This file is indexed.

/usr/include/x86_64-linux-gnu/visp3/me/vpNurbs.h is in libvisp-me-dev 3.0.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/****************************************************************************
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2015 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See http://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * This class implements the Non Uniform Rational B-Spline (NURBS)
 *
 * Authors:
 * Nicolas Melchior
 * 
 *****************************************************************************/

#ifndef vpNurbs_H
#define vpNurbs_H

/*!
  \file vpNurbs.h
  \brief Class that provides tools to compute and manipulate a Non Uniform Rational B-Spline curve.
*/

#include <visp3/core/vpImagePoint.h>
#include <visp3/core/vpMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/me/vpMeSite.h>
#include <visp3/core/vpBSpline.h>
#include <visp3/core/vpList.h>

#include <list>

/*!
  \class vpNurbs
  \ingroup module_me

  \brief Class that provides tools to compute and manipulate a Non Uniform Rational B-Spline curve.
  
  The different parameters are :

  - The knot vector \f$ U = {u_0, ... , u_m} \f$ where the knots \f$ u_i, i = 0, ...,m \f$ are real number such as \f$ u_i < u_{i+1} i = 0, ...,m \f$.
    To define a curve, the knot vector is such as : \f$ U = {a , ... , a, u_{p+1} , ... , u_{m-p-1} , b , ... , b} \f$ where \f$ a \f$ and \f$ b \f$ are real numbers and p is the degree of the B-Spline basis functions.

  - The B-Spline basis functions \f$ N_{i,p} \f$ defined as :
  \f[ N_{i,0}(u) = \left\{\begin{array}{cc}
  1 & \mbox{if } u_i \leq u_{i+1} \\ 0 & else
  \end{array}\right.\f]

  \f[ N_{i,p}(u) = \frac{u-u_i}{u_{i+p}-u_i}N_{i,p-1}(u)+\frac{u_{i+p+1}-u}{u_{i+p+1}-u_{i+1}}N_{i+1,p-1}(u)\f]
  
  where \f$ i = 0 , ... , m-1 \f$ and p is the degree of the B-Spline basis functions.

  - The control points \f$ {P_i} \f$ which are defined by the coordinates \f$ (i,j) \f$ of a point in an image.
  
  - The weight \f$ {w_i} \f$ associated to each control points.The wheights value is upper than 0.

  It is possible to compute the coordinates of a point corresponding to the knots \f$ u \f$ (\f$ u \in [u_0,u_m]\f$) thanks to the formula :
  \f[ C(u) = \frac{\sum_{i=0}^n (N_{i,p}(u)w_iP_i)}{\sum_{i=0}^n (N_{i,p}(u)w_i)}\f]

  You can find much more information about the B-Splines and the implementation of all the methods in the Nurbs Book. 
*/

class VISP_EXPORT vpNurbs : public vpBSpline 
{
protected:
  std::vector<double> weights;  //Vector which contains the weights associated to each control Points


protected:
  static vpMatrix computeCurveDers(double l_u, unsigned int l_i, unsigned int l_p, unsigned int l_der, std::vector<double> &l_knots, std::vector<vpImagePoint> &l_controlPoints, std::vector<double> &l_weights);
  vpMatrix computeCurveDers(double u, unsigned int der);

public:

  vpNurbs();
  vpNurbs(const vpNurbs &nurbs);
  virtual ~vpNurbs();

  /*!
      Gets all the weights relative to the control points.

      \return list : A std::list containing weights relative to the control points.
    */
  inline void get_weights(std::list<double>& list) const {
    list.clear();
    for (unsigned int i = 0; i < weights.size(); i++)
      list.push_back(*(&(weights[0])+i));
  }

  /*!
      Sets all the knots.

      \param list : A std::list containing the value of the knots.
    */
  inline void set_weights(const std::list<double> &list) {
    weights.clear();
    for(std::list<double>::const_iterator it=list.begin(); it!=list.end(); ++it){
      weights.push_back(*it);
    }
  }

  static vpImagePoint computeCurvePoint(double l_u, unsigned int l_i, unsigned int l_p, std::vector<double> &l_knots, std::vector<vpImagePoint> &l_controlPoints, std::vector<double> &l_weights);
  vpImagePoint computeCurvePoint(double u);

  static vpImagePoint* computeCurveDersPoint(double l_u, unsigned int l_i, unsigned int l_p, unsigned int l_der, std::vector<double> &l_knots, std::vector<vpImagePoint> &l_controlPoints, std::vector<double> &l_weights);
  vpImagePoint* computeCurveDersPoint(double u, unsigned int der);

  static void curveKnotIns(double l_u, unsigned int l_k, unsigned int l_s, unsigned int l_r, unsigned int l_p, std::vector<double> &l_knots, std::vector<vpImagePoint> &l_controlPoints, std::vector<double> &l_weights);
  void curveKnotIns(double u, unsigned int s = 0, unsigned int r = 1);

  static void refineKnotVectCurve(double* l_x, unsigned int l_r, unsigned int l_p, std::vector<double> &l_knots, std::vector<vpImagePoint> &l_controlPoints, std::vector<double> &l_weights);
  void refineKnotVectCurve(double* x, unsigned int r);

  static unsigned int removeCurveKnot(double l_u, unsigned int l_r, unsigned int l_num, double l_TOL, unsigned int l_s, unsigned int l_p, std::vector<double> &l_knots, std::vector<vpImagePoint> &l_controlPoints, std::vector<double> &l_weights);
  unsigned int removeCurveKnot(double l_u, unsigned int l_r, unsigned int l_num, double l_TOL);

  static void globalCurveInterp(std::vector<vpImagePoint> &l_crossingPoints, unsigned int l_p, std::vector<double> &l_knots, std::vector<vpImagePoint> &l_controlPoints, std::vector<double> &l_weights);
  void globalCurveInterp(vpList<vpMeSite>& l_crossingPoints);
  void globalCurveInterp(const std::list<vpImagePoint>& l_crossingPoints);
  void globalCurveInterp(const std::list<vpMeSite>& l_crossingPoints);
  void globalCurveInterp();

  static void globalCurveApprox(std::vector<vpImagePoint> &l_crossingPoints, unsigned int l_p, unsigned int l_n, std::vector<double> &l_knots, std::vector<vpImagePoint> &l_controlPoints, std::vector<double> &l_weights);
  void globalCurveApprox(vpList<vpMeSite>& l_crossingPoints, unsigned int n);
  void globalCurveApprox(const std::list<vpImagePoint>& l_crossingPoints, unsigned int n);
  void globalCurveApprox(const std::list<vpMeSite>& l_crossingPoints, unsigned int n);
  void globalCurveApprox(unsigned int n);
};

#endif