/usr/include/vigra/watersheds.hxx is in libvigraimpex-dev 1.10.0+dfsg-11ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 | /************************************************************************/
/* */
/* Copyright 1998-2005 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_WATERSHEDS_HXX
#define VIGRA_WATERSHEDS_HXX
#include <functional>
#include "mathutil.hxx"
#include "stdimage.hxx"
#include "pixelneighborhood.hxx"
#include "localminmax.hxx"
#include "labelimage.hxx"
#include "seededregiongrowing.hxx"
#include "functorexpression.hxx"
#include "union_find.hxx"
#include "multi_shape.hxx"
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood>
unsigned int watershedLabeling(SrcIterator upperlefts,
SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
Neighborhood)
{
typedef typename DestAccessor::value_type LabelType;
int w = lowerrights.x - upperlefts.x;
int h = lowerrights.y - upperlefts.y;
int x,y;
SrcIterator ys(upperlefts);
SrcIterator xs(ys);
DestIterator yd(upperleftd);
DestIterator xd(yd);
// temporary image to store region labels
detail::UnionFindArray<LabelType> labels;
// initialize the neighborhood circulators
NeighborOffsetCirculator<Neighborhood> ncstart(Neighborhood::CausalFirst);
NeighborOffsetCirculator<Neighborhood> ncstartBorder(Neighborhood::North);
NeighborOffsetCirculator<Neighborhood> ncend(Neighborhood::CausalLast);
++ncend;
NeighborOffsetCirculator<Neighborhood> ncendBorder(Neighborhood::North);
++ncendBorder;
// pass 1: scan image from upper left to lower right
// to find connected components
// Each component will be represented by a tree of pixels. Each
// pixel contains the scan order address of its parent in the
// tree. In order for pass 2 to work correctly, the parent must
// always have a smaller scan order address than the child.
// Therefore, we can merge trees only at their roots, because the
// root of the combined tree must have the smallest scan order
// address among all the tree's pixels/ nodes. The root of each
// tree is distinguished by pointing to itself (it contains its
// own scan order address). This condition is enforced whenever a
// new region is found or two regions are merged
da.set(labels.finalizeLabel(labels.nextFreeLabel()), xd);
++xs.x;
++xd.x;
for(x = 1; x != w; ++x, ++xs.x, ++xd.x)
{
if((sa(xs) & Neighborhood::directionBit(Neighborhood::West)) ||
(sa(xs, Neighborhood::west()) & Neighborhood::directionBit(Neighborhood::East)))
{
da.set(da(xd, Neighborhood::west()), xd);
}
else
{
da.set(labels.finalizeLabel(labels.nextFreeLabel()), xd);
}
}
++ys.y;
++yd.y;
for(y = 1; y != h; ++y, ++ys.y, ++yd.y)
{
xs = ys;
xd = yd;
for(x = 0; x != w; ++x, ++xs.x, ++xd.x)
{
NeighborOffsetCirculator<Neighborhood> nc(x == w-1
? ncstartBorder
: ncstart);
NeighborOffsetCirculator<Neighborhood> nce(x == 0
? ncendBorder
: ncend);
LabelType currentLabel = labels.nextFreeLabel();
for(; nc != nce; ++nc)
{
if((sa(xs) & nc.directionBit()) || (sa(xs, *nc) & nc.oppositeDirectionBit()))
{
currentLabel = labels.makeUnion(da(xd,*nc), currentLabel);
}
}
da.set(labels.finalizeLabel(currentLabel), xd);
}
}
unsigned int count = labels.makeContiguous();
// pass 2: assign one label to each region (tree)
// so that labels form a consecutive sequence 1, 2, ...
yd = upperleftd;
for(y=0; y != h; ++y, ++yd.y)
{
DestIterator xd(yd);
for(x = 0; x != w; ++x, ++xd.x)
{
da.set(labels[da(xd)], xd);
}
}
return count;
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood>
unsigned int watershedLabeling(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
Neighborhood neighborhood)
{
return watershedLabeling(src.first, src.second, src.third,
dest.first, dest.second, neighborhood);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor>
void prepareWatersheds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
FourNeighborCode)
{
int w = lowerrights.x - upperlefts.x;
int h = lowerrights.y - upperlefts.y;
int x,y;
SrcIterator ys(upperlefts);
SrcIterator xs(ys);
DestIterator yd = upperleftd;
for(y = 0; y != h; ++y, ++ys.y, ++yd.y)
{
xs = ys;
DestIterator xd = yd;
for(x = 0; x != w; ++x, ++xs.x, ++xd.x)
{
AtImageBorder atBorder = isAtImageBorder(x,y,w,h);
typename SrcAccessor::value_type v = sa(xs);
// the following choice causes minima to point
// to their lowest neighbor -- would this be better???
// typename SrcAccessor::value_type v = NumericTraits<typename SrcAccessor::value_type>::max();
int o = 0; // means center is minimum
if(atBorder == NotAtBorder)
{
NeighborhoodCirculator<SrcIterator, FourNeighborCode> c(xs), cend(c);
do {
if(sa(c) <= v)
{
v = sa(c);
o = c.directionBit();
}
}
while(++c != cend);
}
else
{
RestrictedNeighborhoodCirculator<SrcIterator, FourNeighborCode> c(xs, atBorder), cend(c);
do {
if(sa(c) <= v)
{
v = sa(c);
o = c.directionBit();
}
}
while(++c != cend);
}
da.set(o, xd);
}
}
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor>
void prepareWatersheds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
EightNeighborCode)
{
int w = lowerrights.x - upperlefts.x;
int h = lowerrights.y - upperlefts.y;
int x,y;
SrcIterator ys(upperlefts);
SrcIterator xs(ys);
DestIterator yd = upperleftd;
for(y = 0; y != h; ++y, ++ys.y, ++yd.y)
{
xs = ys;
DestIterator xd = yd;
for(x = 0; x != w; ++x, ++xs.x, ++xd.x)
{
AtImageBorder atBorder = isAtImageBorder(x,y,w,h);
typename SrcAccessor::value_type v = sa(xs);
// the following choice causes minima to point
// to their lowest neighbor -- would this be better???
// typename SrcAccessor::value_type v = NumericTraits<typename SrcAccessor::value_type>::max();
int o = 0; // means center is minimum
if(atBorder == NotAtBorder)
{
// handle diagonal and principal neighbors separately
// so that principal neighbors are preferred when there are
// candidates with equal strength
NeighborhoodCirculator<SrcIterator, EightNeighborCode>
c(xs, EightNeighborCode::NorthEast);
for(int i = 0; i < 4; ++i, c += 2)
{
if(sa(c) <= v)
{
v = sa(c);
o = c.directionBit();
}
}
--c;
for(int i = 0; i < 4; ++i, c += 2)
{
if(sa(c) <= v)
{
v = sa(c);
o = c.directionBit();
}
}
}
else
{
RestrictedNeighborhoodCirculator<SrcIterator, EightNeighborCode>
c(xs, atBorder), cend(c);
do
{
if(!c.isDiagonal())
continue;
if(sa(c) <= v)
{
v = sa(c);
o = c.directionBit();
}
}
while(++c != cend);
do
{
if(c.isDiagonal())
continue;
if(sa(c) <= v)
{
v = sa(c);
o = c.directionBit();
}
}
while(++c != cend);
}
da.set(o, xd);
}
}
}
/** \addtogroup SeededRegionGrowing Region Segmentation Algorithms
Region growing, watersheds, and voronoi tesselation
*/
//@{
/**\brief Options object for generateWatershedSeeds().
*
<b> Usage:</b>
<b>\#include</b> \<vigra/watersheds.hxx\><br>
Namespace: vigra
\code
MultiArray<2, float> boundary_indicator(w, h);
MultiArray<2, int> seeds(boundary_indicator.shape());
// detect all minima in 'boundary_indicator' that are below gray level 22
generateWatershedSeeds(boundary_indicator, seeds,
SeedOptions().minima().threshold(22.0));
\endcode
*/
class SeedOptions
{
public:
enum DetectMinima { LevelSets, Minima, ExtendedMinima, Unspecified };
double thresh;
DetectMinima mini;
/**\brief Construct default options object.
*
Defaults are: detect minima without thresholding (i.e. all minima).
*/
SeedOptions()
: thresh(NumericTraits<double>::max()),
mini(Minima)
{}
/** Generate seeds at minima.
Default: true
*/
SeedOptions & minima()
{
mini = Minima;
return *this;
}
/** Generate seeds at minima and minimal plateaus.
Default: false
*/
SeedOptions & extendedMinima()
{
mini = ExtendedMinima;
return *this;
}
/** Generate seeds as level sets.
Note that you must also set a threshold to define which level set is to be used.<br>
Default: false
*/
SeedOptions & levelSets()
{
mini = LevelSets;
return *this;
}
/** Generate seeds as level sets at given threshold.
Equivalent to <tt>SeedOptions().levelSet().threshold(threshold)</tt><br>
Default: false
*/
SeedOptions & levelSets(double threshold)
{
mini = LevelSets;
thresh = threshold;
return *this;
}
/** Set threshold.
The threshold will be used by both the minima and level set variants
of seed generation.<br>
Default: no thresholding
*/
SeedOptions & threshold(double threshold)
{
thresh = threshold;
return *this;
}
// check whether the threshold has been set for the target type T
template <class T>
bool thresholdIsValid() const
{
return thresh < double(NumericTraits<T>::max());
}
// indicate that this option object is invalid (for internal use in watersheds)
SeedOptions & unspecified()
{
mini = Unspecified;
return *this;
}
};
/** \brief Generate seeds for watershed computation and seeded region growing.
The source image is a boundary indicator such as the gradient magnitude
or the trace of the \ref boundaryTensor(). Seeds are generally generated
at locations where the boundaryness (i.e. the likelihood of the point being on the
boundary) is very small. In particular, seeds can be placed by either
looking for local minima (possibly including minimal plateaus) of the boundaryness,
of by looking at level sets (i.e. regions where the boundaryness is below a threshold).
Both methods can also be combined, so that only minima below a threshold are returned.
The particular seeding strategy is specified by the <tt>options</tt> object
(see \ref SeedOptions).
The pixel type of the input image must be <tt>LessThanComparable</tt>.
The pixel type of the output image must be large enough to hold the labels for all seeds.
(typically, you will use <tt>UInt32</tt>). The function will label seeds by consecutive integers
(starting from 1) and returns the largest label it used.
Pass \ref vigra::NeighborhoodType "IndirectNeighborhood" or \ref vigra::NeighborhoodType "DirectNeighborhood"
(first form of the function)
or \ref vigra::EightNeighborCode or \ref vigra::FourNeighborCode (second and third forms) to determine the
neighborhood where pixel values are compared.
<b> Declarations:</b>
use arbitrary-dimensional arrays:
\code
namespace vigra {
template <unsigned int N, class T, class S1,
class Label, class S2>
Label
generateWatershedSeeds(MultiArrayView<N, T, S1> const & data,
MultiArrayView<N, Label, S2> seeds,
NeighborhoodType neighborhood = IndirectNeighborhood,
SeedOptions const & options = SeedOptions());
}
\endcode
\deprecatedAPI{generateWatershedSeeds}
pass \ref ImageIterators and \ref DataAccessors :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood = EightNeighborCode>
unsigned int
generateWatershedSeeds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
Neighborhood neighborhood = EightNeighborCode(),
SeedOptions const & options = SeedOptions());
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood = EightNeighborCode>
unsigned int
generateWatershedSeeds(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
Neighborhood neighborhood = EightNeighborCode(),
SeedOptions const & options = SeedOptions());
}
\endcode
\deprecatedEnd
<b> Usage:</b>
<b>\#include</b> \<vigra/multi_watersheds.hxx\> (MultiArray variant)<br>
<b>\#include</b> \<vigra/watersheds.hxx\> (deprecated variants)<br>
Namespace: vigra
For detailed examples see \ref watershedsMultiArray() and \ref watershedsRegionGrowing().
*/
doxygen_overloaded_function(template <...> unsigned int generateWatershedSeeds)
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood>
unsigned int
generateWatershedSeeds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
Neighborhood neighborhood,
SeedOptions const & options = SeedOptions())
{
using namespace functor;
typedef typename SrcAccessor::value_type SrcType;
vigra_precondition(options.mini != SeedOptions::LevelSets ||
options.thresholdIsValid<SrcType>(),
"generateWatershedSeeds(): SeedOptions.levelSets() must be specified with threshold.");
Diff2D shape = lowerrights - upperlefts;
BImage seeds(shape);
if(options.mini == SeedOptions::LevelSets)
{
transformImage(srcIterRange(upperlefts, lowerrights, sa),
destImage(seeds),
ifThenElse(Arg1() <= Param(options.thresh), Param(1), Param(0)));
}
else
{
LocalMinmaxOptions lm_options;
lm_options.neighborhood(Neighborhood::DirectionCount)
.markWith(1.0)
.allowAtBorder()
.allowPlateaus(options.mini == SeedOptions::ExtendedMinima);
if(options.thresholdIsValid<SrcType>())
lm_options.threshold(options.thresh);
localMinima(srcIterRange(upperlefts, lowerrights, sa), destImage(seeds),
lm_options);
}
return labelImageWithBackground(srcImageRange(seeds), destIter(upperleftd, da),
Neighborhood::DirectionCount == 8, 0);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor>
inline unsigned int
generateWatershedSeeds(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
SeedOptions const & options = SeedOptions())
{
return generateWatershedSeeds(upperlefts, lowerrights, sa, upperleftd, da,
EightNeighborCode(), options);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood>
inline unsigned int
generateWatershedSeeds(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
Neighborhood neighborhood,
SeedOptions const & options = SeedOptions())
{
return generateWatershedSeeds(src.first, src.second, src.third,
dest.first, dest.second,
neighborhood, options);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor>
inline unsigned int
generateWatershedSeeds(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
SeedOptions const & options = SeedOptions())
{
return generateWatershedSeeds(src.first, src.second, src.third,
dest.first, dest.second,
EightNeighborCode(), options);
}
/********************************************************/
/* */
/* watershedsUnionFind */
/* */
/********************************************************/
/** \brief Region segmentation by means of the union-find watershed algorithm.
Note: This function is largely obsolete, \ref watershedsMultiArray() should be
preferred unless top speed is required.
This function implements the union-find version of the watershed algorithms
described as algorithm 4.7 in
J. Roerdink, R. Meijster: <em>"The watershed transform: definitions, algorithms,
and parallelization strategies"</em>, Fundamenta Informaticae, 41:187-228, 2000
The source image is a boundary indicator such as the gaussianGradientMagnitude()
or the trace of the \ref boundaryTensor(). Local minima of the boundary indicator
are used as region seeds, and all other pixels are recursively assigned to the same
region as their lowest neighbor. Pass \ref vigra::EightNeighborCode or
\ref vigra::FourNeighborCode to determine the neighborhood where pixel values
are compared. The pixel type of the input image must be <tt>LessThanComparable</tt>.
The function uses accessors.
Note that VIGRA provides an alternative implementation of the watershed transform via
\ref watershedsRegionGrowing(). It is slower, but offers many more configuration options.
<b> Declarations:</b>
pass 2D array views:
\code
namespace vigra {
template <class T1, class S1,
class T2, class S2,
class Neighborhood>
unsigned int
watershedsUnionFind(MultiArrayView<2, T1, S1> const & src,
MultiArrayView<2, T2, S2> dest,
Neighborhood neighborhood = EightNeighborCode());
}
\endcode
\deprecatedAPI{watershedsUnionFind}
pass \ref ImageIterators and \ref DataAccessors :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood = EightNeighborCode>
unsigned int
watershedsUnionFind(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
Neighborhood neighborhood = EightNeighborCode())
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood = EightNeighborCode>
unsigned int
watershedsUnionFind(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
Neighborhood neighborhood = EightNeighborCode())
}
\endcode
\deprecatedEnd
<b> Usage:</b>
<b>\#include</b> \<vigra/watersheds.hxx\><br>
Namespace: vigra
Example: watersheds of the gradient magnitude.
\code
MultiArray<2, float> in(w,h);
... // read input data
// compute gradient magnitude as boundary indicator
MultiArray<2, float> gradMag(w, h);
gaussianGradientMagnitude(src, gradMag, 3.0);
// the pixel type of the destination image must be large enough to hold
// numbers up to 'max_region_label' to prevent overflow
MultiArray<2, unsigned int> labeling(w,h);
unsigned int max_region_label = watershedsUnionFind(gradMag, labeling);
\endcode
\deprecatedUsage{watershedsUnionFind}
Example: watersheds of the gradient magnitude.
\code
vigra::BImage in(w,h);
... // read input data
// compute gradient magnitude as boundary indicator
vigra::FImage gradMag(w, h);
gaussianGradientMagnitude(srcImageRange(src), destImage(gradMag), 3.0);
// the pixel type of the destination image must be large enough to hold
// numbers up to 'max_region_label' to prevent overflow
vigra::IImage labeling(w,h);
int max_region_label = watershedsUnionFind(srcImageRange(gradMag), destImage(labeling));
\endcode
<b> Required Interface:</b>
\code
SrcIterator src_upperleft, src_lowerright;
DestIterator dest_upperleft;
SrcAccessor src_accessor;
DestAccessor dest_accessor;
// compare src values
src_accessor(src_upperleft) <= src_accessor(src_upperleft)
// set result
int label;
dest_accessor.set(label, dest_upperleft);
\endcode
\deprecatedEnd
*/
doxygen_overloaded_function(template <...> unsigned int watershedsUnionFind)
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood>
unsigned int
watershedsUnionFind(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
Neighborhood neighborhood)
{
SImage orientationImage(lowerrights - upperlefts);
prepareWatersheds(upperlefts, lowerrights, sa,
orientationImage.upperLeft(), orientationImage.accessor(), neighborhood);
return watershedLabeling(orientationImage.upperLeft(), orientationImage.lowerRight(), orientationImage.accessor(),
upperleftd, da, neighborhood);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor>
inline unsigned int
watershedsUnionFind(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da)
{
return watershedsUnionFind(upperlefts, lowerrights, sa, upperleftd, da, EightNeighborCode());
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood>
inline unsigned int
watershedsUnionFind(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest, Neighborhood neighborhood)
{
return watershedsUnionFind(src.first, src.second, src.third,
dest.first, dest.second, neighborhood);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor>
inline unsigned int
watershedsUnionFind(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest)
{
return watershedsUnionFind(src.first, src.second, src.third,
dest.first, dest.second);
}
template <class T1, class S1,
class T2, class S2,
class Neighborhood>
inline unsigned int
watershedsUnionFind(MultiArrayView<2, T1, S1> const & src,
MultiArrayView<2, T2, S2> dest, Neighborhood neighborhood)
{
return watershedsUnionFind(srcImageRange(src),
destImage(dest), neighborhood);
}
template <class T1, class S1,
class T2, class S2>
inline unsigned int
watershedsUnionFind(MultiArrayView<2, T1, S1> const & src,
MultiArrayView<2, T2, S2> dest)
{
vigra_precondition(src.shape() == dest.shape(),
"watershedsUnionFind(): shape mismatch between input and output.");
return watershedsUnionFind(srcImageRange(src),
destImage(dest));
}
/** \brief Options object for watershed algorithms.
<b> Usage:</b>
see \ref watershedsMultiArray() and watershedsRegionGrowing() for detailed examples.
*/
class WatershedOptions
{
public:
enum Method { RegionGrowing, UnionFind };
double max_cost, bias;
SRGType terminate;
Method method;
unsigned int biased_label, bucket_count;
SeedOptions seed_options;
/** \brief Create options object with default settings.
Defaults are: perform complete grow (all pixels are assigned to regions),
use standard algorithm, assume that the destination image already contains
region seeds.
*/
WatershedOptions()
: max_cost(0.0),
bias(1.0),
terminate(CompleteGrow),
method(RegionGrowing),
biased_label(0),
bucket_count(0),
seed_options(SeedOptions().unspecified())
{}
/** \brief Perform complete grow.
That is, all pixels are assigned to regions, without explicit contours
in between.
Default: true
*/
WatershedOptions & completeGrow()
{
terminate = SRGType(CompleteGrow | (terminate & StopAtThreshold));
return *this;
}
/** \brief Keep one-pixel wide contour between regions.
Note that this option is unsupported by the turbo algorithm.
Default: false
*/
WatershedOptions & keepContours()
{
terminate = SRGType(KeepContours | (terminate & StopAtThreshold));
return *this;
}
/** \brief Set \ref SRGType explicitly.
Default: CompleteGrow
*/
WatershedOptions & srgType(SRGType type)
{
terminate = type;
return *this;
}
/** \brief Stop region growing when the boundaryness exceeds the threshold.
This option may be combined with completeGrow() and keepContours().
Default: no early stopping
*/
WatershedOptions & stopAtThreshold(double threshold)
{
terminate = SRGType(terminate | StopAtThreshold);
max_cost = threshold;
return *this;
}
/** \brief Use a simpler, but faster region growing algorithm.
The algorithm internally uses a \ref BucketQueue to determine
the processing order of the pixels. This is only useful,
when the input boundary indicator image contains integers
in the range <tt>[0, ..., bucket_count-1]</tt>. Since
these boundary indicators are typically represented as
UInt8 images, the default <tt>bucket_count</tt> is 256.
Default: don't use the turbo algorithm
*/
WatershedOptions & turboAlgorithm(unsigned int bucket_count = 256)
{
this->bucket_count = bucket_count;
method = RegionGrowing;
return *this;
}
/** \brief Specify seed options.
In this case, watershedsRegionGrowing() assumes that the destination
image does not yet contain seeds. It will therefore call
generateWatershedSeeds() and pass on the seed options.
Default: don't compute seeds (i.e. assume that destination image already
contains seeds).
*/
WatershedOptions & seedOptions(SeedOptions const & s)
{
seed_options = s;
return *this;
}
/** \brief Bias the cost of the specified region by the given factor.
In certain applications, one region (typically the background) should
be preferred in region growing. This is most easily achieved
by adjusting the assignment cost for that region as <tt>factor*cost</tt>,
with a factor slightly below 1.
Default: don't bias any region.
*/
WatershedOptions & biasLabel(unsigned int label, double factor)
{
biased_label = label;
bias = factor;
return *this;
}
/** \brief Specify the algorithm to be used.
Possible values are <tt>WatershedOptions::RegionGrowing</tt> and
<tt>WatershedOptions::UnionFind</tt>. The latter algorithm is fastest
but doesn't support seeds and any of the other options.
Default: RegionGrowing.
*/
WatershedOptions & useMethod(Method method)
{
this->method = method;
return *this;
}
/** \brief Use region-growing watershed.
Use this method when you want to specify seeds explicitly (seeded watersheds)
or use any of the other options.
Default: true.
*/
WatershedOptions & regionGrowing()
{
method = RegionGrowing;
return *this;
}
/** \brief Use union-find watershed.
This is the fasted method, but it doesn't support seeds and any of the other
options (they will be silently ignored).
Default: false.
*/
WatershedOptions & unionFind()
{
method = UnionFind;
return *this;
}
};
namespace detail {
template <class CostType, class LabelType>
class WatershedStatistics
{
public:
typedef SeedRgDirectValueFunctor<CostType> value_type;
typedef value_type & reference;
typedef value_type const & const_reference;
typedef CostType first_argument_type;
typedef LabelType second_argument_type;
typedef LabelType argument_type;
WatershedStatistics()
{}
void resize(unsigned int)
{}
void reset()
{}
/** update regions statistics (do nothing in the watershed algorithm)
*/
template <class T1, class T2>
void operator()(first_argument_type const &, second_argument_type const &)
{}
/** ask for maximal index (label) allowed
*/
LabelType maxRegionLabel() const
{ return size() - 1; }
/** ask for array size (i.e. maxRegionLabel() + 1)
*/
LabelType size() const
{ return NumericTraits<LabelType>::max(); }
/** read the statistics functor for a region via its label
*/
const_reference operator[](argument_type label) const
{ return stats; }
/** access the statistics functor for a region via its label
*/
reference operator[](argument_type label)
{ return stats; }
value_type stats;
};
template <class Value>
class SeedRgBiasedValueFunctor
{
public:
double bias;
/* the functor's argument type
*/
typedef Value argument_type;
/* the functor's result type (unused, only necessary for
use of SeedRgDirectValueFunctor in \ref vigra::ArrayOfRegionStatistics
*/
typedef Value result_type;
/* the return type of the cost() function
*/
typedef Value cost_type;
SeedRgBiasedValueFunctor(double b = 1.0)
: bias(b)
{}
/* Do nothing (since we need not update region statistics).
*/
void operator()(argument_type const &) const {}
/* Return scaled argument
*/
cost_type cost(argument_type const & v) const
{
return cost_type(bias*v);
}
};
template <class CostType, class LabelType>
class BiasedWatershedStatistics
{
public:
typedef SeedRgBiasedValueFunctor<CostType> value_type;
typedef value_type & reference;
typedef value_type const & const_reference;
typedef CostType first_argument_type;
typedef LabelType second_argument_type;
typedef LabelType argument_type;
BiasedWatershedStatistics(LabelType biasedLabel, double bias)
: biased_label(biasedLabel),
biased_stats(bias)
{}
void resize(unsigned int)
{}
void reset()
{}
/** update regions statistics (do nothing in the watershed algorithm)
*/
template <class T1, class T2>
void operator()(first_argument_type const &, second_argument_type const &)
{}
/** ask for maximal index (label) allowed
*/
LabelType maxRegionLabel() const
{ return size() - 1; }
/** ask for array size (i.e. maxRegionLabel() + 1)
*/
LabelType size() const
{ return NumericTraits<LabelType>::max(); }
/** read the statistics functor for a region via its label
*/
const_reference operator[](argument_type label) const
{
return (label == biased_label)
? biased_stats
: stats;
}
/** access the statistics functor for a region via its label
*/
reference operator[](argument_type label)
{
return (label == biased_label)
? biased_stats
: stats;
}
LabelType biased_label;
value_type stats, biased_stats;
};
} // namespace detail
/** \brief Region segmentation by means of a flooding-based watershed algorithm.
Note: This function is largely obsolete, \ref watershedsMultiArray() should be
preferred unless top speed is required.
This function implements variants of the watershed algorithm
described in
L. Vincent and P. Soille: <em>"Watersheds in digital spaces: An efficient algorithm
based on immersion simulations"</em>, IEEE Trans. Patt. Analysis Mach. Intell. 13(6):583-598, 1991
The source image is a boundary indicator such as the gaussianGradientMagnitude()
or the trace of the \ref boundaryTensor(), and the destination is a label image
designating membership of each point in one of the regions. Plateaus in the boundary
indicator (i.e. regions of constant gray value) are handled via a Euclidean distance
transform by default.
By default, the destination image is assumed to hold seeds for a seeded watershed
transform. Seeds may, for example, be created by means of generateWatershedSeeds().
Note that the seeds will be overridden with the final watershed segmentation.
Alternatively, you may provide \ref SeedOptions in order to instruct
watershedsRegionGrowing() to generate its own seeds (it will call generateWatershedSeeds()
internally). In that case, the destination image should be zero-initialized.
You can specify the neighborhood system to be used by passing \ref FourNeighborCode
or \ref EightNeighborCode (default).
Further options to be specified via \ref WatershedOptions are:
<ul>
<li> Whether to keep a 1-pixel-wide contour (with label 0) between regions or
perform complete grow (i.e. all pixels are assigned to a region).
<li> Whether to stop growing when the boundaryness exceeds a threshold (remaining
pixels keep label 0).
<li> Whether to use a faster, but less powerful algorithm ("turbo algorithm"). It
is faster because it orders pixels by means of a \ref BucketQueue (therefore,
the boundary indicator must contain integers in the range
<tt>[0, ..., bucket_count-1]</tt>, where <tt>bucket_count</tt> is specified in
the options object), it only supports complete growing (no contour between regions
is possible), and it handles plateaus in a simplistic way. It also saves some
memory because it allocates less temporary storage.
<li> Whether one region (label) is to be preferred or discouraged by biasing its cost
with a given factor (smaller than 1 for preference, larger than 1 for discouragement).
</ul>
Note that VIGRA provides an alternative implementation of the watershed transform via
\ref watershedsUnionFind().
<b> Declarations:</b>
pass 2D array views:
\code
namespace vigra {
template <class T1, class S1,
class T2, class S2,
class Neighborhood = EightNeighborCode>
unsigned int
watershedsRegionGrowing(MultiArrayView<2, T1, S1> const & src,
MultiArrayView<2, T2, S2> dest,
Neighborhood neighborhood = EightNeighborCode(),
WatershedOptions const & options = WatershedOptions());
template <class T1, class S1,
class T2, class S2>
unsigned int
watershedsRegionGrowing(MultiArrayView<2, T1, S1> const & src,
MultiArrayView<2, T2, S2> dest,
WatershedOptions const & options = WatershedOptions());
}
\endcode
\deprecatedAPI{watershedsRegionGrowing}
pass \ref ImageIterators and \ref DataAccessors :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood = EightNeighborCode>
unsigned int
watershedsRegionGrowing(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
Neighborhood neighborhood = EightNeighborCode(),
WatershedOptions const & options = WatershedOptions());
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor>
unsigned int
watershedsRegionGrowing(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
WatershedOptions const & options = WatershedOptions());
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood = EightNeighborCode>
unsigned int
watershedsRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
Neighborhood neighborhood = EightNeighborCode(),
WatershedOptions const & options = WatershedOptions());
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor>
unsigned int
watershedsRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
WatershedOptions const & options = WatershedOptions());
}
\endcode
\deprecatedEnd
<b> Usage:</b>
<b>\#include</b> \<vigra/watersheds.hxx\><br>
Namespace: vigra
Example: watersheds of the gradient magnitude.
\code
MultiArray<2, float> src(w, h);
... // read input data
// compute gradient magnitude at scale 1.0 as a boundary indicator
MultiArray<2, float> gradMag(w, h);
gaussianGradientMagnitude(src, gradMag, 1.0);
// example 1
{
// the pixel type of the destination image must be large enough to hold
// numbers up to 'max_region_label' to prevent overflow
MultiArray<2, unsigned int> labeling(w, h);
// call watershed algorithm for 4-neighborhood, leave a 1-pixel boundary between regions,
// and autogenerate seeds from all gradient minima where the magnitude is below 2.0
unsigned int max_region_label =
watershedsRegionGrowing(gradMag, labeling,
FourNeighborCode(),
WatershedOptions().keepContours()
.seedOptions(SeedOptions().minima().threshold(2.0)));
}
// example 2
{
MultiArray<2, unsigned int> labeling(w, h);
// compute seeds beforehand (use connected components of all pixels
// where the gradient is below 4.0)
unsigned int max_region_label =
generateWatershedSeeds(gradMag, labeling,
SeedOptions().levelSets(4.0));
// quantize the gradient image to 256 gray levels
MultiArray<2, unsigned char> gradMag256(w, h);
FindMinMax<float> minmax;
inspectImage(gradMag, minmax); // find original range
transformImage(gradMag, gradMag256,
linearRangeMapping(minmax, 0, 255));
// call the turbo algorithm with 256 bins, using 8-neighborhood
watershedsRegionGrowing(gradMag256, labeling,
WatershedOptions().turboAlgorithm(256));
}
// example 3
{
MultiArray<2, unsigned int> labeling(w, h);
.. // get seeds from somewhere, e.g. an interactive labeling program,
// make sure that label 1 corresponds to the background
// bias the watershed algorithm so that the background is preferred
// by reducing the cost for label 1 to 90%
watershedsRegionGrowing(gradMag, labeling,
WatershedOptions().biasLabel(1, 0.9));
}
\endcode
\deprecatedUsage{watershedsRegionGrowing}
\code
vigra::BImage src(w, h);
... // read input data
// compute gradient magnitude at scale 1.0 as a boundary indicator
vigra::FImage gradMag(w, h);
gaussianGradientMagnitude(srcImageRange(src), destImage(gradMag), 1.0);
// example 1
{
// the pixel type of the destination image must be large enough to hold
// numbers up to 'max_region_label' to prevent overflow
vigra::IImage labeling(w, h);
// call watershed algorithm for 4-neighborhood, leave a 1-pixel boundary between regions,
// and autogenerate seeds from all gradient minima where the magnitude is below 2.0
unsigned int max_region_label =
watershedsRegionGrowing(srcImageRange(gradMag), destImage(labeling),
FourNeighborCode(),
WatershedOptions().keepContours()
.seedOptions(SeedOptions().minima().threshold(2.0)));
}
// example 2
{
vigra::IImage labeling(w, h);
// compute seeds beforehand (use connected components of all pixels
// where the gradient is below 4.0)
unsigned int max_region_label =
generateWatershedSeeds(srcImageRange(gradMag), destImage(labeling),
SeedOptions().levelSets(4.0));
// quantize the gradient image to 256 gray levels
vigra::BImage gradMag256(w, h);
vigra::FindMinMax<float> minmax;
inspectImage(srcImageRange(gradMag), minmax); // find original range
transformImage(srcImageRange(gradMag), destImage(gradMag256),
linearRangeMapping(minmax, 0, 255));
// call the turbo algorithm with 256 bins, using 8-neighborhood
watershedsRegionGrowing(srcImageRange(gradMag256), destImage(labeling),
WatershedOptions().turboAlgorithm(256));
}
// example 3
{
vigra::IImage labeling(w, h);
.. // get seeds from somewhere, e.g. an interactive labeling program,
// make sure that label 1 corresponds to the background
// bias the watershed algorithm so that the background is preferred
// by reducing the cost for label 1 to 90%
watershedsRegionGrowing(srcImageRange(gradMag), destImage(labeling),
WatershedOptions().biasLabel(1, 0.9));
}
\endcode
<b> Required Interface:</b>
\code
SrcIterator src_upperleft, src_lowerright;
DestIterator dest_upperleft;
SrcAccessor src_accessor;
DestAccessor dest_accessor;
// compare src values
src_accessor(src_upperleft) <= src_accessor(src_upperleft)
// set result
int label;
dest_accessor.set(label, dest_upperleft);
\endcode
\deprecatedEnd
*/
doxygen_overloaded_function(template <...> unsigned int watershedsRegionGrowing)
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood>
unsigned int
watershedsRegionGrowing(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
Neighborhood neighborhood,
WatershedOptions const & options = WatershedOptions())
{
typedef typename SrcAccessor::value_type ValueType;
typedef typename DestAccessor::value_type LabelType;
unsigned int max_region_label = 0;
if(options.seed_options.mini != SeedOptions::Unspecified)
{
// we are supposed to compute seeds
max_region_label =
generateWatershedSeeds(srcIterRange(upperlefts, lowerrights, sa),
destIter(upperleftd, da),
neighborhood, options.seed_options);
}
if(options.biased_label != 0)
{
// create a statistics functor for biased region growing
detail::BiasedWatershedStatistics<ValueType, LabelType>
regionstats(options.biased_label, options.bias);
// perform region growing, starting from the seeds computed above
if(options.bucket_count == 0)
{
max_region_label =
seededRegionGrowing(srcIterRange(upperlefts, lowerrights, sa),
srcIter(upperleftd, da),
destIter(upperleftd, da),
regionstats, options.terminate, neighborhood, options.max_cost);
}
else
{
max_region_label =
fastSeededRegionGrowing(srcIterRange(upperlefts, lowerrights, sa),
destIter(upperleftd, da),
regionstats, options.terminate,
neighborhood, options.max_cost, options.bucket_count);
}
}
else
{
// create a statistics functor for region growing
detail::WatershedStatistics<ValueType, LabelType> regionstats;
// perform region growing, starting from the seeds computed above
if(options.bucket_count == 0)
{
max_region_label =
seededRegionGrowing(srcIterRange(upperlefts, lowerrights, sa),
srcIter(upperleftd, da),
destIter(upperleftd, da),
regionstats, options.terminate, neighborhood, options.max_cost);
}
else
{
max_region_label =
fastSeededRegionGrowing(srcIterRange(upperlefts, lowerrights, sa),
destIter(upperleftd, da),
regionstats, options.terminate,
neighborhood, options.max_cost, options.bucket_count);
}
}
return max_region_label;
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor>
inline unsigned int
watershedsRegionGrowing(SrcIterator upperlefts, SrcIterator lowerrights, SrcAccessor sa,
DestIterator upperleftd, DestAccessor da,
WatershedOptions const & options = WatershedOptions())
{
return watershedsRegionGrowing(upperlefts, lowerrights, sa, upperleftd, da,
EightNeighborCode(), options);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class Neighborhood>
inline unsigned int
watershedsRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
Neighborhood neighborhood,
WatershedOptions const & options = WatershedOptions())
{
return watershedsRegionGrowing(src.first, src.second, src.third,
dest.first, dest.second,
neighborhood, options);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor>
inline unsigned int
watershedsRegionGrowing(triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
WatershedOptions const & options = WatershedOptions())
{
return watershedsRegionGrowing(src.first, src.second, src.third,
dest.first, dest.second,
EightNeighborCode(), options);
}
template <class T1, class S1,
class T2, class S2,
class Neighborhood>
inline unsigned int
watershedsRegionGrowing(MultiArrayView<2, T1, S1> const & src,
MultiArrayView<2, T2, S2> dest,
Neighborhood neighborhood,
WatershedOptions const & options = WatershedOptions())
{
vigra_precondition(src.shape() == dest.shape(),
"watershedsRegionGrowing(): shape mismatch between input and output.");
return watershedsRegionGrowing(srcImageRange(src),
destImage(dest),
neighborhood, options);
}
template <class T1, class S1,
class T2, class S2>
inline unsigned int
watershedsRegionGrowing(MultiArrayView<2, T1, S1> const & src,
MultiArrayView<2, T2, S2> dest,
WatershedOptions const & options = WatershedOptions())
{
vigra_precondition(src.shape() == dest.shape(),
"watershedsRegionGrowing(): shape mismatch between input and output.");
return watershedsRegionGrowing(srcImageRange(src),
destImage(dest),
EightNeighborCode(), options);
}
//@}
} // namespace vigra
#endif // VIGRA_WATERSHEDS_HXX
|