/usr/include/vigra/stdconvolution.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 | /************************************************************************/
/* */
/* Copyright 1998-2002 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_STDCONVOLUTION_HXX
#define VIGRA_STDCONVOLUTION_HXX
#include <cmath>
#include "stdimage.hxx"
#include "bordertreatment.hxx"
#include "separableconvolution.hxx"
#include "utilities.hxx"
#include "sized_int.hxx"
#include "multi_iterator.hxx"
#include "multi_shape.hxx"
namespace vigra {
template <class ARITHTYPE>
class Kernel2D;
/** \addtogroup CommonConvolutionFilters
*/
//@{
// documentation is in convolution.hxx
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class KernelIterator, class KernelAccessor>
void convolveImage(SrcIterator src_ul, SrcIterator src_lr, SrcAccessor src_acc,
DestIterator dest_ul, DestAccessor dest_acc,
KernelIterator ki, KernelAccessor ak,
Diff2D kul, Diff2D klr, BorderTreatmentMode border)
{
vigra_precondition((border == BORDER_TREATMENT_CLIP ||
border == BORDER_TREATMENT_AVOID ||
border == BORDER_TREATMENT_REFLECT ||
border == BORDER_TREATMENT_REPEAT ||
border == BORDER_TREATMENT_WRAP ||
border == BORDER_TREATMENT_ZEROPAD),
"convolveImage():\n"
" Border treatment must be one of follow treatments:\n"
" - BORDER_TREATMENT_CLIP\n"
" - BORDER_TREATMENT_AVOID\n"
" - BORDER_TREATMENT_REFLECT\n"
" - BORDER_TREATMENT_REPEAT\n"
" - BORDER_TREATMENT_WRAP\n"
" - BORDER_TREATMENT_ZEROPAD\n");
vigra_precondition(kul.x <= 0 && kul.y <= 0,
"convolveImage(): coordinates of "
"kernel's upper left must be <= 0.");
vigra_precondition(klr.x >= 0 && klr.y >= 0,
"convolveImage(): coordinates of "
"kernel's lower right must be >= 0.");
// use traits to determine SumType as to prevent possible overflow
typedef typename
PromoteTraits<typename SrcAccessor::value_type,
typename KernelAccessor::value_type>::Promote SumType;
typedef typename
NumericTraits<typename KernelAccessor::value_type>::RealPromote KernelSumType;
typedef typename DestAccessor::value_type DestType;
// calculate width and height of the image
int w = src_lr.x - src_ul.x;
int h = src_lr.y - src_ul.y;
// calculate width and height of the kernel
int kernel_width = klr.x - kul.x + 1;
int kernel_height = klr.y - kul.y + 1;
vigra_precondition(w >= std::max(klr.x, -kul.x) + 1 && h >= std::max(klr.y, -kul.y) + 1,
"convolveImage(): kernel larger than image.");
KernelSumType norm = KernelSumType();
if(border == BORDER_TREATMENT_CLIP)
{
// calculate the sum of the kernel elements for renormalization
KernelIterator yk = ki + klr;
// determine sum within kernel (= norm)
for(int y = 0; y < kernel_height; ++y, --yk.y)
{
KernelIterator xk = yk;
for(int x = 0; x < kernel_width; ++x, --xk.x)
{
norm += ak(xk);
}
}
vigra_precondition(norm != NumericTraits<KernelSumType>::zero(),
"convolveImage(): Cannot use BORDER_TREATMENT_CLIP with a DC-free kernel");
}
DestIterator yd = dest_ul;
SrcIterator ys = src_ul;
// iterate over the interior part
for(int y=0; y<h; ++y, ++ys.y, ++yd.y)
{
// create x iterators
DestIterator xd(yd);
SrcIterator xs(ys);
for(int x=0; x < w; ++x, ++xs.x, ++xd.x)
{
// init the sum
SumType sum = NumericTraits<SumType>::zero();
KernelIterator ykernel = ki + klr;
if(x >= klr.x && y >= klr.y && x < w + kul.x && y < h + kul.y)
{
// kernel is entirely inside the image
SrcIterator yys = xs - klr;
SrcIterator yyend = xs - kul;
for(; yys.y <= yyend.y; ++yys.y, --ykernel.y)
{
typename SrcIterator::row_iterator xxs = yys.rowIterator();
typename SrcIterator::row_iterator xxe = xxs + kernel_width;
typename KernelIterator::row_iterator xkernel= ykernel.rowIterator();
for(; xxs < xxe; ++xxs, --xkernel)
{
sum += ak(xkernel) * src_acc(xxs);
}
}
}
else if(border == BORDER_TREATMENT_REPEAT)
{
Diff2D diff;
for(int yk = klr.y; yk >= kul.y; --yk, --ykernel.y)
{
diff.y = std::min(std::max(y - yk, 0), h-1);
typename KernelIterator::row_iterator xkernel = ykernel.rowIterator();
for(int xk = klr.x; xk >= kul.x; --xk, --xkernel)
{
diff.x = std::min(std::max(x - xk, 0), w-1);
sum += ak(xkernel) * src_acc(src_ul, diff);
}
}
}
else if(border == BORDER_TREATMENT_REFLECT)
{
Diff2D diff;
for(int yk = klr.y; yk >= kul.y; --yk , --ykernel.y)
{
diff.y = abs(y - yk);
if(diff.y >= h)
diff.y = 2*h - 2 - diff.y;
typename KernelIterator::row_iterator xkernel = ykernel.rowIterator();
for(int xk = klr.x; xk >= kul.x; --xk, --xkernel)
{
diff.x = abs(x - xk);
if(diff.x >= w)
diff.x = 2*w - 2 - diff.x;
sum += ak(xkernel) * src_acc(src_ul, diff);
}
}
}
else if(border == BORDER_TREATMENT_WRAP)
{
Diff2D diff;
for(int yk = klr.y; yk >= kul.y; --yk, --ykernel.y)
{
diff.y = (y - yk + h) % h;
typename KernelIterator::row_iterator xkernel = ykernel.rowIterator();
for(int xk = klr.x; xk >= kul.x; --xk, --xkernel)
{
diff.x = (x - xk + w) % w;
sum += ak(xkernel) * src_acc(src_ul, diff);
}
}
}
else if(border == BORDER_TREATMENT_CLIP)
{
KernelSumType ksum = NumericTraits<KernelSumType>::zero();
Diff2D diff;
for(int yk = klr.y; yk >= kul.y; --yk, --ykernel.y)
{
diff.y = y - yk;
if(diff.y < 0 || diff.y >= h)
continue;
typename KernelIterator::row_iterator xkernel = ykernel.rowIterator();
for(int xk = klr.x; xk >= kul.x; --xk, --xkernel)
{
diff.x = x - xk;
if(diff.x < 0 || diff.x >= w)
continue;
ksum += ak(xkernel);
sum += ak(xkernel) * src_acc(src_ul, diff);
}
}
sum *= norm / ksum;
}
else if(border == BORDER_TREATMENT_ZEROPAD)
{
Diff2D diff;
for(int yk = klr.y; yk >= kul.y; --yk, --ykernel.y)
{
diff.y = y - yk;
if(diff.y < 0 || diff.y >= h)
continue;
typename KernelIterator::row_iterator xkernel = ykernel.rowIterator();
for(int xk = klr.x; xk >= kul.x; --xk, --xkernel)
{
diff.x = x - xk;
if(diff.x < 0 || diff.x >= w)
continue;
sum += ak(xkernel) * src_acc(src_ul, diff);
}
}
}
else if(border == BORDER_TREATMENT_AVOID)
{
continue;
}
// store convolution result in destination pixel
dest_acc.set(detail::RequiresExplicitCast<DestType>::cast(sum), xd);
}
}
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class KernelIterator, class KernelAccessor>
inline void
convolveImage(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
tuple5<KernelIterator, KernelAccessor, Diff2D, Diff2D,
BorderTreatmentMode> kernel)
{
convolveImage(src.first, src.second, src.third,
dest.first, dest.second,
kernel.first, kernel.second, kernel.third,
kernel.fourth, kernel.fifth);
}
template <class T1, class S1,
class T2, class S2,
class T3>
inline void
convolveImage(MultiArrayView<2, T1, S1> const & src,
MultiArrayView<2, T2, S2> dest,
Kernel2D<T3> const & kernel)
{
vigra_precondition(src.shape() == dest.shape(),
"convolveImage(): shape mismatch between input and output.");
convolveImage(srcImageRange(src),
destImage(dest),
kernel2d(kernel));
}
/** \brief Performs a 2-dimensional normalized convolution, i.e. convolution with a mask image.
This functions computes
<a href ="http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/PIRODDI1/NormConv/NormConv.html">normalized
convolution</a> as defined in
Knutsson, H. and Westin, C-F.: <i>Normalized and differential convolution:
Methods for Interpolation and Filtering of incomplete and uncertain data</i>.
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 1993, 515-523.
The mask image must be binary and encodes which pixels of the original image
are valid. It is used as follows:
Only pixel under the mask are used in the calculations. Whenever a part of the
kernel lies outside the mask, it is ignored, and the kernel is renormalized to its
original norm (analogous to the CLIP \ref BorderTreatmentMode). Thus, a useful convolution
result is computed whenever <i>at least one valid pixel is within the current window</i>
Thus, destination pixels not under the mask still receive a value if they are <i>near</i>
the mask. Therefore, this algorithm is useful as an interpolator of sparse input data.
If you are only interested in the destination values under the mask, you can perform
a subsequent \ref copyImageIf().
The KernelIterator must point to the center of the kernel, and
the kernel's size is given by its upper left (x and y of distance <= 0) and
lower right (distance >= 0) corners. The image must always be larger than the
kernel. At those positions where the kernel does not completely fit
into the image, the specified \ref BorderTreatmentMode is
applied. Only BORDER_TREATMENT_CLIP and BORDER_TREATMENT_AVOID are currently
supported.
The images's pixel type (SrcAccessor::value_type) must be a
linear space over the kernel's value_type (KernelAccessor::value_type),
i.e. addition of source values, multiplication with kernel values,
and NumericTraits must be defined.
The kernel's value_type must be an algebraic field,
i.e. the arithmetic operations (+, -, *, /) and NumericTraits must
be defined.
<b> Declarations:</b>
pass 2D array views:
\code
namespace vigra {
template <class T1, class S1,
class T2, class S2,
class TM, class SM,
class T3>
void
normalizedConvolveImage(MultiArrayView<2, T1, S1> const & src,
MultiArrayView<2, TM, SM> const & mask,
MultiArrayView<2, T2, S2> dest,
Kernel2D<T3> const & kernel);
}
\endcode
\deprecatedAPI{normalizedConvolveImage}
pass \ref ImageIterators and \ref DataAccessors :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class MaskIterator, class MaskAccessor,
class DestIterator, class DestAccessor,
class KernelIterator, class KernelAccessor>
void
normalizedConvolveImage(SrcIterator src_ul, SrcIterator src_lr, SrcAccessor src_acc,
MaskIterator mul, MaskAccessor am,
DestIterator dest_ul, DestAccessor dest_acc,
KernelIterator ki, KernelAccessor ak,
Diff2D kul, Diff2D klr, BorderTreatmentMode border);
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class MaskIterator, class MaskAccessor,
class DestIterator, class DestAccessor,
class KernelIterator, class KernelAccessor>
void normalizedConvolveImage(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<MaskIterator, MaskAccessor> mask,
pair<DestIterator, DestAccessor> dest,
tuple5<KernelIterator, KernelAccessor, Diff2D, Diff2D,
BorderTreatmentMode> kernel);
}
\endcode
\deprecatedEnd
<b> Usage:</b>
<b>\#include</b> \<vigra/stdconvolution.hxx\><br>
Namespace: vigra
\code
MultiArray<2, float> src(w,h), dest(w,h);
MultiArray<2, unsigned char> mask(w,h);
...
// define 3x3 binomial filter
vigra::Kernel2D<float> binom;
binom.initExplicitly(Diff2D(-1,-1), Diff2D(1,1)) = // upper left and lower right
0.0625, 0.125, 0.0625,
0.125, 0.25, 0.125,
0.0625, 0.125, 0.0625;
normalizedConvolveImage(src, mask, dest, binom);
\endcode
\deprecatedUsage{normalizedConvolveImage}
\code
vigra::FImage src(w,h), dest(w,h);
vigra::CImage mask(w,h);
...
// define 3x3 binomial filter
vigra::Kernel2D<float> binom;
binom.initExplicitly(Diff2D(-1,-1), Diff2D(1,1)) = // upper left and lower right
0.0625, 0.125, 0.0625,
0.125, 0.25, 0.125,
0.0625, 0.125, 0.0625;
vigra::normalizedConvolveImage(srcImageRange(src), maskImage(mask), destImage(dest), kernel2d(binom));
\endcode
<b> Required Interface:</b>
\code
ImageIterator src_ul, src_lr;
ImageIterator mul;
ImageIterator dest_ul;
ImageIterator ik;
SrcAccessor src_accessor;
MaskAccessor mask_accessor;
DestAccessor dest_accessor;
KernelAccessor kernel_accessor;
NumericTraits<SrcAccessor::value_type>::RealPromote s = src_accessor(src_ul);
s = s + s;
s = kernel_accessor(ik) * s;
s -= s;
if(mask_accessor(mul)) ...;
dest_accessor.set(
NumericTraits<DestAccessor::value_type>::fromRealPromote(s), dest_ul);
NumericTraits<KernelAccessor::value_type>::RealPromote k = kernel_accessor(ik);
k += k;
k -= k;
k = k / k;
\endcode
\deprecatedEnd
<b> Preconditions:</b>
<ul>
<li> The image must be longer than the kernel radius: <tt>w > std::max(kernel.lowerRight().x, -kernel.upperLeft().x)</tt> and
<tt>h > std::max(kernel.lowerRight().y, -kernel.upperLeft().y)</tt>.
<li> The sum of kernel elements must be != 0.
<li> <tt>border == BORDER_TREATMENT_CLIP || border == BORDER_TREATMENT_AVOID</tt>
</ul>
*/
doxygen_overloaded_function(template <...> void normalizedConvolveImage)
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class MaskIterator, class MaskAccessor,
class KernelIterator, class KernelAccessor>
void
normalizedConvolveImage(SrcIterator src_ul, SrcIterator src_lr, SrcAccessor src_acc,
MaskIterator mul, MaskAccessor am,
DestIterator dest_ul, DestAccessor dest_acc,
KernelIterator ki, KernelAccessor ak,
Diff2D kul, Diff2D klr, BorderTreatmentMode border)
{
vigra_precondition((border == BORDER_TREATMENT_CLIP ||
border == BORDER_TREATMENT_AVOID),
"normalizedConvolveImage(): "
"Border treatment must be BORDER_TREATMENT_CLIP or BORDER_TREATMENT_AVOID.");
vigra_precondition(kul.x <= 0 && kul.y <= 0,
"normalizedConvolveImage(): left borders must be <= 0.");
vigra_precondition(klr.x >= 0 && klr.y >= 0,
"normalizedConvolveImage(): right borders must be >= 0.");
// use traits to determine SumType as to prevent possible overflow
typedef typename
NumericTraits<typename SrcAccessor::value_type>::RealPromote SumType;
typedef typename
NumericTraits<typename KernelAccessor::value_type>::RealPromote KSumType;
typedef
NumericTraits<typename DestAccessor::value_type> DestTraits;
// calculate width and height of the image
int w = src_lr.x - src_ul.x;
int h = src_lr.y - src_ul.y;
int kernel_width = klr.x - kul.x + 1;
int kernel_height = klr.y - kul.y + 1;
int x,y;
int ystart = (border == BORDER_TREATMENT_AVOID) ? klr.y : 0;
int yend = (border == BORDER_TREATMENT_AVOID) ? h+kul.y : h;
int xstart = (border == BORDER_TREATMENT_AVOID) ? klr.x : 0;
int xend = (border == BORDER_TREATMENT_AVOID) ? w+kul.x : w;
// create y iterators
DestIterator yd = dest_ul + Diff2D(xstart, ystart);
SrcIterator ys = src_ul + Diff2D(xstart, ystart);
MaskIterator ym = mul + Diff2D(xstart, ystart);
KSumType norm = ak(ki);
int xx, yy;
KernelIterator yk = ki + klr;
for(yy=0; yy<kernel_height; ++yy, --yk.y)
{
KernelIterator xk = yk;
for(xx=0; xx<kernel_width; ++xx, --xk.x)
{
norm += ak(xk);
}
}
norm -= ak(ki);
for(y=ystart; y < yend; ++y, ++ys.y, ++yd.y, ++ym.y)
{
// create x iterators
DestIterator xd(yd);
SrcIterator xs(ys);
MaskIterator xm(ym);
for(x=xstart; x < xend; ++x, ++xs.x, ++xd.x, ++xm.x)
{
// how much of the kernel fits into the image ?
int x0, y0, x1, y1;
y0 = (y<klr.y) ? -y : -klr.y;
y1 = (h-y-1<-kul.y) ? h-y-1 : -kul.y;
x0 = (x<klr.x) ? -x : -klr.x;
x1 = (w-x-1<-kul.x) ? w-x-1 : -kul.x;
bool first = true;
// init the sum
SumType sum = NumericTraits<SumType>::zero();
KSumType ksum = NumericTraits<KSumType>::zero();
SrcIterator yys = xs + Diff2D(x0, y0);
MaskIterator yym = xm + Diff2D(x0, y0);
KernelIterator yk = ki - Diff2D(x0, y0);
int kernel_width, kernel_height;
kernel_width = x1 - x0 + 1;
kernel_height = y1 - y0 + 1;
for(yy=0; yy<kernel_height; ++yy, ++yys.y, --yk.y, ++yym.y)
{
typename SrcIterator::row_iterator xxs = yys.rowIterator();
typename SrcIterator::row_iterator xxend = xxs + kernel_width;
typename MaskIterator::row_iterator xxm = yym.rowIterator();
typename KernelIterator::row_iterator xk = yk.rowIterator();
for(xx=0; xxs < xxend; ++xxs, --xk, ++xxm)
{
if(!am(xxm)) continue;
if(first)
{
sum = detail::RequiresExplicitCast<SumType>::cast(ak(xk) * src_acc(xxs));
ksum = ak(xk);
first = false;
}
else
{
sum = detail::RequiresExplicitCast<SumType>::cast(sum + ak(xk) * src_acc(xxs));
ksum += ak(xk);
}
}
}
// store average in destination pixel
if(ksum != NumericTraits<KSumType>::zero())
{
dest_acc.set(DestTraits::fromRealPromote(
detail::RequiresExplicitCast<SumType>::cast((norm / ksum) * sum)), xd);
}
}
}
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class MaskIterator, class MaskAccessor,
class KernelIterator, class KernelAccessor>
inline void
normalizedConvolveImage(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<MaskIterator, MaskAccessor> mask,
pair<DestIterator, DestAccessor> dest,
tuple5<KernelIterator, KernelAccessor, Diff2D, Diff2D,
BorderTreatmentMode> kernel)
{
normalizedConvolveImage(src.first, src.second, src.third,
mask.first, mask.second,
dest.first, dest.second,
kernel.first, kernel.second, kernel.third,
kernel.fourth, kernel.fifth);
}
template <class T1, class S1,
class T2, class S2,
class TM, class SM,
class T3>
inline void
normalizedConvolveImage(MultiArrayView<2, T1, S1> const & src,
MultiArrayView<2, TM, SM> const & mask,
MultiArrayView<2, T2, S2> dest,
Kernel2D<T3> const & kernel)
{
vigra_precondition(src.shape() == mask.shape() && src.shape() == dest.shape(),
"normalizedConvolveImage(): shape mismatch between input and output.");
normalizedConvolveImage(srcImageRange(src),
maskImage(mask),
destImage(dest),
kernel2d(kernel));
}
/** \brief Deprecated name of 2-dimensional normalized convolution, i.e. convolution with a mask image.
See \ref normalizedConvolveImage() for documentation.
<b> Declarations:</b>
pass 2D array views:
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class MaskIterator, class MaskAccessor,
class DestIterator, class DestAccessor,
class KernelIterator, class KernelAccessor>
void
convolveImageWithMask(SrcIterator src_ul, SrcIterator src_lr, SrcAccessor src_acc,
MaskIterator mul, MaskAccessor am,
DestIterator dest_ul, DestAccessor dest_acc,
KernelIterator ki, KernelAccessor ak,
Diff2D kul, Diff2D klr, BorderTreatmentMode border);
}
\endcode
\deprecatedAPI{convolveImageWithMask}
pass \ref ImageIterators and \ref DataAccessors :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class MaskIterator, class MaskAccessor,
class DestIterator, class DestAccessor,
class KernelIterator, class KernelAccessor>
void
convolveImageWithMask(SrcIterator src_ul, SrcIterator src_lr, SrcAccessor src_acc,
MaskIterator mul, MaskAccessor am,
DestIterator dest_ul, DestAccessor dest_acc,
KernelIterator ki, KernelAccessor ak,
Diff2D kul, Diff2D klr, BorderTreatmentMode border);
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class MaskIterator, class MaskAccessor,
class DestIterator, class DestAccessor,
class KernelIterator, class KernelAccessor>
void convolveImageWithMask(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<MaskIterator, MaskAccessor> mask,
pair<DestIterator, DestAccessor> dest,
tuple5<KernelIterator, KernelAccessor, Diff2D, Diff2D,
BorderTreatmentMode> kernel);
}
\endcode
\deprecatedEnd
*/
doxygen_overloaded_function(template <...> void convolveImageWithMask)
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class MaskIterator, class MaskAccessor,
class KernelIterator, class KernelAccessor>
inline void
convolveImageWithMask(SrcIterator src_ul, SrcIterator src_lr, SrcAccessor src_acc,
MaskIterator mul, MaskAccessor am,
DestIterator dest_ul, DestAccessor dest_acc,
KernelIterator ki, KernelAccessor ak,
Diff2D kul, Diff2D klr, BorderTreatmentMode border)
{
normalizedConvolveImage(src_ul, src_lr, src_acc,
mul, am,
dest_ul, dest_acc,
ki, ak, kul, klr, border);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class MaskIterator, class MaskAccessor,
class KernelIterator, class KernelAccessor>
inline
void convolveImageWithMask(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<MaskIterator, MaskAccessor> mask,
pair<DestIterator, DestAccessor> dest,
tuple5<KernelIterator, KernelAccessor, Diff2D, Diff2D,
BorderTreatmentMode> kernel)
{
normalizedConvolveImage(src.first, src.second, src.third,
mask.first, mask.second,
dest.first, dest.second,
kernel.first, kernel.second, kernel.third,
kernel.fourth, kernel.fifth);
}
//@}
/********************************************************/
/* */
/* Kernel2D */
/* */
/********************************************************/
/** \brief Generic 2 dimensional convolution kernel.
This kernel may be used for convolution of 2 dimensional signals.
Convolution functions access the kernel via an ImageIterator
which they get by calling \ref center(). This iterator
points to the center of the kernel. The kernel's size is given by its upperLeft()
(upperLeft().x <= 0, upperLeft().y <= 0)
and lowerRight() (lowerRight().x >= 0, lowerRight().y >= 0) methods.
The desired border treatment mode is returned by borderTreatment().
The different init functions create a kernel with the specified
properties. The requirements for the kernel's value_type depend
on the init function used. At least NumericTraits must be defined.
<b> Usage:</b>
<b>\#include</b> \<vigra/stdconvolution.hxx\><br>
Namespace: vigra
\code
MultiArray<2, float> src(w,h), dest(w,h);
...
// define horizontal Sobel filter
vigra::Kernel2D<float> sobel;
sobel.initExplicitly(Diff2D(-1,-1), Diff2D(1,1)) = // upper left and lower right
0.125, 0.0, -0.125,
0.25, 0.0, -0.25,
0.125, 0.0, -0.125;
convolveImage(src, dest, sobel);
\endcode
<b> Required Interface:</b>
\code
value_type v = NumericTraits<value_type>::one();
\endcode
See also the init functions.
*/
template <class ARITHTYPE = double>
class Kernel2D
{
public:
/** the kernel's value type
*/
typedef ARITHTYPE value_type;
/** 2D random access iterator over the kernel's values
*/
typedef typename BasicImage<value_type>::traverser Iterator;
/** const 2D random access iterator over the kernel's values
*/
typedef typename BasicImage<value_type>::const_traverser ConstIterator;
/** the kernel's accessor
*/
typedef typename BasicImage<value_type>::Accessor Accessor;
/** the kernel's const accessor
*/
typedef typename BasicImage<value_type>::ConstAccessor ConstAccessor;
struct InitProxy
{
typedef typename
BasicImage<value_type>::ScanOrderIterator Iterator;
InitProxy(Iterator i, int count, value_type & norm)
: iter_(i), base_(i),
count_(count), sum_(count),
norm_(norm)
{}
~InitProxy()
{
vigra_precondition(count_ == 1 || count_ == sum_,
"Kernel2D::initExplicitly(): "
"Too few init values.");
}
InitProxy & operator,(value_type const & v)
{
if(count_ == sum_) norm_ = *iter_;
--count_;
vigra_precondition(count_ > 0,
"Kernel2D::initExplicitly(): "
"Too many init values.");
norm_ += v;
++iter_;
*iter_ = v;
return *this;
}
Iterator iter_, base_;
int count_, sum_;
value_type & norm_;
};
static value_type one() { return NumericTraits<value_type>::one(); }
/** Default constructor.
Creates a kernel of size 1x1 which would copy the signal
unchanged.
*/
Kernel2D()
: kernel_(1, 1, one()),
left_(0, 0),
right_(0, 0),
norm_(one()),
border_treatment_(BORDER_TREATMENT_REFLECT)
{}
/** Copy constructor.
*/
Kernel2D(Kernel2D const & k)
: kernel_(k.kernel_),
left_(k.left_),
right_(k.right_),
norm_(k.norm_),
border_treatment_(k.border_treatment_)
{}
/** Copy assignment.
*/
Kernel2D & operator=(Kernel2D const & k)
{
if(this != &k)
{
kernel_ = k.kernel_;
left_ = k.left_;
right_ = k.right_;
norm_ = k.norm_;
border_treatment_ = k.border_treatment_;
}
return *this;
}
/** Initialization.
This initializes the kernel with the given constant. The norm becomes
v*width()*height().
Instead of a single value an initializer list of length width()*height()
can be used like this:
\code
vigra::Kernel2D<float> binom;
binom.initExplicitly(Diff2D(-1,-1), Diff2D(1,1)) =
0.0625, 0.125, 0.0625,
0.125, 0.25, 0.125,
0.0625, 0.125, 0.0625;
\endcode
In this case, the norm will be set to the sum of the init values.
An initializer list of wrong length will result in a run-time error.
*/
InitProxy operator=(value_type const & v)
{
int size = (right_.x - left_.x + 1) *
(right_.y - left_.y + 1);
kernel_ = v;
norm_ = (double)size*v;
return InitProxy(kernel_.begin(), size, norm_);
}
/** Destructor.
*/
~Kernel2D()
{}
/** Init the 2D kernel as the cartesian product of two 1D kernels
of type \ref Kernel1D. The norm becomes the product of the two original
norms.
<b> Required Interface:</b>
The kernel's value_type must be a linear algebra.
\code
vigra::Kernel2D<...>::value_type v;
v = v * v;
\endcode
*/
void initSeparable(Kernel1D<value_type> const & kx,
Kernel1D<value_type> const & ky)
{
left_ = Diff2D(kx.left(), ky.left());
right_ = Diff2D(kx.right(), ky.right());
int w = right_.x - left_.x + 1;
int h = right_.y - left_.y + 1;
kernel_.resize(w, h);
norm_ = kx.norm() * ky.norm();
typedef typename Kernel1D<value_type>::const_iterator KIter;
typename Kernel1D<value_type>::Accessor ka;
KIter kiy = ky.center() + left_.y;
Iterator iy = center() + left_;
for(int y=left_.y; y<=right_.y; ++y, ++kiy, ++iy.y)
{
KIter kix = kx.center() + left_.x;
Iterator ix = iy;
for(int x=left_.x; x<=right_.x; ++x, ++kix, ++ix.x)
{
*ix = ka(kix) * ka(kiy);
}
}
}
/** Init the 2D kernel as the cartesian product of two 1D kernels
given explicitly by iterators and sizes. The norm becomes the
sum of the resulting kernel values.
<b> Required Interface:</b>
The kernel's value_type must be a linear algebra.
\code
vigra::Kernel2D<...>::value_type v;
v = v * v;
v += v;
\endcode
<b> Preconditions:</b>
\code
xleft <= 0;
xright >= 0;
yleft <= 0;
yright >= 0;
\endcode
*/
template <class KernelIterator>
void initSeparable(KernelIterator kxcenter, int xleft, int xright,
KernelIterator kycenter, int yleft, int yright)
{
vigra_precondition(xleft <= 0 && yleft <= 0,
"Kernel2D::initSeparable(): left borders must be <= 0.");
vigra_precondition(xright >= 0 && yright >= 0,
"Kernel2D::initSeparable(): right borders must be >= 0.");
left_ = Point2D(xleft, yleft);
right_ = Point2D(xright, yright);
int w = right_.x - left_.x + 1;
int h = right_.y - left_.y + 1;
kernel_.resize(w, h);
KernelIterator kiy = kycenter + left_.y;
Iterator iy = center() + left_;
for(int y=left_.y; y<=right_.y; ++y, ++kiy, ++iy.y)
{
KernelIterator kix = kxcenter + left_.x;
Iterator ix = iy;
for(int x=left_.x; x<=right_.x; ++x, ++kix, ++ix.x)
{
*ix = *kix * *kiy;
}
}
typename BasicImage<value_type>::iterator i = kernel_.begin();
typename BasicImage<value_type>::iterator iend = kernel_.end();
norm_ = *i;
++i;
for(; i!= iend; ++i)
{
norm_ += *i;
}
}
/** \brief Init as a 2D box filter with given radius.
The function returns a reference to the kernel.
*/
void initAveraging(int radius)
{
Kernel1D<value_type> avg;
avg.initAveraging(radius);
return initSeparable(avg, avg);
}
/** \brief Init as a 2D Gaussian function with given standard deviation and norm.
The function returns a reference to the kernel.
*/
void initGaussian(double std_dev, value_type norm)
{
Kernel1D<value_type> gauss;
gauss.initGaussian(std_dev, norm);
return initSeparable(gauss, gauss);
}
/** \brief Init as a 2D Gaussian function with given standard deviation and unit norm.
The function returns a reference to the kernel.
*/
void initGaussian(double std_dev)
{
return initGaussian(std_dev, NumericTraits<value_type>::one());
}
/** Init the 2D kernel as a circular averaging filter. The norm will be
calculated as
<TT>NumericTraits<value_type>::one() / (number of non-zero kernel values)</TT>.
The kernel's value_type must be a linear space.
<b> Required Interface:</b>
\code
value_type v = vigra::NumericTraits<value_type>::one();
double d;
v = d * v;
\endcode
<b> Precondition:</b>
\code
radius > 0;
\endcode
*/
void initDisk(int radius)
{
vigra_precondition(radius > 0,
"Kernel2D::initDisk(): radius must be > 0.");
left_ = Point2D(-radius, -radius);
right_ = Point2D(radius, radius);
int w = right_.x - left_.x + 1;
int h = right_.y - left_.y + 1;
kernel_.resize(w, h);
norm_ = NumericTraits<value_type>::one();
kernel_ = NumericTraits<value_type>::zero();
double count = 0.0;
Iterator k = center();
double r2 = (double)radius*radius;
int i;
for(i=0; i<= radius; ++i)
{
double r = (double) i - 0.5;
int w = (int)(VIGRA_CSTD::sqrt(r2 - r*r) + 0.5);
for(int j=-w; j<=w; ++j)
{
k(j, i) = NumericTraits<value_type>::one();
k(j, -i) = NumericTraits<value_type>::one();
count += (i != 0) ? 2.0 : 1.0;
}
}
count = 1.0 / count;
for(int y=-radius; y<=radius; ++y)
{
for(int x=-radius; x<=radius; ++x)
{
k(x,y) = count * k(x,y);
}
}
}
/** Init the kernel by an explicit initializer list.
The upper left and lower right corners (inclusive) of the kernel must be passed
either as <tt>Shape2</tt> or <tt>Diff2D</tt> objects. A comma-separated initializer
list for the kernel's weights is given after the assignment operator like this:
\code
// define horizontal Sobel filter
vigra::Kernel2D<float> sobel;
sobel.initExplicitly(Diff2D(-1,-1), Diff2D(1,1)) =
0.125, 0.0, -0.125,
0.25, 0.0, -0.25,
0.125, 0.0, -0.125;
\endcode
The norm is set to the sum of the initializer values. If the wrong number of
values is given, a run-time error results. It is, however, possible to give
just one initializer. This creates an averaging filter with the given constant:
\code
vigra::Kernel2D<float> average3x3;
average3x3.initExplicitly(Shape2(-1,-1), Shape2(1,1)) = 1.0/9.0;
\endcode
Here, the norm is set to value*width()*height().
<b> Preconditions:</b>
\code
1. upperleft.x <= 0;
2. upperleft.y <= 0;
3. lowerright.x >= 0;
4. lowerright.y >= 0;
5. the number of values in the initializer list
is 1 or equals the size of the kernel.
\endcode
*/
Kernel2D & initExplicitly(Shape2 const & upperleft, Shape2 const & lowerright)
{
vigra_precondition(upperleft[0] <= 0 && upperleft[1] <= 0,
"Kernel2D::initExplicitly(): left borders must be <= 0.");
vigra_precondition(lowerright[0] >= 0 && lowerright[1] >= 0,
"Kernel2D::initExplicitly(): right borders must be >= 0.");
left_ = Point2D(upperleft[0], upperleft[1]);
right_ = Point2D(lowerright[0], lowerright[1]);
int w = right_.x - left_.x + 1;
int h = right_.y - left_.y + 1;
kernel_.resize(w, h);
return *this;
}
Kernel2D & initExplicitly(Diff2D const & upperleft, Diff2D const & lowerright)
{
return initExplicitly(Shape2(upperleft), Shape2(lowerright));
}
/** Coordinates of the upper left corner of the kernel.
*/
Point2D upperLeft() const { return left_; }
/** Coordinates of the lower right corner of the kernel.
*/
Point2D lowerRight() const { return right_; }
/** Width of the kernel.
*/
int width() const { return right_.x - left_.x + 1; }
/** Height of the kernel.
*/
int height() const { return right_.y - left_.y + 1; }
/** ImageIterator that points to the center of the kernel (coordinate (0,0)).
*/
Iterator center() { return kernel_.upperLeft() - left_; }
/** ImageIterator that points to the center of the kernel (coordinate (0,0)).
*/
ConstIterator center() const { return kernel_.upperLeft() - left_; }
/** Access kernel entry at given position.
*/
value_type & operator()(int x, int y)
{ return kernel_[Diff2D(x,y) - left_]; }
/** Read kernel entry at given position.
*/
value_type operator()(int x, int y) const
{ return kernel_[Diff2D(x,y) - left_]; }
/** Access kernel entry at given position.
*/
value_type & operator[](Diff2D const & d)
{ return kernel_[d - left_]; }
/** Read kernel entry at given position.
*/
value_type operator[](Diff2D const & d) const
{ return kernel_[d - left_]; }
/** Norm of the kernel (i.e. sum of its elements).
*/
value_type norm() const { return norm_; }
/** The kernels default accessor.
*/
Accessor accessor() { return Accessor(); }
/** The kernels default const accessor.
*/
ConstAccessor accessor() const { return ConstAccessor(); }
/** Normalize the kernel to the given value. (The norm is the sum of all kernel
elements.) The kernel's value_type must be a division algebra or
algebraic field.
<b> Required Interface:</b>
\code
value_type v = vigra::NumericTraits<value_type>::one(); // if norm is not
// given explicitly
v += v;
v = v * v;
v = v / v;
\endcode
*/
void normalize(value_type norm)
{
typename BasicImage<value_type>::iterator i = kernel_.begin();
typename BasicImage<value_type>::iterator iend = kernel_.end();
typename NumericTraits<value_type>::RealPromote sum = *i;
++i;
for(; i!= iend; ++i)
{
sum += *i;
}
sum = norm / sum;
i = kernel_.begin();
for(; i != iend; ++i)
{
*i = *i * sum;
}
norm_ = norm;
}
/** Normalize the kernel to norm 1.
*/
void normalize()
{
normalize(one());
}
/** current border treatment mode
*/
BorderTreatmentMode borderTreatment() const
{ return border_treatment_; }
/** Set border treatment mode.
Only <TT>BORDER_TREATMENT_CLIP</TT> and <TT>BORDER_TREATMENT_AVOID</TT> are currently
allowed.
*/
void setBorderTreatment( BorderTreatmentMode new_mode)
{
vigra_precondition((new_mode == BORDER_TREATMENT_CLIP ||
new_mode == BORDER_TREATMENT_AVOID ||
new_mode == BORDER_TREATMENT_REFLECT ||
new_mode == BORDER_TREATMENT_REPEAT ||
new_mode == BORDER_TREATMENT_WRAP),
"convolveImage():\n"
" Border treatment must be one of follow treatments:\n"
" - BORDER_TREATMENT_CLIP\n"
" - BORDER_TREATMENT_AVOID\n"
" - BORDER_TREATMENT_REFLECT\n"
" - BORDER_TREATMENT_REPEAT\n"
" - BORDER_TREATMENT_WRAP\n");
border_treatment_ = new_mode;
}
private:
BasicImage<value_type> kernel_;
Point2D left_, right_;
value_type norm_;
BorderTreatmentMode border_treatment_;
};
/**************************************************************/
/* */
/* Argument object factories for Kernel2D */
/* */
/* (documentation: see vigra/convolution.hxx) */
/* */
/**************************************************************/
template <class KernelIterator, class KernelAccessor>
inline
tuple5<KernelIterator, KernelAccessor, Diff2D, Diff2D, BorderTreatmentMode>
kernel2d(KernelIterator ik, KernelAccessor ak, Diff2D kul, Diff2D klr,
BorderTreatmentMode border)
{
return
tuple5<KernelIterator, KernelAccessor, Diff2D, Diff2D, BorderTreatmentMode> (
ik, ak, kul, klr, border);
}
template <class T>
inline
tuple5<typename Kernel2D<T>::ConstIterator,
typename Kernel2D<T>::ConstAccessor,
Diff2D, Diff2D, BorderTreatmentMode>
kernel2d(Kernel2D<T> const & k)
{
return
tuple5<typename Kernel2D<T>::ConstIterator,
typename Kernel2D<T>::ConstAccessor,
Diff2D, Diff2D, BorderTreatmentMode>(
k.center(),
k.accessor(),
k.upperLeft(), k.lowerRight(),
k.borderTreatment());
}
template <class T>
inline
tuple5<typename Kernel2D<T>::ConstIterator,
typename Kernel2D<T>::ConstAccessor,
Diff2D, Diff2D, BorderTreatmentMode>
kernel2d(Kernel2D<T> const & k, BorderTreatmentMode border)
{
return
tuple5<typename Kernel2D<T>::ConstIterator,
typename Kernel2D<T>::ConstAccessor,
Diff2D, Diff2D, BorderTreatmentMode>(
k.center(),
k.accessor(),
k.upperLeft(), k.lowerRight(),
border);
}
} // namespace vigra
#endif // VIGRA_STDCONVOLUTION_HXX
|