This file is indexed.

/usr/include/vigra/unsupervised_decomposition.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/************************************************************************/
/*                                                                      */
/*    Copyright 2008-2011 by Michael Hanselmann and Ullrich Koethe      */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/


#ifndef VIGRA_UNSUPERVISED_DECOMPOSITION_HXX
#define VIGRA_UNSUPERVISED_DECOMPOSITION_HXX

#include <numeric>
#include "mathutil.hxx"
#include "matrix.hxx"
#include "singular_value_decomposition.hxx"
#include "random.hxx"

namespace vigra
{

/** \addtogroup Unsupervised_Decomposition Unsupervised Decomposition

    Unsupervised matrix decomposition methods.
**/
//@{

/*****************************************************************/
/*                                                               */
/*              principle component analysis (PCA)               */
/*                                                               */
/*****************************************************************/

   /** \brief Decompose a matrix according to the PCA algorithm. 

        This function implements the PCA algorithm (principle component analysis).

        \arg features must be a matrix with shape <tt>(numFeatures * numSamples)</tt>, which is
        decomposed into the matrices 
        \arg fz with shape <tt>(numFeatures * numComponents)</tt> and
        \arg zv with shape <tt>(numComponents * numSamples)</tt>
        
        such that
        \f[
            \mathrm{features} \approx \mathrm{fz} * \mathrm{zv}
        \f]
        (this formula requires that the features have been centered around the mean by
        <tt>\ref linalg::prepareRows&nbsp;(features, features, ZeroMean)</tt>).
       
        The shape parameter <tt>numComponents</tt> determines the complexity of 
        the decomposition model and therefore the approximation quality (if
        <tt>numComponents == numFeatures</tt>, the representation becomes exact). 
        Intuitively, <tt>fz</tt> is a projection matrix from the reduced space
        into the original space, and <tt>zv</tt> is  the reduced representation
        of the data, using just <tt>numComponents</tt> features.

        <b>Declaration:</b>
        
        <b>\#include</b> \<vigra/unsupervised_decomposition.hxx\>

        \code
        namespace vigra {
        
            template <class U, class C1, class C2, class C3>
            void
            principleComponents(MultiArrayView<2, U, C1> const & features,
                                MultiArrayView<2, U, C2> fz, 
                                MultiArrayView<2, U, C3> zv);
        }
        \endcode
        
        <b>Usage:</b>
        \code
        Matrix<double> data(numFeatures, numSamples);
        ... // fill the input matrix
        
        int numComponents = 3;
        Matrix<double> fz(numFeatures, numComponents),
                       zv(numComponents, numSamples);
                       
        // center the data
        prepareRows(data, data, ZeroMean);
        
        // compute the reduced representation
        principleComponents(data, fz, zv);
        
        Matrix<double> model = fz*zv;
        double meanSquaredError = squaredNorm(data - model) / numSamples;
        \endcode
   */
template <class T, class C1, class C2, class C3>
void
principleComponents(MultiArrayView<2, T, C1> const & features,
                    MultiArrayView<2, T, C2> fz, 
                    MultiArrayView<2, T, C3> zv)
{
    using namespace linalg; // activate matrix multiplication and arithmetic functions

    int numFeatures = rowCount(features);
    int numSamples = columnCount(features);
    int numComponents = columnCount(fz);
    vigra_precondition(numSamples >= numFeatures,
      "principleComponents(): The number of samples has to be larger than the number of features.");
    vigra_precondition(numFeatures >= numComponents && numComponents >= 1,
      "principleComponents(): The number of features has to be larger or equal to the number of components in which the feature matrix is decomposed.");
    vigra_precondition(rowCount(fz) == numFeatures,
      "principleComponents(): The output matrix fz has to be of dimension numFeatures*numComponents.");
    vigra_precondition(columnCount(zv) == numSamples && rowCount(zv) == numComponents,
      "principleComponents(): The output matrix zv has to be of dimension numComponents*numSamples.");

    Matrix<T> U(numSamples, numFeatures), S(numFeatures, 1), V(numFeatures, numFeatures);
    singularValueDecomposition(features.transpose(), U, S, V);
    
    for(int k=0; k<numComponents; ++k)
    {
        rowVector(zv, k) = columnVector(U, k).transpose() * S(k, 0);
        columnVector(fz, k) = columnVector(V, k);
    }
}

/*****************************************************************/
/*                                                               */
/*         probabilistic latent semantic analysis (pLSA)         */
/*         see T Hofmann, Probabilistic Latent Semantic          */
/*         Indexing for details                                  */
/*                                                               */
/*****************************************************************/

   /** \brief Option object for the \ref pLSA algorithm. 
   */
class PLSAOptions
{
  public:
        /** Initialize all options with default values.
        */
    PLSAOptions()
    : min_rel_gain(1e-4),
      max_iterations(50),
      normalized_component_weights(true)
    {}

        /** Maximum number of iterations which is performed by the pLSA algorithm.

            default: 50
        */
    PLSAOptions & maximumNumberOfIterations(unsigned int n)
    {
        vigra_precondition(n >= 1,
            "PLSAOptions::maximumNumberOfIterations(): number must be a positive integer.");
        max_iterations = n;
        return *this;
    }

        /** Minimum relative gain which is required for the algorithm to continue the iterations.

            default: 1e-4
        */
    PLSAOptions & minimumRelativeGain(double g)
    {
        vigra_precondition(g >= 0.0,
            "PLSAOptions::minimumRelativeGain(): number must be positive or zero.");
        min_rel_gain = g;
        return *this;
    }
    
        /** Normalize the entries of the zv result array.
        
            If true, the columns of zv sum to one. Otherwise, they have the same
            column sum as the original feature matrix.
            
            default: true
        */
    PLSAOptions & normalizedComponentWeights(bool v = true)
    {
        normalized_component_weights = v;
        return *this;
    }

    double min_rel_gain;
    int max_iterations;
    bool normalized_component_weights;
};

   /** \brief Decompose a matrix according to the pLSA algorithm. 

        This function implements the pLSA algorithm (probabilistic latent semantic analysis) 
        proposed in

        T. Hofmann: <a href="http://www.cs.brown.edu/people/th/papers/Hofmann-UAI99.pdf">
        <i>"Probabilistic Latent Semantic Analysis"</i></a>,
        in: UAI'99, Proc. 15th Conf. on Uncertainty in Artificial Intelligence,
        pp. 289-296, Morgan Kaufmann, 1999

        \arg features must be a matrix with shape <tt>(numFeatures * numSamples)</tt> and 
        non-negative entries, which is decomposed into the matrices 
        \arg fz with shape <tt>(numFeatures * numComponents)</tt> and
        \arg zv with shape <tt>(numComponents * numSamples)</tt>
        
        such that
        \f[
            \mathrm{features} \approx \mathrm{fz} * \mathrm{zv}
        \f]
        (this formula applies when pLSA is called with 
        <tt>PLSAOptions.normalizedComponentWeights(false)</tt>. Otherwise, you must
        normalize the features by calling <tt>\ref linalg::prepareColumns&nbsp;(features, features, UnitSum)</tt>
        to make the formula hold).
       
        The shape parameter <tt>numComponents</tt> determines the complexity of 
        the decomposition model and therefore the approximation quality. 
        Intuitively, features are a set of words, and the samples a set of 
        documents. The entries of the <tt>features</tt> matrix denote the relative 
        frequency of the words in each document. The components represents a 
        (presumably small) set of topics. The matrix <tt>fz</tt> encodes the 
        relative frequency of words in the different topics, and the matrix  
        <tt>zv</tt> encodes to what extend each topic explains the content of each 
        document.

        The option object determines the iteration termination conditions and the output
        normalization. In addition, you may pass a random number generator to pLSA()
        which is used to create the initial solution.

        <b>Declarations:</b>
        
        <b>\#include</b> \<vigra/unsupervised_decomposition.hxx\>

        \code
        namespace vigra {
        
            template <class U, class C1, class C2, class C3, class Random>
            void
            pLSA(MultiArrayView<2, U, C1> const & features,
                 MultiArrayView<2, U, C2> & fz, 
                 MultiArrayView<2, U, C3> & zv,
                 Random const& random,
                 PLSAOptions const & options = PLSAOptions());
                 
            template <class U, class C1, class C2, class C3>
            void
            pLSA(MultiArrayView<2, U, C1> const & features, 
                 MultiArrayView<2, U, C2> & fz, 
                 MultiArrayView<2, U, C3> & zv,
                 PLSAOptions const & options = PLSAOptions());
        }
        \endcode
        
        <b>Usage:</b>
        \code
        Matrix<double> words(numWords, numDocuments);
        ... // fill the input matrix
        
        int numTopics = 3;
        Matrix<double> fz(numWords, numTopics),
                       zv(numTopics, numDocuments);
                       
        pLSA(words, fz, zv, PLSAOptions().normalizedComponentWeights(false));
        
        Matrix<double> model = fz*zv;
        double meanSquaredError = (words - model).squaredNorm() / numDocuments;
        \endcode
   */
doxygen_overloaded_function(template <...> void pLSA)


template <class U, class C1, class C2, class C3, class Random>
void
pLSA(MultiArrayView<2, U, C1> const & features,
     MultiArrayView<2, U, C2> fz, 
     MultiArrayView<2, U, C3> zv,
     Random const& random,
     PLSAOptions const & options = PLSAOptions())
{
    using namespace linalg; // activate matrix multiplication and arithmetic functions

    int numFeatures = rowCount(features);
    int numSamples = columnCount(features);
    int numComponents = columnCount(fz);
    vigra_precondition(numFeatures >= numComponents && numComponents >= 1,
      "pLSA(): The number of features has to be larger or equal to the number of components in which the feature matrix is decomposed.");
    vigra_precondition(rowCount(fz) == numFeatures,
      "pLSA(): The output matrix fz has to be of dimension numFeatures*numComponents.");
    vigra_precondition(columnCount(zv) == numSamples && rowCount(zv) == numComponents,
      "pLSA(): The output matrix zv has to be of dimension numComponents*numSamples.");

    // random initialization of result matrices, subsequent normalization
    UniformRandomFunctor<Random> randf(random);
    initMultiArray(destMultiArrayRange(fz), randf);
    initMultiArray(destMultiArrayRange(zv), randf);
    prepareColumns(fz, fz, UnitSum);
    prepareColumns(zv, zv, UnitSum);

    // init vars
    double eps = 1.0/NumericTraits<U>::max(); // epsilon > 0
    double lastChange = NumericTraits<U>::max(); // infinity
    double err = 0;
    double err_old;
    int iteration = 0;

    // expectation maximization (EM) algorithm
    Matrix<U> columnSums(1, numSamples);
    features.sum(columnSums);
    Matrix<U> expandedSums = ones<U>(numFeatures, 1) * columnSums;
    
    while(iteration < options.max_iterations && (lastChange > options.min_rel_gain))
    {
        Matrix<U> fzv = fz*zv;
        
        //if(iteration%25 == 0)
        //{
            //std::cout << "iteration: " << iteration << std::endl;
            //std::cout << "last relative change: " << lastChange << std::endl;
        //}

        Matrix<U> factor = features / pointWise(fzv + (U)eps);
        zv *= (fz.transpose() * factor);
        fz *= (factor * zv.transpose());
        prepareColumns(fz, fz, UnitSum);
        prepareColumns(zv, zv, UnitSum);

        // check relative change in least squares model fit
        Matrix<U> model = expandedSums * pointWise(fzv);
        err_old = err;
        err = (features - model).squaredNorm();
        //std::cout << "error: " << err << std::endl;
        lastChange = abs((err-err_old) / (U)(err + eps));
        //std::cout << "lastChange: " << lastChange << std::endl;
         
        iteration += 1;
    }
    //std::cout << "Terminated after " << iteration << " iterations." << std::endl;
    //std::cout << "Last relative change was " << lastChange << "." << std::endl;
    
    if(!options.normalized_component_weights)
    {
        // undo the normalization
        for(int k=0; k<numSamples; ++k)
            columnVector(zv, k) *= columnSums(0, k);
    }
}

template <class U, class C1, class C2, class C3>
inline void
pLSA(MultiArrayView<2, U, C1> const & features, 
     MultiArrayView<2, U, C2> & fz, 
     MultiArrayView<2, U, C3> & zv,
     PLSAOptions const & options = PLSAOptions())
{
    RandomNumberGenerator<> generator(RandomSeed);
    pLSA(features, fz, zv, generator, options);
}

//@}

} // namespace vigra


#endif // VIGRA_UNSUPERVISED_DECOMPOSITION_HXX