/usr/include/vigra/slic.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | /************************************************************************/
/* */
/* Copyright 2012-2013 by Ullrich Koethe and Thorsten Beier */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_SLIC_HXX
#define VIGRA_SLIC_HXX
#include "multi_array.hxx"
#include "multi_convolution.hxx"
#include "multi_labeling.hxx"
#include "numerictraits.hxx"
#include "accumulator.hxx"
#include "array_vector.hxx"
namespace vigra {
/** \addtogroup SeededRegionGrowing
*/
//@{
/********************************************************/
/* */
/* generateSlicSeeds */
/* */
/********************************************************/
/** \brief Generate seeds for SLIC superpixel computation in arbitrary dimensions.
The source array \a src must be a scalar boundary indicator such as the gradient
magnitude. Seeds are initially placed on a regular Cartesian grid with spacing
\a seedDist und then moved to the point with smallest boundary indicator within
a search region of radius \a searchRadius around the initial position. The resulting
points are then marked in the output array \a seeds by consecutive labels.
The function returns the number of selected seeds, which equals the largest seed label
because labeling starts at 1.
<b> Declaration:</b>
use arbitrary-dimensional arrays:
\code
namespace vigra {
template <unsigned int N, class T, class S1,
class Label, class S2>
unsigned int
generateSlicSeeds(MultiArrayView<N, T, S1> const & src,
MultiArrayView<N, Label, S2> seeds,
unsigned int seedDist,
unsigned int searchRadius = 1);
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<vigra/slic.hxx\><br>
Namespace: vigra
\code
MultiArray<2, RGBValue<float> > src(Shape2(w, h));
... // fill src image
// transform image to Lab color space
transformImage(srcImageRange(src), destImage(src), RGBPrime2LabFunctor<float>());
// compute image gradient magnitude at scale 1.0 as a boundary indicator
MultiArray<2, float> grad(src.shape());
gaussianGradientMagnitude(srcImageRange(src), destImage(grad), 1.0);
MultiArray<2, unsigned int> seeds(src.shape());
int seedDistance = 15;
// place seeds on a grid with distance 15, but then move it to the lowest gradient
// poistion in a 3x3 window
generateSlicSeeds(grad, seeds, seedDistance);
\endcode
For more details and examples see slicSuperpixels().
*/
doxygen_overloaded_function(template <...> unsigned int generateSlicSeeds)
template <unsigned int N, class T, class S1,
class Label, class S2>
unsigned int
generateSlicSeeds(MultiArrayView<N, T, S1> const & boundaryIndicatorImage,
MultiArrayView<N, Label, S2> seeds,
unsigned int seedDist,
unsigned int searchRadius = 1)
{
typedef typename MultiArrayShape<N>::type Shape;
seeds.init(0);
Shape shape(boundaryIndicatorImage.shape()),
seedShape(floor(shape / double(seedDist))),
offset((shape - (seedShape - Shape(1))*seedDist) / 2);
unsigned int label = 0;
MultiCoordinateIterator<N> iter(seedShape),
end = iter.getEndIterator();
for(; iter != end; ++iter)
{
// define search window around current seed center
Shape center = (*iter)*seedDist + offset;
Shape startCoord = max(Shape(0), center-Shape(searchRadius));
Shape endCoord = min(center+Shape(searchRadius+1), shape);
// find the coordinate of minimum boundary indicator in window
using namespace acc;
AccumulatorChain<CoupledArrays<N, T>,
Select<WeightArg<1>, Coord<ArgMinWeight> > > a;
extractFeatures(boundaryIndicatorImage.subarray(startCoord, endCoord), a);
// add seed at minimum position, if not already occupied
Shape minCoord = get<Coord<ArgMinWeight> >(a) + startCoord;
if(seeds[minCoord] == 0)
seeds[minCoord] = ++label;
}
return label;
}
/** \brief Options object for slicSuperpixels().
<b> Usage:</b>
see slicSuperpixels() for detailed examples.
*/
struct SlicOptions
{
/** \brief Create options object with default settings.
Defaults are: perform 10 iterations, determine a size limit for superpixels automatically.
*/
SlicOptions()
: iter(10),
sizeLimit(0)
{}
/** \brief Number of iterations.
Default: 10
*/
SlicOptions & iterations(unsigned int i)
{
iter = i;
return *this;
}
/** \brief Minimum superpixel size.
If you set this to 1, no size filtering will be performed.
Default: 0 (determine size limit automatically as <tt>average size / 4</tt>)
*/
SlicOptions & minSize(unsigned int s)
{
sizeLimit = s;
return *this;
}
unsigned int iter;
unsigned int sizeLimit;
};
namespace detail {
template <unsigned int N, class T, class Label>
class Slic
{
public:
//
typedef MultiArrayView<N, T> DataImageType;
typedef MultiArrayView<N, Label> LabelImageType;
typedef typename DataImageType::difference_type ShapeType;
typedef typename PromoteTraits<
typename NormTraits<T>::NormType,
typename NormTraits<MultiArrayIndex>::NormType
>::Promote DistanceType;
Slic(DataImageType dataImage,
LabelImageType labelImage,
DistanceType intensityScaling,
int maxRadius,
SlicOptions const & options = SlicOptions());
unsigned int execute();
private:
void updateAssigments();
unsigned int postProcessing();
typedef MultiArray<N,DistanceType> DistanceImageType;
ShapeType shape_;
DataImageType dataImage_;
LabelImageType labelImage_;
DistanceImageType distance_;
int max_radius_;
DistanceType normalization_;
SlicOptions options_;
typedef acc::Select<acc::DataArg<1>, acc::LabelArg<2>, acc::Mean, acc::RegionCenter> Statistics;
typedef acc::AccumulatorChainArray<CoupledArrays<N, T, Label>, Statistics> RegionFeatures;
RegionFeatures clusters_;
};
template <unsigned int N, class T, class Label>
Slic<N, T, Label>::Slic(
DataImageType dataImage,
LabelImageType labelImage,
DistanceType intensityScaling,
int maxRadius,
SlicOptions const & options)
: shape_(dataImage.shape()),
dataImage_(dataImage),
labelImage_(labelImage),
distance_(shape_),
max_radius_(maxRadius),
normalization_(sq(intensityScaling) / sq(max_radius_)),
options_(options)
{
clusters_.ignoreLabel(0);
}
template <unsigned int N, class T, class Label>
unsigned int Slic<N, T, Label>::execute()
{
// Do SLIC
for(size_t i=0; i<options_.iter; ++i)
{
// update mean for each cluster
clusters_.reset();
extractFeatures(dataImage_, labelImage_, clusters_);
// update which pixels get assigned to which cluster
updateAssigments();
}
return postProcessing();
}
template <unsigned int N, class T, class Label>
void
Slic<N, T, Label>::updateAssigments()
{
using namespace acc;
distance_.init(NumericTraits<DistanceType>::max());
for(unsigned int c=1; c<=clusters_.maxRegionLabel(); ++c)
{
if(get<Count>(clusters_, c) == 0) // label doesn't exist
continue;
typedef typename LookupTag<RegionCenter, RegionFeatures>::value_type CenterType;
CenterType center = get<RegionCenter>(clusters_, c);
// get ROI limits around region center
ShapeType pixelCenter(round(center)),
startCoord(max(ShapeType(0), pixelCenter - ShapeType(max_radius_))),
endCoord(min(shape_, pixelCenter + ShapeType(max_radius_+1)));
center -= startCoord; // need center relative to ROI
// setup iterators for ROI
typedef typename CoupledArrays<N, T, Label, DistanceType>::IteratorType Iterator;
Iterator iter = createCoupledIterator(dataImage_, labelImage_, distance_).
restrictToSubarray(startCoord, endCoord),
end = iter.getEndIterator();
// only pixels within the ROI can be assigned to a cluster
for(; iter != end; ++iter)
{
// compute distance between cluster center and pixel
DistanceType spatialDist = squaredNorm(center-iter.point());
DistanceType colorDist = squaredNorm(get<Mean>(clusters_, c)-iter.template get<1>());
DistanceType dist = colorDist + normalization_*spatialDist;
// update label?
if(dist < iter.template get<3>())
{
iter.template get<2>() = static_cast<Label>(c);
iter.template get<3>() = dist;
}
}
}
}
template <unsigned int N, class T, class Label>
unsigned int
Slic<N, T, Label>::postProcessing()
{
// get rid of regions below a size limit
MultiArray<N,Label> tmpLabelImage(labelImage_);
unsigned int maxLabel = labelMultiArray(tmpLabelImage, labelImage_, DirectNeighborhood);
unsigned int sizeLimit = options_.sizeLimit == 0
? (unsigned int)(0.25 * labelImage_.size() / maxLabel)
: options_.sizeLimit;
if(sizeLimit == 1)
return maxLabel;
// determine region size
using namespace acc;
AccumulatorChainArray<CoupledArrays<N, Label>, Select<LabelArg<1>, Count> > sizes;
extractFeatures(labelImage_, sizes);
typedef GridGraph<N, undirected_tag> Graph;
Graph graph(labelImage_.shape(), DirectNeighborhood);
typedef typename Graph::NodeIt graph_scanner;
typedef typename Graph::OutBackArcIt neighbor_iterator;
ArrayVector<Label> regions(maxLabel+1);
// make sure that all regions exceed the sizeLimit
for (graph_scanner node(graph); node != lemon::INVALID; ++node)
{
Label label = labelImage_[*node];
if(regions[label] > 0)
continue; // already processed
regions[label] = label;
if(get<Count>(sizes, label) < sizeLimit)
{
// region is too small => merge into an existing neighbor
for (neighbor_iterator arc(graph, node); arc != lemon::INVALID; ++arc)
{
regions[label] = regions[labelImage_[graph.target(*arc)]];
break;
}
}
}
// make labels contiguous after possible merging
maxLabel = 0;
for(unsigned int i=1; i<=maxLabel; ++i)
{
if(regions[i] == i)
{
regions[i] = (Label)++maxLabel;
}
else
{
regions[i] = regions[regions[i]];
}
}
// update labels
for (graph_scanner node(graph); node != lemon::INVALID; ++node)
{
labelImage_[*node] = regions[labelImage_[*node]];
}
return maxLabel;
}
} // namespace detail
/** \brief Compute SLIC superpixels in arbitrary dimensions.
This function implements the algorithm described in
R. Achanta et al.: <em>"SLIC Superpixels Compared to State-of-the-Art
Superpixel Methods"</em>, IEEE Trans. Patt. Analysis Mach. Intell. 34(11):2274-2281, 2012
The value type <tt>T</tt> of the source array \a src must provide the necessary functionality
to compute averages and squared distances (i.e. it must fulfill the requirements of a
\ref LinearSpace and support squaredNorm(T const &)). This is true for all scalar types as well as
\ref vigra::TinyVector and \ref vigra::RGBValue. The output array \a labels will be filled
with labels designating membership of each point in one of the superpixel regions.
The output array can optionally contain seeds (which will be overwritten by the output)
to give you full control over seed placement. If \a labels is empty, seeds will be created
automatically by an internal call to generateSlicSeeds().
The parameter \a seedDistance specifies the radius of the window around each seed (or, more
precisely, around the present regions centers) where the algorithm looks for potential members
of the corresponding superpixel. It thus places an upper limit on the superpixel size. When seeds
are computed automatically, this parameter also determines the grid spacing for seed placement.
The parameter \a intensityScaling is used to normalize (i.e. divide) the color/intensity difference
before it is compared with the spatial distance. This corresponds to parameter <i>m</i> in equation
(2) of the paper.
The options object can be used to specify the number of iterations (<tt>SlicOptions::iterations()</tt>)
and an explicit minimal superpixel size (<tt>SlicOptions::minSize()</tt>). By default, the algorithm
merges all regions that are smaller than 1/4 of the average superpixel size.
The function returns the number of superpixels, which equals the largest label
because labeling starts at 1.
<b> Declaration:</b>
use arbitrary-dimensional arrays:
\code
namespace vigra {
template <unsigned int N, class T, class S1,
class Label, class S2,
class DistanceType>
unsigned int
slicSuperpixels(MultiArrayView<N, T, S1> const & src,
MultiArrayView<N, Label, S2> labels,
DistanceType intensityScaling,
unsigned int seedDistance,
SlicOptions const & options = SlicOptions());
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<vigra/slic.hxx\><br>
Namespace: vigra
\code
MultiArray<2, RGBValue<float> > src(Shape2(w, h));
... // fill src image
// transform image to Lab color space
transformMultiArray(srcMultiArrayRange(src), destMultiArray(src), RGBPrime2LabFunctor<float>());
MultiArray<2, unsigned int> labels(src.shape());
int seedDistance = 15;
double intensityScaling = 20.0;
// compute seeds automatically, perform 40 iterations, and scale intensity differences
// down to 1/20 before comparing with spatial distances
slicSuperpixels(src, labels, intensityScaling, seedDistance, SlicOptions().iterations(40));
\endcode
This works for arbitrary-dimensional arrays.
*/
doxygen_overloaded_function(template <...> unsigned int slicSuperpixels)
template <unsigned int N, class T, class S1,
class Label, class S2,
class DistanceType>
unsigned int
slicSuperpixels(MultiArrayView<N, T, S1> const & src,
MultiArrayView<N, Label, S2> labels,
DistanceType intensityScaling,
unsigned int seedDistance,
SlicOptions const & options = SlicOptions())
{
if(!labels.any())
{
typedef typename NormTraits<T>::NormType TmpType;
MultiArray<N, TmpType> grad(src.shape());
gaussianGradientMagnitude(src, grad, 1.0);
generateSlicSeeds(grad, labels, seedDistance);
}
return detail::Slic<N, T, Label>(src, labels, intensityScaling, seedDistance, options).execute();
}
//@}
} // namespace vigra
#endif // VIGRA_SLIC_HXX
|