This file is indexed.

/usr/include/vigra/quaternion.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/************************************************************************/
/*                                                                      */
/*        Copyright 2004-2010 by Hans Meine und Ullrich Koethe          */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_QUATERNION_HXX
#define VIGRA_QUATERNION_HXX

#include "config.hxx"
#include "numerictraits.hxx"
#include "tinyvector.hxx"
#include "matrix.hxx"
#include "mathutil.hxx"
#include <iosfwd>   // ostream


namespace vigra {

/** Quaternion class.

    Quaternions are mainly used as a compact representation for 3D rotations because
    they are much less prone to round-off errors than rotation matrices, especially
    when many rotations are concatenated. In addition, the angle/axis interpretation
    of normalized quaternions is very intuitive. Read the 
    <a href="http://en.wikipedia.org/wiki/Quaternion">Wikipedia entry on quaternions</a> 
    for more information on the mathematics.
    
    See also: \ref QuaternionOperations
*/
template<class ValueType>
class Quaternion {
  public:
    typedef TinyVector<ValueType, 3> Vector;
    
        /** the quaternion's valuetype
        */
    typedef ValueType value_type;

        /** reference (return of operator[]).
        */
    typedef ValueType & reference;

        /** const reference (return of operator[] const).
        */
    typedef ValueType const & const_reference;

        /** the quaternion's squared norm type
        */
    typedef typename NormTraits<ValueType>::SquaredNormType SquaredNormType;

        /** the quaternion's norm type
        */
    typedef typename NormTraits<ValueType>::NormType NormType;

        /** Construct a quaternion with explicit values for the real and imaginary parts.
        */
    Quaternion(ValueType w = 0, ValueType x = 0, ValueType y = 0, ValueType z = 0)
    : w_(w), v_(x, y, z)
    {}
    
        /** Construct a quaternion with real value and imaginary vector.
        
            Equivalent to <tt>Quaternion(w, v[0], v[1], v[2])</tt>.
        */
    Quaternion(ValueType w, const Vector &v)
    : w_(w), v_(v)
    {}

        /** Copy constructor.
        */
    Quaternion(const Quaternion &q)
    : w_(q.w_), v_(q.v_)
    {}
    
        /** Copy assignment.
        */
    Quaternion & operator=(Quaternion const & other)
    {
        w_ = other.w_;
        v_ = other.v_;
        return *this;
    }
    
        /** Assign \a w to the real part and set the imaginary part to zero.
        */
    Quaternion & operator=(ValueType w)
    {
        w_ = w;
        v_.init(0);
        return *this;
    }

        /**
         * Creates a Quaternion which represents the operation of
         * rotating around the given axis by the given angle.
         *
         * The angle should be in the range -pi..3*pi for sensible
         * results.
         */
    static Quaternion
    createRotation(double angle, const Vector &rotationAxis)
    {
        // the natural range would be -pi..pi, but the reflective
        // behavior around pi is too unexpected:
        if(angle > M_PI)
            angle -= 2.0*M_PI;
        double t = VIGRA_CSTD::sin(angle/2.0);
        double norm = rotationAxis.magnitude();
        return Quaternion(VIGRA_CSTD::sqrt(1.0-t*t), t*rotationAxis/norm);
    }

        /** Read real part.
        */
    ValueType w() const { return w_; }
        /** Access real part.
        */
    ValueType &w() { return w_; }
        /** Set real part.
        */
    void setW(ValueType w) { w_ = w; }

        /** Read imaginary part.
        */
    const Vector &v() const { return v_; }
        /** Access imaginary part.
        */
    Vector &v() { return v_; }
        /** Set imaginary part.
        */
    void setV(const Vector & v) { v_ = v; }
        /** Set imaginary part.
        */
    void setV(ValueType x, ValueType y, ValueType z)
    {
        v_[0] = x;
        v_[1] = y;
        v_[2] = z;
    }

    ValueType x() const { return v_[0]; }
    ValueType y() const { return v_[1]; }
    ValueType z() const { return v_[2]; }
    ValueType &x() { return v_[0]; }
    ValueType &y() { return v_[1]; }
    ValueType &z() { return v_[2]; }
    void setX(ValueType x) { v_[0] = x; }
    void setY(ValueType y) { v_[1] = y; }
    void setZ(ValueType z) { v_[2] = z; }
    
        /** Access entry at index (0 <=> w(), 1 <=> v[0] etc.).
        */
    value_type & operator[](int index)
    {
        return (&w_)[index];
    }
    
        /** Read entry at index (0 <=> w(), 1 <=> v[0] etc.).
        */
    value_type operator[](int index) const
    {
        return (&w_)[index];
    }
    
        /** Magnitude.
        */
    NormType magnitude() const
    {
        return VIGRA_CSTD::sqrt((NormType)squaredMagnitude());
    }

        /** Squared magnitude.
        */
    SquaredNormType squaredMagnitude() const
    {
        return w_*w_ + v_.squaredMagnitude();
    }

        /** Add \a w to the real part.
        
            If the quaternion represents a rotation, the rotation angle is
            increased by \a w.
        */
    Quaternion &operator+=(value_type const &w)
    {
        w_ += w;
        return *this;
    }

        /** Add assigment.
        */
    Quaternion &operator+=(Quaternion const &other)
    {
        w_ += other.w_;
        v_ += other.v_;
        return *this;
    }

        /** Subtract \a w from the real part.
        
            If the quaternion represents a rotation, the rotation angle is
            decreased by \a w.
        */
    Quaternion &operator-=(value_type const &w)
    {
        w_ -= w;
        return *this;
    }

        /** Subtract assigment.
        */
    Quaternion &operator-=(Quaternion const &other)
    {
        w_ -= other.w_;
        v_ -= other.v_;
        return *this;
    }

        /** Addition.
        */
    Quaternion operator+() const
    {
        return *this;
    }

        /** Subtraction.
        */
    Quaternion operator-() const
    {
        return Quaternion(-w_, -v_);
    }

        /** Multiply assignment.
        
            If the quaternions represent rotations, the rotations of <tt>this</tt> and 
            \a other are concatenated.
        */
    Quaternion &operator*=(Quaternion const &other)
    {
        value_type newW = w_*other.w_ - dot(v_, other.v_);
        v_              = w_ * other.v_ + other.w_ * v_ + cross(v_, other.v_);
        w_              = newW;
        return *this;
    }

        /** Multiply all entries with the scalar \a scale.
        */
    Quaternion &operator*=(double scale)
    {
        w_ *= scale;
        v_ *= scale;
        return *this;
    }

        /** Divide assignment.
        */
    Quaternion &operator/=(Quaternion const &other)
    {
        (*this) *= conj(other) / squaredNorm(other);
        return *this;
    }

        /** Devide all entries by the scalar \a scale.
        */
    Quaternion &operator/=(double scale)
    {
        w_ /= scale;
        v_ /= scale;
        return *this;
    }

        /** Equal.
        */
    bool operator==(Quaternion const &other) const
    {
      return (w_ == other.w_) && (v_ == other.v_);
    }

        /** Not equal.
        */
    bool operator!=(Quaternion const &other) const
    {
      return (w_ != other.w_) || (v_ != other.v_);
    }

        /**
         * Fill the first 3x3 elements of the given matrix with a
         * rotation matrix performing the same 3D rotation as this
         * quaternion.  If matrix is in column-major format, it should
         * be pre-multiplied with the vectors to be rotated, i.e.
         * matrix[0][0-3] will be the rotated X axis.
         */
    template<class MatrixType>
    void fillRotationMatrix(MatrixType &matrix) const
    {
        // scale by 2 / norm
        typename NumericTraits<ValueType>::RealPromote s =
            2 / (typename NumericTraits<ValueType>::RealPromote)squaredMagnitude();

        Vector
            vs = v_ * s,
            wv = w_ * vs,
            vv = vs * v_;
        value_type
            xy = vs[0] * v_[1],
            xz = vs[0] * v_[2],
            yz = vs[1] * v_[2];

        matrix[0][0] = 1 - (vv[1] + vv[2]);
        matrix[0][1] =     ( xy   - wv[2]);
        matrix[0][2] =     ( xz   + wv[1]);

        matrix[1][0] =     ( xy   + wv[2]);
        matrix[1][1] = 1 - (vv[0] + vv[2]);
        matrix[1][2] =     ( yz   - wv[0]);

        matrix[2][0] =     ( xz   - wv[1]);
        matrix[2][1] =     ( yz   + wv[0]);
        matrix[2][2] = 1 - (vv[0] + vv[1]);
    }

    void fillRotationMatrix(Matrix<value_type> &matrix) const
    {
        // scale by 2 / norm
        typename NumericTraits<ValueType>::RealPromote s =
            2 / (typename NumericTraits<ValueType>::RealPromote)squaredMagnitude();

        Vector
            vs = v_ * s,
            wv = w_ * vs,
            vv = vs * v_;
        value_type
            xy = vs[0] * v_[1],
            xz = vs[0] * v_[2],
            yz = vs[1] * v_[2];

        matrix(0, 0) = 1 - (vv[1] + vv[2]);
        matrix(0, 1) =     ( xy   - wv[2]);
        matrix(0, 2) =     ( xz   + wv[1]);

        matrix(1, 0) =     ( xy   + wv[2]);
        matrix(1, 1) = 1 - (vv[0] + vv[2]);
        matrix(1, 2) =     ( yz   - wv[0]);

        matrix(2, 0) =     ( xz   - wv[1]);
        matrix(2, 1) =     ( yz   + wv[0]);
        matrix(2, 2) = 1 - (vv[0] + vv[1]);
    }

  protected:
    ValueType w_;
    Vector v_;
};

template<class T>
struct NormTraits<Quaternion<T> >
{
    typedef Quaternion<T>                                                  Type;
    typedef typename NumericTraits<T>::Promote                             SquaredNormType;
    typedef typename SquareRootTraits<SquaredNormType>::SquareRootResult   NormType;
};


/** \defgroup QuaternionOperations Quaternion Operations
*/
//@{

    /// Create conjugate quaternion.
template<class ValueType>
Quaternion<ValueType> conj(Quaternion<ValueType> const & q)
{
    return Quaternion<ValueType>(q.w(), -q.v());
}

    /// Addition.
template<typename Type>
inline Quaternion<Type>
operator+(const Quaternion<Type>& t1,
           const Quaternion<Type>& t2) 
{
  return Quaternion<Type>(t1) += t2;
}

    /// Addition of a scalar on the right.
template<typename Type>
inline Quaternion<Type>
operator+(const Quaternion<Type>& t1,
           const Type& t2) 
{
  return Quaternion<Type>(t1) += t2;
}

    /// Addition of a scalar on the left.
template<typename Type>
inline Quaternion<Type>
operator+(const Type& t1,
           const Quaternion<Type>& t2) 
{
  return Quaternion<Type>(t1) += t2;
}

    /// Subtraction.
template<typename Type>
inline Quaternion<Type>
operator-(const Quaternion<Type>& t1,
           const Quaternion<Type>& t2) 
{
  return Quaternion<Type>(t1) -= t2;
}

    /// Subtraction of a scalar on the right.
template<typename Type>
inline Quaternion<Type>
operator-(const Quaternion<Type>& t1,
           const Type& t2) 
{
  return Quaternion<Type>(t1) -= t2;
}

    /// Subtraction of a scalar on the left.
template<typename Type>
inline Quaternion<Type>
operator-(const Type& t1,
           const Quaternion<Type>& t2) 
{
  return Quaternion<Type>(t1) -= t2;
}

    /// Multiplication.
template<typename Type>
inline Quaternion<Type>
operator*(const Quaternion<Type>& t1,
           const Quaternion<Type>& t2) 
{
  return Quaternion<Type>(t1) *= t2;
}

    /// Multiplication with a scalar on the right.
template<typename Type>
inline Quaternion<Type>
operator*(const Quaternion<Type>& t1,
           double t2) 
{
  return Quaternion<Type>(t1) *= t2;
}
  
    /// Multiplication with a scalar on the left.
template<typename Type>
inline Quaternion<Type>
operator*(double t1,
           const Quaternion<Type>& t2)
{
  return Quaternion<Type>(t1) *= t2;
}

    /// Division
template<typename Type>
inline Quaternion<Type>
operator/(const Quaternion<Type>& t1,
           const Quaternion<Type>& t2) 
{
  return Quaternion<Type>(t1) /= t2;
}

    /// Division by a scalar.
template<typename Type>
inline Quaternion<Type>
operator/(const Quaternion<Type>& t1,
           double t2) 
{
  return Quaternion<Type>(t1) /= t2;
}
  
    /// Division of a scalar by a Quaternion.
template<typename Type>
inline Quaternion<Type>
operator/(double t1,
           const Quaternion<Type>& t2)
{
  return Quaternion<Type>(t1) /= t2;
}

    /// squared norm
template<typename Type>
inline
typename Quaternion<Type>::SquaredNormType
squaredNorm(Quaternion<Type> const & q)
{
    return q.squaredMagnitude();
}

    /// norm
template<typename Type>
inline
typename Quaternion<Type>::NormType
abs(Quaternion<Type> const & q)
{
    return norm(q);
}

//@}

} // namespace vigra

namespace std {

template<class ValueType>
inline
ostream & operator<<(ostream & os, vigra::Quaternion<ValueType> const & q)
{
    os << q.w() << " " << q.x() << " " << q.y() << " " << q.z();
    return os;
}

template<class ValueType>
inline
istream & operator>>(istream & is, vigra::Quaternion<ValueType> & q)
{
    ValueType w, x, y, z;
    is >> w >> x >> y >> z;
    q.setW(w);
    q.setX(x);
    q.setY(y);
    q.setZ(z);
    return is;
}

} // namespace std

#endif // VIGRA_QUATERNION_HXX