/usr/include/vigra/unsupervised_decomposition.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | /************************************************************************/
/* */
/* Copyright 2008-2011 by Michael Hanselmann and Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_UNSUPERVISED_DECOMPOSITION_HXX
#define VIGRA_UNSUPERVISED_DECOMPOSITION_HXX
#include <numeric>
#include "mathutil.hxx"
#include "matrix.hxx"
#include "singular_value_decomposition.hxx"
#include "random.hxx"
namespace vigra
{
/** \addtogroup Unsupervised_Decomposition Unsupervised Decomposition
Unsupervised matrix decomposition methods.
**/
//@{
/*****************************************************************/
/* */
/* principle component analysis (PCA) */
/* */
/*****************************************************************/
/** \brief Decompose a matrix according to the PCA algorithm.
This function implements the PCA algorithm (principle component analysis).
\arg features must be a matrix with shape <tt>(numFeatures * numSamples)</tt>, which is
decomposed into the matrices
\arg fz with shape <tt>(numFeatures * numComponents)</tt> and
\arg zv with shape <tt>(numComponents * numSamples)</tt>
such that
\f[
\mathrm{features} \approx \mathrm{fz} * \mathrm{zv}
\f]
(this formula requires that the features have been centered around the mean by
<tt>\ref linalg::prepareRows (features, features, ZeroMean)</tt>).
The shape parameter <tt>numComponents</tt> determines the complexity of
the decomposition model and therefore the approximation quality (if
<tt>numComponents == numFeatures</tt>, the representation becomes exact).
Intuitively, <tt>fz</tt> is a projection matrix from the reduced space
into the original space, and <tt>zv</tt> is the reduced representation
of the data, using just <tt>numComponents</tt> features.
<b>Declaration:</b>
<b>\#include</b> \<vigra/unsupervised_decomposition.hxx\>
\code
namespace vigra {
template <class U, class C1, class C2, class C3>
void
principleComponents(MultiArrayView<2, U, C1> const & features,
MultiArrayView<2, U, C2> fz,
MultiArrayView<2, U, C3> zv);
}
\endcode
<b>Usage:</b>
\code
Matrix<double> data(numFeatures, numSamples);
... // fill the input matrix
int numComponents = 3;
Matrix<double> fz(numFeatures, numComponents),
zv(numComponents, numSamples);
// center the data
prepareRows(data, data, ZeroMean);
// compute the reduced representation
principleComponents(data, fz, zv);
Matrix<double> model = fz*zv;
double meanSquaredError = squaredNorm(data - model) / numSamples;
\endcode
*/
template <class T, class C1, class C2, class C3>
void
principleComponents(MultiArrayView<2, T, C1> const & features,
MultiArrayView<2, T, C2> fz,
MultiArrayView<2, T, C3> zv)
{
using namespace linalg; // activate matrix multiplication and arithmetic functions
int numFeatures = rowCount(features);
int numSamples = columnCount(features);
int numComponents = columnCount(fz);
vigra_precondition(numSamples >= numFeatures,
"principleComponents(): The number of samples has to be larger than the number of features.");
vigra_precondition(numFeatures >= numComponents && numComponents >= 1,
"principleComponents(): The number of features has to be larger or equal to the number of components in which the feature matrix is decomposed.");
vigra_precondition(rowCount(fz) == numFeatures,
"principleComponents(): The output matrix fz has to be of dimension numFeatures*numComponents.");
vigra_precondition(columnCount(zv) == numSamples && rowCount(zv) == numComponents,
"principleComponents(): The output matrix zv has to be of dimension numComponents*numSamples.");
Matrix<T> U(numSamples, numFeatures), S(numFeatures, 1), V(numFeatures, numFeatures);
singularValueDecomposition(features.transpose(), U, S, V);
for(int k=0; k<numComponents; ++k)
{
rowVector(zv, k) = columnVector(U, k).transpose() * S(k, 0);
columnVector(fz, k) = columnVector(V, k);
}
}
/*****************************************************************/
/* */
/* probabilistic latent semantic analysis (pLSA) */
/* see T Hofmann, Probabilistic Latent Semantic */
/* Indexing for details */
/* */
/*****************************************************************/
/** \brief Option object for the \ref pLSA algorithm.
*/
class PLSAOptions
{
public:
/** Initialize all options with default values.
*/
PLSAOptions()
: min_rel_gain(1e-4),
max_iterations(50),
normalized_component_weights(true)
{}
/** Maximum number of iterations which is performed by the pLSA algorithm.
default: 50
*/
PLSAOptions & maximumNumberOfIterations(unsigned int n)
{
vigra_precondition(n >= 1,
"PLSAOptions::maximumNumberOfIterations(): number must be a positive integer.");
max_iterations = n;
return *this;
}
/** Minimum relative gain which is required for the algorithm to continue the iterations.
default: 1e-4
*/
PLSAOptions & minimumRelativeGain(double g)
{
vigra_precondition(g >= 0.0,
"PLSAOptions::minimumRelativeGain(): number must be positive or zero.");
min_rel_gain = g;
return *this;
}
/** Normalize the entries of the zv result array.
If true, the columns of zv sum to one. Otherwise, they have the same
column sum as the original feature matrix.
default: true
*/
PLSAOptions & normalizedComponentWeights(bool v = true)
{
normalized_component_weights = v;
return *this;
}
double min_rel_gain;
int max_iterations;
bool normalized_component_weights;
};
/** \brief Decompose a matrix according to the pLSA algorithm.
This function implements the pLSA algorithm (probabilistic latent semantic analysis)
proposed in
T. Hofmann: <a href="http://www.cs.brown.edu/people/th/papers/Hofmann-UAI99.pdf">
<i>"Probabilistic Latent Semantic Analysis"</i></a>,
in: UAI'99, Proc. 15th Conf. on Uncertainty in Artificial Intelligence,
pp. 289-296, Morgan Kaufmann, 1999
\arg features must be a matrix with shape <tt>(numFeatures * numSamples)</tt> and
non-negative entries, which is decomposed into the matrices
\arg fz with shape <tt>(numFeatures * numComponents)</tt> and
\arg zv with shape <tt>(numComponents * numSamples)</tt>
such that
\f[
\mathrm{features} \approx \mathrm{fz} * \mathrm{zv}
\f]
(this formula applies when pLSA is called with
<tt>PLSAOptions.normalizedComponentWeights(false)</tt>. Otherwise, you must
normalize the features by calling <tt>\ref linalg::prepareColumns (features, features, UnitSum)</tt>
to make the formula hold).
The shape parameter <tt>numComponents</tt> determines the complexity of
the decomposition model and therefore the approximation quality.
Intuitively, features are a set of words, and the samples a set of
documents. The entries of the <tt>features</tt> matrix denote the relative
frequency of the words in each document. The components represents a
(presumably small) set of topics. The matrix <tt>fz</tt> encodes the
relative frequency of words in the different topics, and the matrix
<tt>zv</tt> encodes to what extend each topic explains the content of each
document.
The option object determines the iteration termination conditions and the output
normalization. In addition, you may pass a random number generator to pLSA()
which is used to create the initial solution.
<b>Declarations:</b>
<b>\#include</b> \<vigra/unsupervised_decomposition.hxx\>
\code
namespace vigra {
template <class U, class C1, class C2, class C3, class Random>
void
pLSA(MultiArrayView<2, U, C1> const & features,
MultiArrayView<2, U, C2> & fz,
MultiArrayView<2, U, C3> & zv,
Random const& random,
PLSAOptions const & options = PLSAOptions());
template <class U, class C1, class C2, class C3>
void
pLSA(MultiArrayView<2, U, C1> const & features,
MultiArrayView<2, U, C2> & fz,
MultiArrayView<2, U, C3> & zv,
PLSAOptions const & options = PLSAOptions());
}
\endcode
<b>Usage:</b>
\code
Matrix<double> words(numWords, numDocuments);
... // fill the input matrix
int numTopics = 3;
Matrix<double> fz(numWords, numTopics),
zv(numTopics, numDocuments);
pLSA(words, fz, zv, PLSAOptions().normalizedComponentWeights(false));
Matrix<double> model = fz*zv;
double meanSquaredError = (words - model).squaredNorm() / numDocuments;
\endcode
*/
doxygen_overloaded_function(template <...> void pLSA)
template <class U, class C1, class C2, class C3, class Random>
void
pLSA(MultiArrayView<2, U, C1> const & features,
MultiArrayView<2, U, C2> fz,
MultiArrayView<2, U, C3> zv,
Random const& random,
PLSAOptions const & options = PLSAOptions())
{
using namespace linalg; // activate matrix multiplication and arithmetic functions
int numFeatures = rowCount(features);
int numSamples = columnCount(features);
int numComponents = columnCount(fz);
vigra_precondition(numFeatures >= numComponents && numComponents >= 1,
"pLSA(): The number of features has to be larger or equal to the number of components in which the feature matrix is decomposed.");
vigra_precondition(rowCount(fz) == numFeatures,
"pLSA(): The output matrix fz has to be of dimension numFeatures*numComponents.");
vigra_precondition(columnCount(zv) == numSamples && rowCount(zv) == numComponents,
"pLSA(): The output matrix zv has to be of dimension numComponents*numSamples.");
// random initialization of result matrices, subsequent normalization
UniformRandomFunctor<Random> randf(random);
initMultiArray(destMultiArrayRange(fz), randf);
initMultiArray(destMultiArrayRange(zv), randf);
prepareColumns(fz, fz, UnitSum);
prepareColumns(zv, zv, UnitSum);
// init vars
double eps = 1.0/NumericTraits<U>::max(); // epsilon > 0
double lastChange = NumericTraits<U>::max(); // infinity
double err = 0;
double err_old;
int iteration = 0;
// expectation maximization (EM) algorithm
Matrix<U> columnSums(1, numSamples);
features.sum(columnSums);
Matrix<U> expandedSums = ones<U>(numFeatures, 1) * columnSums;
while(iteration < options.max_iterations && (lastChange > options.min_rel_gain))
{
Matrix<U> fzv = fz*zv;
//if(iteration%25 == 0)
//{
//std::cout << "iteration: " << iteration << std::endl;
//std::cout << "last relative change: " << lastChange << std::endl;
//}
Matrix<U> factor = features / pointWise(fzv + (U)eps);
zv *= (fz.transpose() * factor);
fz *= (factor * zv.transpose());
prepareColumns(fz, fz, UnitSum);
prepareColumns(zv, zv, UnitSum);
// check relative change in least squares model fit
Matrix<U> model = expandedSums * pointWise(fzv);
err_old = err;
err = (features - model).squaredNorm();
//std::cout << "error: " << err << std::endl;
lastChange = abs((err-err_old) / (U)(err + eps));
//std::cout << "lastChange: " << lastChange << std::endl;
iteration += 1;
}
//std::cout << "Terminated after " << iteration << " iterations." << std::endl;
//std::cout << "Last relative change was " << lastChange << "." << std::endl;
if(!options.normalized_component_weights)
{
// undo the normalization
for(int k=0; k<numSamples; ++k)
columnVector(zv, k) *= columnSums(0, k);
}
}
template <class U, class C1, class C2, class C3>
inline void
pLSA(MultiArrayView<2, U, C1> const & features,
MultiArrayView<2, U, C2> & fz,
MultiArrayView<2, U, C3> & zv,
PLSAOptions const & options = PLSAOptions())
{
RandomNumberGenerator<> generator(RandomSeed);
pLSA(features, fz, zv, generator, options);
}
//@}
} // namespace vigra
#endif // VIGRA_UNSUPERVISED_DECOMPOSITION_HXX
|