This file is indexed.

/usr/include/vigra/seededregiongrowing.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
/************************************************************************/
/*                                                                      */
/*         Copyright 1998-2010 by Ullrich Koethe, Hans Meine            */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_SEEDEDREGIONGROWING_HXX
#define VIGRA_SEEDEDREGIONGROWING_HXX

#include <vector>
#include <stack>
#include <queue>
#include "utilities.hxx"
#include "stdimage.hxx"
#include "stdimagefunctions.hxx"
#include "pixelneighborhood.hxx"
#include "bucket_queue.hxx"
#include "multi_shape.hxx"

namespace vigra {

namespace detail {

template <class COST>
class SeedRgPixel
{
public:
    Point2D location_, nearest_;
    COST cost_;
    int count_;
    int label_;
    int dist_;

    SeedRgPixel()
    : location_(0,0), nearest_(0,0), cost_(0), count_(0), label_(0)
    {}

    SeedRgPixel(Point2D const & location, Point2D const & nearest,
                COST const & cost, int const & count, int const & label)
    : location_(location), nearest_(nearest),
      cost_(cost), count_(count), label_(label)
    {
        int dx = location_.x - nearest_.x;
        int dy = location_.y - nearest_.y;
        dist_ = dx * dx + dy * dy;
    }

    void set(Point2D const & location, Point2D const & nearest,
             COST const & cost, int const & count, int const & label)
    {
        location_ = location;
        nearest_ = nearest;
        cost_ = cost;
        count_ = count;
        label_ = label;

        int dx = location_.x - nearest_.x;
        int dy = location_.y - nearest_.y;
        dist_ = dx * dx + dy * dy;
    }

    struct Compare
    {
        // must implement > since priority_queue looks for largest element
        bool operator()(SeedRgPixel const & l,
                        SeedRgPixel const & r) const
        {
            if(r.cost_ == l.cost_)
            {
                if(r.dist_ == l.dist_) return r.count_ < l.count_;

                return r.dist_ < l.dist_;
            }

            return r.cost_ < l.cost_;
        }
        bool operator()(SeedRgPixel const * l,
                        SeedRgPixel const * r) const
        {
            if(r->cost_ == l->cost_)
            {
                if(r->dist_ == l->dist_) return r->count_ < l->count_;

                return r->dist_ < l->dist_;
            }

            return r->cost_ < l->cost_;
        }
    };

    struct Allocator
    {
        ~Allocator()
        {
            while(!freelist_.empty())
            {
                delete freelist_.top();
                freelist_.pop();
            }
        }

        SeedRgPixel *
        create(Point2D const & location, Point2D const & nearest,
               COST const & cost, int const & count, int const & label)
        {
            if(!freelist_.empty())
            {
                SeedRgPixel * res = freelist_.top();
                freelist_.pop();
                res->set(location, nearest, cost, count, label);
                return res;
            }

            return new SeedRgPixel(location, nearest, cost, count, label);
        }

        void dismiss(SeedRgPixel * p)
        {
            freelist_.push(p);
        }

        std::stack<SeedRgPixel<COST> *> freelist_;
    };
};

struct UnlabelWatersheds
{
    int operator()(int label) const
    {
        return label < 0 ? 0 : label;
    }
};

} // namespace detail

/** \addtogroup SeededRegionGrowing Region Segmentation Algorithms
    Region growing, watersheds, and voronoi tesselation
*/
//@{

/********************************************************/
/*                                                      */
/*                    seededRegionGrowing               */
/*                                                      */
/********************************************************/

/** Choose between different types of Region Growing */
enum SRGType { 
    CompleteGrow = 0, 
    KeepContours = 1, 
    StopAtThreshold = 2, 
    SRGWatershedLabel = -1 
};

/** \brief Region Segmentation by means of Seeded Region Growing.

    This algorithm implements seeded region growing as described in

    R. Adams, L. Bischof: <em>"Seeded Region Growing"</em>, IEEE Trans. on Pattern
    Analysis and Maschine Intelligence, vol 16, no 6, 1994, and

    Ullrich K&ouml;the:
    <em><a href="http://hci.iwr.uni-heidelberg.de/people/ukoethe/papers/index.php#cite_primary_segmentation">Primary Image Segmentation</a></em>,
    in: G. Sagerer, S.
    Posch, F. Kummert (eds.): Mustererkennung 1995, Proc. 17. DAGM-Symposium,
    Springer 1995

    The seed image is a partly segmented image which contains uniquely
    labeled regions (the seeds) and unlabeled pixels (the candidates, label 0).
    The highest seed label found in the seed image is returned by the algorithm.
    
    Seed regions can be as large as you wish and as small as one pixel. If
    there are no candidates, the algorithm will simply copy the seed image
    into the output image. Otherwise it will aggregate the candidates into
    the existing regions so that a cost function is minimized. 
    Candidates are taken from the neighborhood of the already assigned pixels, 
    where the type of neighborhood is determined by parameter <tt>neighborhood</tt>
    which can take the values <tt>FourNeighborCode()</tt> (the default) 
    or <tt>EightNeighborCode()</tt>. The algorithm basically works as follows 
    (illustrated for 4-neighborhood, but 8-neighborhood works in the same way):

    <ol>

    <li> Find all candidate pixels that are 4-adjacent to a seed region.
    Calculate the cost for aggregating each candidate into its adjacent region
    and put the candidates into a priority queue.

    <li> While( priority queue is not empty and termination criterion is not fulfilled)

        <ol>

        <li> Take the candidate with least cost from the queue. If it has not
        already been merged, merge it with it's adjacent region.

        <li> Put all candidates that are 4-adjacent to the pixel just processed
        into the priority queue.

        </ol>

    </ol>

    <tt>SRGType</tt> can take the following values:
    
    <DL>
    <DT><tt>CompleteGrow</tt> <DD> produce a complete tesselation of the volume (default).
    <DT><tt>KeepContours</tt> <DD> keep a 1-voxel wide unlabeled contour between all regions.
    <DT><tt>StopAtThreshold</tt> <DD> stop when the boundary indicator values exceed the 
                             threshold given by parameter <tt>max_cost</tt>.
    <DT><tt>KeepContours | StopAtThreshold</tt> <DD> keep 1-voxel wide contour and stop at given <tt>max_cost</tt>.
    </DL>

    The cost is determined jointly by the source image and the
    region statistics functor. The source image contains feature values for each
    pixel which will be used by the region statistics functor to calculate and
    update statistics for each region and to calculate the cost for each
    candidate. The <TT>RegionStatisticsArray</TT> must be compatible to the
    \ref ArrayOfRegionStatistics functor and contains an <em> array</em> of
    statistics objects for each region. The indices must correspond to the
    labels of the seed regions. The statistics for the initial regions must have
    been calculated prior to calling <TT>seededRegionGrowing()</TT> (for example by
    means of \ref inspectTwoImagesIf()).

    For each candidate
    <TT>x</TT> that is adjacent to region <TT>i</TT>, the algorithm will call
    <TT>stats[i].cost(as(x))</TT> to get the cost (where <TT>x</TT> is a <TT>SrcIterator</TT>
    and <TT>as</TT> is
    the SrcAccessor). When a candidate has been merged with a region, the
    statistics are updated by calling <TT>stats[i].operator()(as(x))</TT>. Since
    the <TT>RegionStatisticsArray</TT> is passed by reference, this will overwrite
    the original statistics.

    If a candidate could be merged into more than one regions with identical
    cost, the algorithm will favour the nearest region. If <tt>StopAtThreshold</tt> is active, 
    and the cost of the current candidate at any point in the algorithm exceeds the optional 
    <tt>max_cost</tt> value (which defaults to <tt>NumericTraits<double>::max()</tt>), 
    region growing is aborted, and all voxels not yet assigned to a region remain unlabeled.

    In some cases, the cost only depends on the feature value of the current
    pixel. Then the update operation will simply be a no-op, and the <TT>cost()</TT>
    function returns its argument. This behavior is implemented by the
    \ref SeedRgDirectValueFunctor. With <tt>SRGType == KeepContours</tt>,
    this is equivalent to the watershed algorithm.

    <b> Declarations:</b>

    pass 2D array views:
    \code
    namespace vigra {
        template <class T1, class S1,
                  class TS, class AS,
                  class T2, class S2,
                  class RegionStatisticsArray, class Neighborhood>
        TS
        seededRegionGrowing(MultiArrayView<2, T1, S1> const & src,
                            MultiArrayView<2, TS, AS> const & seeds,
                            MultiArrayView<2, T2, S2>         labels,
                            RegionStatisticsArray &           stats,
                            SRGType                           srgType = CompleteGrow, 
                            Neighborhood                      n = FourNeighborCode(),
                            double                            max_cost = NumericTraits<double>::max());
    }
    \endcode

    \deprecatedAPI{seededRegionGrowing}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class SeedImageIterator, class SeedAccessor,
                  class DestIterator, class DestAccessor,
                  class RegionStatisticsArray, class Neighborhood>
        typename SeedAccessor::value_type 
        seededRegionGrowing(SrcIterator srcul, SrcIterator srclr, SrcAccessor as,
                            SeedImageIterator seedsul, SeedAccessor aseeds,
                            DestIterator destul, DestAccessor ad,
                            RegionStatisticsArray & stats,
                            SRGType srgType = CompleteGrow,
                            Neighborhood neighborhood = FourNeighborCode(),
                            double max_cost = NumericTraits<double>::max());
    }
    \endcode
    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class SrcIterator, class SrcAccessor,
                  class SeedImageIterator, class SeedAccessor,
                  class DestIterator, class DestAccessor,
                  class RegionStatisticsArray, class Neighborhood>
        typename SeedAccessor::value_type
        seededRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                            pair<SeedImageIterator, SeedAccessor> seeds,
                            pair<DestIterator, DestAccessor> dest,
                            RegionStatisticsArray & stats,
                            SRGType srgType = CompleteGrow,
                            Neighborhood neighborhood = FourNeighborCode(),
                            double max_cost = NumericTraits<double>::max());
    }
    \endcode
    \deprecatedEnd

    <b> Usage:</b>

    <b>\#include</b> \<vigra/seededregiongrowing.hxx\><br>
    Namespace: vigra

    Example: implementation of the voronoi tesselation

    \code
    MultiArray<2, int>      points(w,h);
    MultiArray<2, float>    dist(x,y);

    int max_region_label = 100;

    // throw in some random points:
    for(int i = 1; i <= max_region_label; ++i)
           points(w * rand() / RAND_MAX , h * rand() / RAND_MAX) = i;

    // calculate Euclidean distance transform
    distanceTransform(points, dist, 2);

    // init statistics functor
    ArrayOfRegionStatistics<SeedRgDirectValueFunctor<float> >  stats(max_region_label);

    // find voronoi region of each point (the point image is overwritten with the 
    // voronoi region labels)
    seededRegionGrowing(dist, points, points, stats);
    \endcode

    \deprecatedUsage{seededRegionGrowing}
    \code
    vigra::BImage points(w,h);
    vigra::FImage dist(x,y);

    // empty edge image
    points = 0;
    dist = 0;

    int max_region_label = 100;

    // throw in some random points:
    for(int i = 1; i <= max_region_label; ++i)
           points(w * rand() / RAND_MAX , h * rand() / RAND_MAX) = i;

    // calculate Euclidean distance transform
    vigra::distanceTransform(srcImageRange(points), destImage(dist), 2);

    // init statistics functor
    vigra::ArrayOfRegionStatistics<vigra::SeedRgDirectValueFunctor<float> >
                                              stats(max_region_label);

    // find voronoi region of each point
    vigra:: seededRegionGrowing(srcImageRange(dist), srcImage(points),
                               destImage(points), stats);
    \endcode
    <b> Required Interface:</b>
    \code
    SrcIterator src_upperleft, src_lowerright;
    SeedImageIterator seed_upperleft;
    DestIterator dest_upperleft;

    SrcAccessor src_accessor;
    SeedAccessor seed_accessor;
    DestAccessor dest_accessor;

    RegionStatisticsArray stats;

    // calculate costs
    RegionStatisticsArray::value_type::cost_type cost =
        stats[seed_accessor(seed_upperleft)].cost(src_accessor(src_upperleft));

    // compare costs
    cost < cost;

    // update statistics
    stats[seed_accessor(seed_upperleft)](src_accessor(src_upperleft));

    // set result
    dest_accessor.set(seed_accessor(seed_upperleft), dest_upperleft);
    \endcode
    \deprecatedEnd

    Further requirements are determined by the <TT>RegionStatisticsArray</TT>.
*/
doxygen_overloaded_function(template <...> void seededRegionGrowing)

template <class SrcIterator, class SrcAccessor,
          class SeedImageIterator, class SeedAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray, class Neighborhood>
typename SeedAccessor::value_type
seededRegionGrowing(SrcIterator srcul,
                    SrcIterator srclr, SrcAccessor as,
                    SeedImageIterator seedsul, SeedAccessor aseeds,
                    DestIterator destul, DestAccessor ad,
                    RegionStatisticsArray & stats,
                    SRGType srgType,
                    Neighborhood,
                    double max_cost)
{
    int w = srclr.x - srcul.x;
    int h = srclr.y - srcul.y;
    int count = 0;

    SrcIterator isy = srcul, isx = srcul;  // iterators for the src image

    typedef typename SeedAccessor::value_type LabelType;
    typedef typename RegionStatisticsArray::value_type RegionStatistics;
    typedef typename RegionStatistics::cost_type CostType;
    typedef detail::SeedRgPixel<CostType> Pixel;

    typename Pixel::Allocator allocator;

    typedef std::priority_queue<Pixel *, std::vector<Pixel *>,
                                typename Pixel::Compare>  SeedRgPixelHeap;

    // copy seed image in an image with border
    IImage regions(w+2, h+2);
    IImage::Iterator ir = regions.upperLeft() + Diff2D(1,1);
    IImage::Iterator iry, irx;

    initImageBorder(destImageRange(regions), 1, SRGWatershedLabel);
    copyImage(seedsul, seedsul+Diff2D(w,h), aseeds, ir, regions.accessor());

    // allocate and init memory for the results

    SeedRgPixelHeap pheap;
    int cneighbor, maxRegionLabel = 0;
    
    typedef typename Neighborhood::Direction Direction;
    int directionCount = Neighborhood::DirectionCount;
    
    Point2D pos(0,0);
    for(isy=srcul, iry=ir, pos.y=0; pos.y<h;
        ++pos.y, ++isy.y, ++iry.y)
    {
        for(isx=isy, irx=iry, pos.x=0; pos.x<w;
            ++pos.x, ++isx.x, ++irx.x)
        {
            if(*irx == 0)
            {
                // find candidate pixels for growing and fill heap
                for(int i=0; i<directionCount; i++)
                {
                    // cneighbor = irx[dist[i]];
                    cneighbor = irx[Neighborhood::diff((Direction)i)];
                    if(cneighbor > 0)
                    {
                        CostType cost = stats[cneighbor].cost(as(isx));

                        Pixel * pixel =
                            allocator.create(pos, pos+Neighborhood::diff((Direction)i), cost, count++, cneighbor);
                        pheap.push(pixel);
                    }
                }
            }
            else
            {
                vigra_precondition((LabelType)*irx <= stats.maxRegionLabel(),
                    "seededRegionGrowing(): Largest label exceeds size of RegionStatisticsArray.");
                if(maxRegionLabel < *irx)
                    maxRegionLabel = *irx;
            }
        }
    }
    
    // perform region growing
    while(pheap.size() != 0)
    {
        Pixel * pixel = pheap.top();
        pheap.pop();

        Point2D pos = pixel->location_;
        Point2D nearest = pixel->nearest_;
        int lab = pixel->label_;
        CostType cost = pixel->cost_;

        allocator.dismiss(pixel);

        if((srgType & StopAtThreshold) != 0 && cost > max_cost)
            break;

        irx = ir + pos;
        isx = srcul + pos;

        if(*irx) // already labelled region / watershed?
            continue;

        if((srgType & KeepContours) != 0)
        {
            for(int i=0; i<directionCount; i++)
            {
                cneighbor = irx[Neighborhood::diff((Direction)i)];
                if((cneighbor>0) && (cneighbor != lab))
                {
                    lab = SRGWatershedLabel;
                    break;
                }
            }
        }

        *irx = lab;

        if((srgType & KeepContours) == 0 || lab > 0)
        {
            // update statistics
            stats[*irx](as(isx));

            // search neighborhood
            // second pass: find new candidate pixels
            for(int i=0; i<directionCount; i++)
            {
                if(irx[Neighborhood::diff((Direction)i)] == 0)
                {
                    CostType cost = stats[lab].cost(as(isx, Neighborhood::diff((Direction)i)));

                    Pixel * new_pixel =
                        allocator.create(pos+Neighborhood::diff((Direction)i), nearest, cost, count++, lab);
                    pheap.push(new_pixel);
                }
            }
        }
    }
    
    // free temporary memory
    while(pheap.size() != 0)
    {
        allocator.dismiss(pheap.top());
        pheap.pop();
    }

    // write result
    transformImage(ir, ir+Point2D(w,h), regions.accessor(), destul, ad,
                   detail::UnlabelWatersheds());

    return (LabelType)maxRegionLabel;
}

template <class SrcIterator, class SrcAccessor,
          class SeedImageIterator, class SeedAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray, class Neighborhood>
inline typename SeedAccessor::value_type
seededRegionGrowing(SrcIterator srcul,
                    SrcIterator srclr, SrcAccessor as,
                    SeedImageIterator seedsul, SeedAccessor aseeds,
                    DestIterator destul, DestAccessor ad,
                    RegionStatisticsArray & stats,
                    SRGType srgType,
                    Neighborhood n)
{
    return seededRegionGrowing(srcul, srclr, as,
                                seedsul, aseeds,
                                destul, ad,
                                stats, srgType, n, NumericTraits<double>::max());
}



template <class SrcIterator, class SrcAccessor,
          class SeedImageIterator, class SeedAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray>
inline typename SeedAccessor::value_type
seededRegionGrowing(SrcIterator srcul,
                    SrcIterator srclr, SrcAccessor as,
                    SeedImageIterator seedsul, SeedAccessor aseeds,
                    DestIterator destul, DestAccessor ad,
                    RegionStatisticsArray & stats,
                    SRGType srgType)
{
    return seededRegionGrowing(srcul, srclr, as,
                                seedsul, aseeds,
                                destul, ad,
                                stats, srgType, FourNeighborCode());
}

template <class SrcIterator, class SrcAccessor,
          class SeedImageIterator, class SeedAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray>
inline typename SeedAccessor::value_type
seededRegionGrowing(SrcIterator srcul,
                    SrcIterator srclr, SrcAccessor as,
                    SeedImageIterator seedsul, SeedAccessor aseeds,
                    DestIterator destul, DestAccessor ad,
                    RegionStatisticsArray & stats)
{
    return seededRegionGrowing(srcul, srclr, as,
                                seedsul, aseeds,
                                destul, ad,
                                stats, CompleteGrow);
}

template <class SrcIterator, class SrcAccessor,
          class SeedImageIterator, class SeedAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray, class Neighborhood>
inline typename SeedAccessor::value_type
seededRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> img1,
                    pair<SeedImageIterator, SeedAccessor> img3,
                    pair<DestIterator, DestAccessor> img4,
                    RegionStatisticsArray & stats,
                    SRGType srgType, 
                    Neighborhood n,
                    double max_cost = NumericTraits<double>::max())
{
    return seededRegionGrowing(img1.first, img1.second, img1.third,
                                img3.first, img3.second,
                                img4.first, img4.second,
                                stats, srgType, n, max_cost);
}

template <class SrcIterator, class SrcAccessor,
          class SeedImageIterator, class SeedAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray>
inline typename SeedAccessor::value_type
seededRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> img1,
                    pair<SeedImageIterator, SeedAccessor> img3,
                    pair<DestIterator, DestAccessor> img4,
                    RegionStatisticsArray & stats,
                    SRGType srgType)
{
    return seededRegionGrowing(img1.first, img1.second, img1.third,
                                img3.first, img3.second,
                                img4.first, img4.second,
                                stats, srgType, FourNeighborCode());
}

template <class SrcIterator, class SrcAccessor,
          class SeedImageIterator, class SeedAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray>
inline typename SeedAccessor::value_type
seededRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> img1,
                    pair<SeedImageIterator, SeedAccessor> img3,
                    pair<DestIterator, DestAccessor> img4,
                    RegionStatisticsArray & stats)
{
    return seededRegionGrowing(img1.first, img1.second, img1.third,
                            img3.first, img3.second,
                            img4.first, img4.second,
                            stats, CompleteGrow);
}

template <class T1, class S1,
          class TS, class AS,
          class T2, class S2,
          class RegionStatisticsArray, class Neighborhood>
inline TS
seededRegionGrowing(MultiArrayView<2, T1, S1> const & img1,
                    MultiArrayView<2, TS, AS> const & img3,
                    MultiArrayView<2, T2, S2> img4,
                    RegionStatisticsArray & stats,
                    SRGType srgType, 
                    Neighborhood n,
                    double max_cost = NumericTraits<double>::max())
{
    vigra_precondition(img1.shape() == img3.shape(),
        "seededRegionGrowing(): shape mismatch between input and output.");
    return seededRegionGrowing(srcImageRange(img1),
                               srcImage(img3),
                               destImage(img4),
                               stats, srgType, n, max_cost);
}

template <class T1, class S1,
          class TS, class AS,
          class T2, class S2,
          class RegionStatisticsArray>
inline TS
seededRegionGrowing(MultiArrayView<2, T1, S1> const & img1,
                    MultiArrayView<2, TS, AS> const & img3,
                    MultiArrayView<2, T2, S2> img4,
                    RegionStatisticsArray & stats,
                    SRGType srgType)
{
    vigra_precondition(img1.shape() == img3.shape(),
        "seededRegionGrowing(): shape mismatch between input and output.");
    return seededRegionGrowing(srcImageRange(img1),
                               srcImage(img3),
                               destImage(img4),
                               stats, srgType, FourNeighborCode());
}

template <class T1, class S1,
          class TS, class AS,
          class T2, class S2,
          class RegionStatisticsArray>
inline TS
seededRegionGrowing(MultiArrayView<2, T1, S1> const & img1,
                    MultiArrayView<2, TS, AS> const & img3,
                    MultiArrayView<2, T2, S2> img4,
                    RegionStatisticsArray & stats)
{
    vigra_precondition(img1.shape() == img3.shape(),
        "seededRegionGrowing(): shape mismatch between input and output.");
    return seededRegionGrowing(srcImageRange(img1),
                               srcImage(img3),
                               destImage(img4),
                               stats, CompleteGrow);
}

/********************************************************/
/*                                                      */
/*                fastSeededRegionGrowing               */
/*                                                      */
/********************************************************/

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray, class Neighborhood>
typename DestAccessor::value_type 
fastSeededRegionGrowing(SrcIterator srcul, SrcIterator srclr, SrcAccessor as,
                        DestIterator destul, DestAccessor ad,
                        RegionStatisticsArray & stats,
                        SRGType srgType,
                        Neighborhood,
                        double max_cost,
                        std::ptrdiff_t bucket_count = 256)
{
    typedef typename DestAccessor::value_type LabelType;

    vigra_precondition((srgType & KeepContours) == 0,
       "fastSeededRegionGrowing(): the turbo algorithm doesn't support 'KeepContours', sorry.");
    
    int w = srclr.x - srcul.x;
    int h = srclr.y - srcul.y;

    SrcIterator isy = srcul, isx = srcul;  // iterators for the src image
    DestIterator idy = destul, idx = destul;  // iterators for the dest image

    BucketQueue<Point2D, true> pqueue(bucket_count);
    LabelType maxRegionLabel = 0;
    
    Point2D pos(0,0);
    for(isy=srcul, idy = destul, pos.y=0; pos.y<h; ++pos.y, ++isy.y, ++idy.y)
    {
        for(isx=isy, idx=idy, pos.x=0; pos.x<w; ++pos.x, ++isx.x, ++idx.x)
        {
            LabelType label = ad(idx);
            if(label != 0)
            {
                vigra_precondition(label <= stats.maxRegionLabel(),
                    "fastSeededRegionGrowing(): Largest label exceeds size of RegionStatisticsArray.");

                if(maxRegionLabel < label)
                    maxRegionLabel = label;
                
                AtImageBorder atBorder = isAtImageBorder(pos.x, pos.y, w, h);
                if(atBorder == NotAtBorder)
                {
                    NeighborhoodCirculator<DestIterator, Neighborhood> c(idx), cend(c);
                    do
                    {
                        if(ad(c) == 0)
                        {
                            std::ptrdiff_t priority = (std::ptrdiff_t)stats[label].cost(as(isx));
                            pqueue.push(pos, priority);
                            break;
                        }
                    }
                    while(++c != cend);
                }
                else
                {
                    RestrictedNeighborhoodCirculator<DestIterator, Neighborhood> 
                                                            c(idx, atBorder), cend(c);
                    do
                    {
                        if(ad(c) == 0)
                        {
                            std::ptrdiff_t priority = (std::ptrdiff_t)stats[label].cost(as(isx));
                            pqueue.push(pos, priority);
                            break;
                        }
                    }
                    while(++c != cend);
                }
            }
        }
    }
    
    // perform region growing
    while(!pqueue.empty())
    {
        Point2D pos = pqueue.top();
        std::ptrdiff_t cost = pqueue.topPriority();
        pqueue.pop();
        
        if((srgType & StopAtThreshold) != 0 && cost > max_cost)
            break;

        idx = destul + pos;
        isx = srcul + pos;
        
        std::ptrdiff_t label = ad(idx);

        AtImageBorder atBorder = isAtImageBorder(pos.x, pos.y, w, h);
        if(atBorder == NotAtBorder)
        {
            NeighborhoodCirculator<DestIterator, Neighborhood> c(idx), cend(c);
            
            do
            {
                std::ptrdiff_t nlabel = ad(c);
                if(nlabel == 0)
                {
                    ad.set(label, idx, c.diff());
                    std::ptrdiff_t priority = 
                           std::max((std::ptrdiff_t)stats[label].cost(as(isx, c.diff())), cost);
                    pqueue.push(pos+c.diff(), priority);
                }
            }
            while(++c != cend);
        }
        else
        {
            RestrictedNeighborhoodCirculator<DestIterator, Neighborhood> 
                                                    c(idx, atBorder), cend(c);
            do
            {
                std::ptrdiff_t nlabel = ad(c);
                if(nlabel == 0)
                {
                    ad.set(label, idx, c.diff());
                    std::ptrdiff_t priority = 
                           std::max((std::ptrdiff_t)stats[label].cost(as(isx, c.diff())), cost);
                    pqueue.push(pos+c.diff(), priority);
                }
            }
            while(++c != cend);
        }
    }
    
    return maxRegionLabel;
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray, class Neighborhood>
inline typename DestAccessor::value_type 
fastSeededRegionGrowing(SrcIterator srcul, SrcIterator srclr, SrcAccessor as,
                        DestIterator destul, DestAccessor ad,
                        RegionStatisticsArray & stats,
                        SRGType srgType,
                        Neighborhood n)
{
    return fastSeededRegionGrowing(srcul, srclr, as,
                                    destul, ad,
                                    stats, srgType, n, NumericTraits<double>::max(), 256);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray>
inline typename DestAccessor::value_type 
fastSeededRegionGrowing(SrcIterator srcul, SrcIterator srclr, SrcAccessor as,
                        DestIterator destul, DestAccessor ad,
                        RegionStatisticsArray & stats,
                        SRGType srgType)
{
    return fastSeededRegionGrowing(srcul, srclr, as,
                                    destul, ad,
                                    stats, srgType, FourNeighborCode());
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray>
inline typename DestAccessor::value_type 
fastSeededRegionGrowing(SrcIterator srcul, SrcIterator srclr, SrcAccessor as,
                        DestIterator destul, DestAccessor ad,
                        RegionStatisticsArray & stats)
{
    return fastSeededRegionGrowing(srcul, srclr, as,
                                    destul, ad,
                                    stats, CompleteGrow);
}

template <class SrcIterator, class SrcAccessor,
          class DestIterator, class DestAccessor,
          class RegionStatisticsArray, class Neighborhood>
inline typename DestAccessor::value_type 
fastSeededRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> src,
                        pair<DestIterator, DestAccessor> dest,
                        RegionStatisticsArray & stats,
                        SRGType srgType, 
                        Neighborhood n,
                        double max_cost,
                        std::ptrdiff_t bucket_count = 256)
{
    return fastSeededRegionGrowing(src.first, src.second, src.third,
                                   dest.first, dest.second,
                                   stats, srgType, n, max_cost, bucket_count);
}

template <class T1, class S1,
          class T2, class S2,
          class RegionStatisticsArray, class Neighborhood>
inline T2
fastSeededRegionGrowing(MultiArrayView<2, T1, S1> const & src,
                        MultiArrayView<2, T2, S2> dest,
                        RegionStatisticsArray & stats,
                        SRGType srgType, 
                        Neighborhood n,
                        double max_cost,
                        std::ptrdiff_t bucket_count = 256)
{
    vigra_precondition(src.shape() == dest.shape(),
        "fastSeededRegionGrowing(): shape mismatch between input and output.");
    return fastSeededRegionGrowing(srcImageRange(src),
                                   destImage(dest),
                                   stats, srgType, n, max_cost, bucket_count);
}

/********************************************************/
/*                                                      */
/*               SeedRgDirectValueFunctor               */
/*                                                      */
/********************************************************/

/** \brief Statistics functor to be used for seeded region growing.

    This functor can be used if the cost of a candidate during
    \ref seededRegionGrowing() is equal to the feature value of that
    candidate and does not depend on properties of the region it is going to
    be merged with.

    <b>\#include</b> \<vigra/seededregiongrowing.hxx\><br>
    Namespace: vigra
*/
template <class Value>
class SeedRgDirectValueFunctor
{
  public:
        /** the functor's argument type
        */
    typedef Value argument_type;

        /** the functor's result type (unused, only necessary for
            use of SeedRgDirectValueFunctor in \ref vigra::ArrayOfRegionStatistics
        */
    typedef Value result_type;

        /** \deprecated use argument_type
        */
    typedef Value value_type;

        /** the return type of the cost() function
        */
    typedef Value cost_type;

        /** Do nothing (since we need not update region statistics).
        */
    void operator()(argument_type const &) const {}

        /** Return argument (since cost is identical to feature value)
        */
    cost_type const & cost(argument_type const & v) const
    {
        return v;
    }
};

//@}

} // namespace vigra

#endif // VIGRA_SEEDEDREGIONGROWING_HXX