, maxConst = INT_MAX };
#else
    static const int minConst = INT_MIN;
    static const int maxConst = INT_MAX;
#endif

    static Promote toPromote(int v) { return v; }
    static RealPromote toRealPromote(int v) { return v; }
    static int fromPromote(Promote v) { return v; }
    static int fromRealPromote(RealPromote v) {
        return detail::clamp_float_to_signed<RealPromote, int>(v, INT_MIN, INT_MAX);
    }
};

template<>
struct NumericTraits<unsigned int>
{
    typedef unsigned int Type;
    typedef unsigned int Promote;
    typedef unsigned int UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraFalseType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static unsigned int zero() { return 0; }
    static unsigned int one() { return 1; }
    static unsigned int nonZero() { return 1; }
    static unsigned int min() { return 0; }
    static unsigned int max() { return UINT_MAX; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = 0, maxConst = UINT_MAX };
#else
    static const unsigned int minConst = 0;
    static const unsigned int maxConst = UINT_MAX;
#endif

    static Promote toPromote(unsigned int v) { return v; }
    static RealPromote toRealPromote(unsigned int v) { return v; }
    static unsigned int fromPromote(Promote v) { return v; }
    static unsigned int fromRealPromote(RealPromote v) {
        return detail::clamp_float_to_unsigned<RealPromote, unsigned int>(v, UINT_MAX);
    }
};

template<>
struct NumericTraits<long>
{
    typedef long Type;
    typedef long Promote;
    typedef unsigned long UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraTrueType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static long zero() { return 0; }
    static long one() { return 1; }
    static long nonZero() { return 1; }
    static long min() { return LONG_MIN; }
    static long max() { return LONG_MAX; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = LONG_MIN, maxConst = LONG_MAX };
#else
    static const long minConst = LONG_MIN;
    static const long maxConst = LONG_MAX;
#endif

    static Promote toPromote(long v) { return v; }
    static RealPromote toRealPromote(long v) { return static_cast<RealPromote>(v); }
    static long fromPromote(Promote v) { return v; }
    static long fromRealPromote(RealPromote v) {
        return detail::clamp_float_to_signed<RealPromote, long>(v, LONG_MIN, LONG_MAX);
    }
};

template<>
struct NumericTraits<unsigned long>
{
    typedef unsigned long Type;
    typedef unsigned long Promote;
    typedef unsigned long UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraFalseType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static unsigned long zero() { return 0; }
    static unsigned long one() { return 1; }
    static unsigned long nonZero() { return 1; }
    static unsigned long min() { return 0; }
    static unsigned long max() { return ULONG_MAX; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = 0, maxConst = ULONG_MAX };
#else
    static const unsigned long minConst = 0;
    static const unsigned long maxConst = ULONG_MAX;
#endif

    static Promote toPromote(unsigned long v) { return v; }
    static RealPromote toRealPromote(unsigned long v) { return static_cast<RealPromote>(v); }
    static unsigned long fromPromote(Promote v) { return v; }
    static unsigned long fromRealPromote(RealPromote v) {
        return detail::clamp_float_to_unsigned<RealPromote, unsigned long>(v, ULONG_MAX);
    }
};

#ifdef LLONG_MAX
template<>
struct NumericTraits<long long>
{
    typedef long long Type;
    typedef long long Promote;
    typedef unsigned long long UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraTrueType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static long long zero() { return 0; }
    static long long one() { return 1; }
    static long long nonZero() { return 1; }
    static long long min() { return LLONG_MIN; }
    static long long max() { return LLONG_MAX; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = LLONG_MIN, maxConst = LLONG_MAX };
#else
    static const long long minConst = LLONG_MIN;
    static const long long maxConst = LLONG_MAX;
#endif

    static Promote toPromote(long long v) { return v; }
    static RealPromote toRealPromote(long long v) { return (RealPromote)v; }
    static long long fromPromote(Promote v) { return v; }
    static long long fromRealPromote(RealPromote v) {
        return detail::clamp_float_to_signed<RealPromote, long long>(v, LLONG_MIN, LLONG_MAX);
    }
};

template<>
struct NumericTraits<unsigned long long>
{
    typedef unsigned long long Type;
    typedef unsigned long long Promote;
    typedef unsigned long long UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraTrueType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraFalseType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static unsigned long long zero() { return 0; }
    static unsigned long long one() { return 1; }
    static unsigned long long nonZero() { return 1; }
    static unsigned long long min() { return 0; }
    static unsigned long long max() { return ULLONG_MAX; }
    
#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = 0, maxConst = ULLONG_MAX };
#else
    static const unsigned long long minConst = 0;
    static const unsigned long long maxConst = ULLONG_MAX;
#endif

    static Promote toPromote(unsigned long long v) { return v; }
    static RealPromote toRealPromote(unsigned long long v) { return (RealPromote)v; }
    static unsigned long long fromPromote(Promote v) { return v; }
    static unsigned long long fromRealPromote(RealPromote v) {
        return detail::clamp_float_to_unsigned<RealPromote, unsigned long long>(v, ULLONG_MAX);
    }
};
#endif // LLONG_MAX

template<>
struct NumericTraits<float>
{
    typedef float Type;
    typedef float Promote;
    typedef float UnsignedPromote;
    typedef float RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;
    
    typedef VigraFalseType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraTrueType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static float zero() { return 0.0; }
    static float one() { return 1.0; }
    static float nonZero() { return 1.0; }
    static float epsilon() { return FLT_EPSILON; }
    static float smallestPositive() { return FLT_MIN; }
    static float min() { return -FLT_MAX; }
    static float max() { return FLT_MAX; }
    
    static Promote toPromote(float v) { return v; }
    static RealPromote toRealPromote(float v) { return v; }
    static float fromPromote(Promote v) { return v; }
    static float fromRealPromote(RealPromote v) { return v; }
};

template<>
struct NumericTraits<double>
{
    typedef double Type;
    typedef double Promote;
    typedef double UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraFalseType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraTrueType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static double zero() { return 0.0; }
    static double one() { return 1.0; }
    static double nonZero() { return 1.0; }
    static double epsilon() { return DBL_EPSILON; }
    static double smallestPositive() { return DBL_MIN; }
    static double min() { return -DBL_MAX; }
    static double max() { return DBL_MAX; }

    static Promote toPromote(double v) { return v; }
    static RealPromote toRealPromote(double v) { return v; }
    static double fromPromote(Promote v) { return v; }
    static double fromRealPromote(RealPromote v) { return v; }
};

template<>
struct NumericTraits<long double>
{
    typedef long double Type;
    typedef long double Promote;
    typedef long double UnsignedPromote;
    typedef long double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef Type ValueType;

    typedef VigraFalseType isIntegral;
    typedef VigraTrueType isScalar;
    typedef VigraTrueType isSigned;
    typedef VigraTrueType isOrdered;
    typedef VigraFalseType isComplex;
    
    static long double zero() { return 0.0; }
    static long double one() { return 1.0; }
    static long double nonZero() { return 1.0; }
    static long double epsilon() { return LDBL_EPSILON; }
    static long double smallestPositive() { return LDBL_MIN; }
    static long double min() { return -LDBL_MAX; }
    static long double max() { return LDBL_MAX; }

    static Promote toPromote(long double v) { return v; }
    static RealPromote toRealPromote(long double v) { return v; }
    static long double fromPromote(Promote v) { return v; }
    static long double fromRealPromote(RealPromote v) { return v; }
};

#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION

template<class T>
struct NumericTraits<std::complex<T> >
{
    typedef std::complex<T> Type;
    typedef std::complex<typename NumericTraits<T>::Promote> Promote;
    typedef std::complex<typename NumericTraits<T>::UnsignedPromote> UnsignedPromote;
    typedef std::complex<typename NumericTraits<T>::RealPromote> RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
    typedef T ValueType;

    typedef VigraFalseType isIntegral;
    typedef VigraFalseType isScalar;
    typedef typename NumericTraits<T>::isSigned isSigned;
    typedef VigraFalseType isOrdered;
    typedef VigraTrueType isComplex;
    
    static Type zero() { return Type(0.0); }
    static Type one() { return Type(1.0); }
    static Type nonZero() { return one(); }
    static Type epsilon() { return Type(NumericTraits<T>::epsilon()); }
    static Type smallestPositive() { return Type(NumericTraits<T>::smallestPositive()); }

    static Promote toPromote(Type const & v) { return v; }
    static Type fromPromote(Promote const & v) { return v; }
    static Type fromRealPromote(RealPromote v) { return Type(v); }
};

#endif // NO_PARTIAL_TEMPLATE_SPECIALIZATION

/********************************************************/
/*                                                      */
/*                    SquareRootTraits                  */
/*                                                      */
/********************************************************/

template<class T>
struct SquareRootTraits
{
    typedef T                                                    Type;
    typedef typename NumericTraits<T>::RealPromote               SquareRootResult;
    typedef typename NumericTraits<T>::RealPromote               SquareRootArgument;
};


/********************************************************/
/*                                                      */
/*                       NormTraits                     */
/*                                                      */
/********************************************************/

struct Error_NormTraits_not_specialized_for_this_case { };

template<class T>
struct NormTraits
{
    typedef T                                                Type;
    typedef Error_NormTraits_not_specialized_for_this_case   SquaredNormType;
    typedef Error_NormTraits_not_specialized_for_this_case   NormType;
};

#define VIGRA_DEFINE_NORM_TRAITS(T) \
    template <> struct NormTraits<T> { \
        typedef T Type; \
        typedef NumericTraits<T>::Promote SquaredNormType; \
        typedef T NormType; \
    };

VIGRA_DEFINE_NORM_TRAITS(bool)
VIGRA_DEFINE_NORM_TRAITS(signed char)
VIGRA_DEFINE_NORM_TRAITS(unsigned char)
VIGRA_DEFINE_NORM_TRAITS(short)
VIGRA_DEFINE_NORM_TRAITS(unsigned short)
VIGRA_DEFINE_NORM_TRAITS(int)
VIGRA_DEFINE_NORM_TRAITS(unsigned int)
VIGRA_DEFINE_NORM_TRAITS(long)
VIGRA_DEFINE_NORM_TRAITS(unsigned long)
VIGRA_DEFINE_NORM_TRAITS(float)
VIGRA_DEFINE_NORM_TRAITS(double)
VIGRA_DEFINE_NORM_TRAITS(long double)

#ifdef LLONG_MAX
VIGRA_DEFINE_NORM_TRAITS(long long)
VIGRA_DEFINE_NORM_TRAITS(unsigned long long)
#endif // LLONG_MAX

#undef VIGRA_DEFINE_NORM_TRAITS

#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION

template<class T>
struct NormTraits<std::complex<T> >
{
    typedef std::complex<T>                                              Type;
    typedef typename NormTraits<T>::SquaredNormType                      SquaredNormType;
    typedef typename SquareRootTraits<SquaredNormType>::SquareRootResult NormType;
};

#endif // NO_PARTIAL_TEMPLATE_SPECIALIZATION

/********************************************************/
/*                                                      */
/*                      PromoteTraits                   */
/*                                                      */
/********************************************************/

namespace detail {

template <class T, class U>
struct PromoteType
{
    static T & t();
    static U & u();
    // let C++ figure out the promote type by adding a T and an U
    typedef typename SizeToType<sizeof(*typeToSize(t() + u()))>::result Promote;
    static Promote toPromote(T t) { return Promote(t); }
    static Promote toPromote(U u) { return Promote(u); }
};


template <class T>
struct PromoteType<T, T>
{
    static T & t();
    // let C++ figure out the promote type by adding two Ts
    typedef typename SizeToType<sizeof(*typeToSize(t() + t()))>::result Promote;
    static Promote toPromote(T t) { return Promote(t); }
};

} // namespace detail

struct Error_PromoteTraits_not_specialized_for_this_case { };

template<class A, class B>
struct PromoteTraits
{
    typedef Error_PromoteTraits_not_specialized_for_this_case Promote;
};

#include "promote_traits.hxx"

#ifndef NO_PARTIAL_TEMPLATE_SPECIALIZATION

template <class T>
struct PromoteTraits<std::complex<T>, std::complex<T> >
{
    typedef std::complex<typename PromoteTraits<T, T>::Promote> Promote;
    static Promote toPromote(std::complex<T> const & v) { return v; }
};

template <class T1, class T2>
struct PromoteTraits<std::complex<T1>, std::complex<T2> >
{
    typedef std::complex<typename PromoteTraits<T1, T2>::Promote> Promote;
    static Promote toPromote(std::complex<T1> const & v) { return v; }
    static Promote toPromote(std::complex<T2> const & v) { return v; }
};

template <class T1, class T2>
struct PromoteTraits<std::complex<T1>, T2 >
{
    typedef std::complex<typename PromoteTraits<T1, T2>::Promote> Promote;
    static Promote toPromote(std::complex<T1> const & v) { return v; }
    static Promote toPromote(T2 const & v) { return Promote(v); }
};

template <class T1, class T2>
struct PromoteTraits<T1, std::complex<T2> >
{
    typedef std::complex<typename PromoteTraits<T1, T2>::Promote> Promote;
    static Promote toPromote(T1 const & v) { return Promote(v); }
    static Promote toPromote(std::complex<T2> const & v) { return v; }
};

#endif

namespace detail {

template <class T>
struct RequiresExplicitCast {
    template <class U>
    static U const & cast(U const & v)
        { return v; }
};

#if !defined(_MSC_VER) || _MSC_VER >= 1300
#  define VIGRA_SPECIALIZED_CAST(type) \
    template <> \
    struct RequiresExplicitCast<type> { \
        static type cast(float v) \
            { return NumericTraits<type>::fromRealPromote(v); } \
        static type cast(double v) \
            { return NumericTraits<type>::fromRealPromote(v); } \
        static type cast(type v) \
            { return v; } \
        template <class U> \
        static type cast(U v) \
            { return static_cast<type>(v); } \
 \
    };
#else
#  define VIGRA_SPECIALIZED_CAST(type) \
    template <> \
    struct RequiresExplicitCast<type> { \
        static type cast(float v) \
            { return NumericTraits<type>::fromRealPromote(v); } \
        static type cast(double v) \
            { return NumericTraits<type>::fromRealPromote(v); } \
        static type cast(signed char v) \
            { return v; } \
        static type cast(unsigned char v) \
            { return v; } \
        static type cast(short v) \
            { return v; } \
        static type cast(unsigned short v) \
            { return v; } \
        static type cast(int v) \
            { return v; } \
        static type cast(unsigned int v) \
            { return v; } \
        static type cast(long v) \
            { return v; } \
        static type cast(unsigned long v) \
            { return v; } \
    };
#endif


VIGRA_SPECIALIZED_CAST(signed char)
VIGRA_SPECIALIZED_CAST(unsigned char)
VIGRA_SPECIALIZED_CAST(short)
VIGRA_SPECIALIZED_CAST(unsigned short)
VIGRA_SPECIALIZED_CAST(int)
VIGRA_SPECIALIZED_CAST(unsigned int)
VIGRA_SPECIALIZED_CAST(long)
VIGRA_SPECIALIZED_CAST(unsigned long)

template <>
struct RequiresExplicitCast<bool> {
    template <class U>
    static bool cast(U v)
    { return v == NumericTraits<U>::zero()
                ? false
                : true; }
};

template <>
struct RequiresExplicitCast<float> {
    static float cast(int v)
        { return (float)v; }

    static float cast(unsigned int v)
        { return (float)v; }

    static float cast(long v)
        { return (float)v; }

    static float cast(unsigned long v)
        { return (float)v; }

    static float cast(long long v)
        { return (float)v; }

    static float cast(unsigned long long v)
        { return (float)v; }

    static float cast(double v)
        { return (float)v; }

    static float cast(long double v)
        { return (float)v; }

    template <class U>
    static U cast(U v)
        { return v; }
};

template <>
struct RequiresExplicitCast<double> {
    static double cast(Int64 v)
        { return (double)v; }

    static double cast(UInt64 v)
        { return (double)v; }

    template <class U>
    static U cast(U v)
        { return v; }
};

#undef VIGRA_SPECIALIZED_CAST

} // namespace detail



} // namespace vigra

#endif // VIGRA_NUMERICTRAITS_HXX