This file is indexed.

/usr/include/x86_64-linux-gnu/visp3/core/vpCylinder.h is in libvisp-core-dev 3.0.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/****************************************************************************
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2015 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See http://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Cylinder feature.
 *
 * Authors:
 * Eric Marchand
 *
 *****************************************************************************/


/*!
  \file vpCylinder.h
  \brief  class that defines what is a cylinder
*/

#ifndef vpCylinder_hh
#define vpCylinder_hh

#include <visp3/core/vpHomogeneousMatrix.h>
#include <math.h>
#include <visp3/core/vpMath.h>

#include <visp3/core/vpForwardProjection.h>

/*!
  \class vpCylinder
  \ingroup group_core_geometry
  \brief Class that defines what is a cylinder.

  A cylinder may be represented by the equation:
  \f$ (X - X_0)^2 + (Y - Y_0)^2 + (Z - Z_0)^2 - (A \; X + B \; Y + C \; Z)^2 - R^2 = 0 \f$
  with

  \f$
  \left\{ \begin{array}{l}
  A^2 + B^2 + C^2 = 1  \\
  A \; X_0 + B \; Y_0 + C \; Z_0 = 0
  \end{array} \right.
  \f$

  where \f$R\f$ is the radius of the cylinder, \f$A, B, C\f$ are the coordinates of
  its direction vector and \f$X_0, Y_0, Z_0\f$ are the coordinates
  of the nearest point belonging to the cylinder axis from the projection center.

  Setting the cylinder parameters is achieved throw the constructors with parameters
  or the setWorldCoordinates() methods.

  Considering the set of parameters \f$^{o}{\bf P} = ({^o}A,{^o}B,{^o}C,{^o}X_0,{^o}Y_0,{^o}Z_0,R)\f$
  expressed in the world frame, cylinder coordinates expressed in the camera
  frame are obtained using changeFrame().

  The projection of a cylinder on the image plane is (for
  non-degenerated cases) a set of two straight lines with equation:

  \f$
  \left\{ \begin{array}{lll}
  x \;\cos\theta_1 + x \;\sin\theta_1 - \rho_1 = 0 \\
  y \;\cos\theta_2 + y \;\sin\theta_2 - \rho_2 = 0
  \end{array} \right.
  \f$

  The projection is achieved using projection() methods. The methods getRho1(), getTheta1() and
  getRho2(), getTheta2() allow to access to the projected line parameters.
*/
class VISP_EXPORT vpCylinder : public vpForwardProjection
{
public:
  typedef enum
  {
    line1, /*!< First limb of the cylinder. */
    line2  /*!< Second limb of the cylinder. */
  } vpLineCylinderType;

  vpCylinder() ;
  vpCylinder(const vpColVector& oP) ;
  vpCylinder(const double A, const double B,
             const double C,
             const double X0, const double Y0,
             const double Z0,
             const double R) ;
  virtual ~vpCylinder() ;

  void changeFrame(const vpHomogeneousMatrix &cMo, vpColVector &cP) ;
  void changeFrame(const vpHomogeneousMatrix &cMo) ;

  void display(const vpImage<unsigned char> &I,
               const vpCameraParameters &cam,
               const vpColor &color=vpColor::green,
               const unsigned int thickness=1) ;
  void display(const vpImage<unsigned char> &I,
               const vpHomogeneousMatrix &cMo,
               const vpCameraParameters &cam,
               const vpColor &color=vpColor::green,
               const unsigned int thickness=1) ;

  vpCylinder *duplicate() const ;

  /*!
    Return the \f$\rho_1\f$ parameter of the line corresponding to the
    projection of the cylinder in the image plane.
    \sa getTheta1()
    */
  double getRho1()   const { return p[0] ; }
  /*!
    Return the \f$\theta_1\f$ parameter of the line corresponding to the
    projection of the cylinder in the image plane.
    \sa getRho1()
    */
  double getTheta1() const { return p[1] ; }

  /*!
    Return the \f$\rho_2\f$ parameter of the line corresponding to the
    projection of the cylinder in the image plane.
    \sa getTheta2()
    */
  double getRho2()   const { return p[2] ; }
  /*!
    Return the \f$\theta_2\f$ parameter of the line corresponding to the
    projection of the cylinder in the image plane.
    \sa getRho2()
    */
  double getTheta2() const { return p[3] ; }

  /*!
    Return cylinder \f$A\f$ parameter expressed in the camera frame.
  */
  double getA() const { return cP[0] ; }
  /*!
    Return cylinder \f$B\f$ parameter expressed in the camera frame.
  */
  double getB() const { return cP[1] ; }
  /*!
    Return cylinder \f$C\f$ parameter expressed in the camera frame.
  */
  double getC() const { return cP[2] ; }
  /*!
    Return cylinder \f$X_0\f$ parameter expressed in the camera frame.
  */
  double getX() const { return cP[3] ; }
  /*!
    Return cylinder \f$Y_0\f$ parameter expressed in the camera frame.
  */
  double getY() const { return cP[4] ; }
  /*!
    Return cylinder \f$Z_0\f$ parameter expressed in the camera frame.
  */
  double getZ() const { return cP[5] ; }
  /*!
    Return cylinder \f$R\f$ parameter corresponding to the cylinder radius.
  */
  double getR() const { return cP[6] ; }

  void init() ;

  void projection() ;
  void projection(const vpColVector &cP, vpColVector &p) ;

  void setWorldCoordinates(const vpColVector& oP) ;
  void setWorldCoordinates(const double A, const double B,
                           const double C,
                           const double X0, const double Y0,
                           const double Z0,
                           const double R) ;
} ;


#endif