This file is indexed.

/usr/include/votca/tools/cubicspline.h is in libvotca-tools-dev 1.2.4-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/* 
 * Copyright 2009-2011 The VOTCA Development Team (http://www.votca.org)
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

#ifndef _CUBICSPLINE_H
#define	_CUBICSPLINE_H

#include "spline.h"
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/vector_proxy.hpp>
#include <boost/numeric/ublas/vector_expression.hpp>
#include <iostream>

using namespace std;
namespace votca { namespace tools {

namespace ub = boost::numeric::ublas;

/**
    \brief A cubic spline class
  
    This class does cubic piecewise spline interpolation and spline fitting.
    As representation of a single spline, the general form
    \f[
        S_i(x) = A(x,h_i) f_i + B(x,h_i) f_{i+1} + C(x,h_i) f''_i + d(x,h_i) f''_{i+1}
    \f]
    with
    \f[
        x_i \le x < x_{i+1}\,,\\
        h_i = x_{i+1} - x_{i}
    \f]
    The \f$f_i\,,\,,f''_i\f$ are the function values and second derivates
    at point \f$x_i\f$.

    The parameters \f$f''_i\f$ are no free parameters, they are determined by the 
    smoothing condition that the first derivatives are continuous. So the only free
    paramers are the grid points x_i as well as the functon values f_i at these points. A spline can be generated in several ways:
    - Interpolation spline
    - Fitting spline (fit to noisy data)
    - calculate the parameters elsewere and fill the spline class
*/

class CubicSpline : public Spline
{    
public:
    // default constructor
    CubicSpline() {};
    //CubicSpline() :
    //    _boundaries(splineNormal) {}
    
    // destructor
    ~CubicSpline() {};

    // construct an interpolation spline
    // x, y are the the points to construct interpolation, both vectors must be of same size
    void Interpolate(ub::vector<double> &x, ub::vector<double> &y);
    
    // fit spline through noisy data
    // x,y are arrays with noisy data, both vectors must be of same size
    void Fit(ub::vector<double> &x, ub::vector<double> &y);
    
    // Calculate the function value
    double Calculate(const double &x);

    // Calculate the function derivative
    double CalculateDerivative(const double &x);
    
    // Calculate the function value for a whole array, story it in y
    template<typename vector_type1, typename vector_type2>
    void Calculate(vector_type1 &x, vector_type2 &y);

    // Calculate the derivative value for a whole array, story it in y
    template<typename vector_type1, typename vector_type2>
    void CalculateDerivative(vector_type1 &x, vector_type2 &y);

    // set spline parameters to values that were externally computed
    template<typename vector_type>
    void setSplineData(vector_type &f, vector_type &f2) { _f = f; _f2 = f2;}

    /**
     * \brief Add a point (one entry) to fitting matrix
     * \param pointer to matrix
     * \param value x
     * \param offsets relative to getInterval(x)
     * \param scale parameters for terms "A,B,C,D"
     * When creating a matrix to fit data with a spline, this function creates
     * one entry in that fitting matrix.
    */
    template<typename matrix_type>
    void AddToFitMatrix(matrix_type &A, double x,
            int offset1, int offset2=0, double scale=1);

    /**
     * \brief Add a vector of points to fitting matrix
     * \param pointer to matrix
     * \param vector of x values
     * \param offsets relative to getInterval(x)
     * Same as previous function, but vector-valued and with scale=1.0
    */
    template<typename matrix_type, typename vector_type>
    void AddToFitMatrix(matrix_type &M, vector_type &x, 
            int offset1, int offset2=0);

    /**
     * \brief Add boundary conditions to fitting matrix
     * \param pointer to matrix
     * \param offsets
    */
    template<typename matrix_type>
    void AddBCToFitMatrix(matrix_type &A,
            int offset1, int offset2=0);


protected:    
    // A spline can be written in the form
    // S_i(x) =   A(x,x_i,x_i+1)*f_i     + B(x,x_i,x_i+1)*f''_i 
    //          + C(x,x_i,x_i+1)*f_{i+1} + D(x,x_i,x_i+1)*f''_{i+1}
    double A(const double &r);
    double B(const double &r);
    double C(const double &r);
    double D(const double &r);

    double Aprime(const double &r);
    double Bprime(const double &r);
    double Cprime(const double &r);
    double Dprime(const double &r);
  
    // tabulated derivatives at grid points. Second argument: 0 - left, 1 - right    
    double A_prime_l(int i);     
    double A_prime_r(int i);     
    double B_prime_l(int i);    
    double B_prime_r(int i);    
    double C_prime_l(int i);
    double C_prime_r(int i);
    double D_prime_l(int i);
    double D_prime_r(int i);
};

inline double CubicSpline::Calculate(const double &r)
{
    int interval =  getInterval(r);
    return  A(r)*_f[interval] 
            + B(r)*_f[interval + 1] 
            + C(r)*_f2[interval]
            + D(r)*_f2[interval + 1];
}

inline double CubicSpline::CalculateDerivative(const double &r)
{
    int interval =  getInterval(r);
    return  Aprime(r)*_f[interval]
            + Bprime(r)*_f[interval + 1]
            + Cprime(r)*_f2[interval]
            + Dprime(r)*_f2[interval + 1];
}

template<typename matrix_type>
inline void CubicSpline::AddToFitMatrix(matrix_type &M, double x, 
            int offset1, int offset2, double scale)
{
    int spi = getInterval(x);
    M(offset1, offset2 + spi) += A(x)*scale;
    M(offset1, offset2 + spi+1) += B(x)*scale;
    M(offset1, offset2 + spi + _r.size()) += C(x)*scale;
    M(offset1, offset2 + spi + _r.size() + 1) += D(x)*scale;
}

template<typename matrix_type, typename vector_type>
inline void CubicSpline::AddToFitMatrix(matrix_type &M, vector_type &x, 
            int offset1, int offset2)
{
    for(size_t i=0; i<x.size(); ++i) {
        int spi = getInterval(x(i));
        M(offset1+i, offset2 + spi) = A(x(i));
        M(offset1+i, offset2 + spi+1) = B(x(i));
        M(offset1+i, offset2 + spi + _r.size()) = C(x(i));
        M(offset1+i, offset2 + spi + _r.size() + 1) = D(x(i));
    }
}

template<typename matrix_type>
inline void CubicSpline::AddBCToFitMatrix(matrix_type &M,
            int offset1, int offset2)
{
    for(size_t i=0; i<_r.size() - 2; ++i) {
            M(offset1+i+1, offset2 + i) = A_prime_l(i);
            M(offset1+i+1, offset2 + i+1) = B_prime_l(i) - A_prime_r(i);
            M(offset1+i+1, offset2 + i+2) = -B_prime_r(i);

            M(offset1+i+1, offset2 + _r.size() + i) = C_prime_l(i);
            M(offset1+i+1, offset2 + _r.size() + i+1) = D_prime_l(i) - C_prime_r(i);
            M(offset1+i+1, offset2 + _r.size() + i+2) = -D_prime_r(i);
    }
    // currently only natural boundary conditions:
    switch(_boundaries) {
        case splineNormal:
            M(offset1, offset2 + _r.size()) = 1;
            M(offset1 + _r.size() - 1, offset2 + 2*_r.size()-1) = 1;
            break;
        case splineDerivativeZero:
            // y
            M(offset1+0, offset2 + 0) = -1*A_prime_l(0);
            M(offset1+0, offset2 + 1) = -1*B_prime_l(0);

            M(offset1+ _r.size()-1, offset2 + _r.size()-2) = A_prime_l(_r.size()-2);
            M(offset1+ _r.size()-1, offset2 + _r.size()-1) = B_prime_l(_r.size()-2);
            
            // y''
            M(offset1+0, offset2 + _r.size() + 0) =  D_prime_l(0);
            M(offset1+0, offset2 + _r.size() + 1) = C_prime_l(0);

            M(offset1+ _r.size()-1, offset2 + 2*_r.size()-2) = C_prime_l(_r.size()-2);
            M(offset1+ _r.size()-1, offset2 + 2*_r.size()-1) = D_prime_l(_r.size()-2);
            break;

        case splinePeriodic:
            M(offset1, offset2) = 1;
            M(offset1, offset2 + _r.size()-1) = -1;
            M(offset1 + _r.size() - 1, offset2 + _r.size()) = 1;
            M(offset1 + _r.size() - 1, offset2 + 2*_r.size()-1) = -1;
            break;
    }
    
}

inline double CubicSpline::A(const double &r)
{
    return ( 1.0 - (r -_r[getInterval(r)])/(_r[getInterval(r)+1]-_r[getInterval(r)]) );
}

inline double CubicSpline::Aprime(const double &r)
{
    return  -1.0/(_r[getInterval(r)+1]-_r[getInterval(r)]);
}

inline double CubicSpline::B(const double &r)
{
    return  (r -_r[getInterval(r)])/(_r[getInterval(r)+1]-_r[getInterval(r)]) ;
}

inline double CubicSpline::Bprime(const double &r)
{
    return  1.0/(_r[getInterval(r)+1]-_r[getInterval(r)]);
}

inline double CubicSpline::C(const double &r)
{
    double xxi, h;
    xxi = r -_r[getInterval(r)];
    h   = _r[getInterval(r)+1]-_r[getInterval(r)];
    
    return ( 0.5*xxi*xxi - (1.0/6.0)*xxi*xxi*xxi/h - (1.0/3.0)*xxi*h) ;
}
inline double CubicSpline::Cprime(const double &r)
{
    double xxi, h;
    xxi = r -_r[getInterval(r)];
    h   = _r[getInterval(r)+1]-_r[getInterval(r)];

    return (xxi - 0.5*xxi*xxi/h - h/3);
}
inline double CubicSpline::D(const double &r)
{
    double xxi, h;
    xxi = r -_r[getInterval(r)];
    h   = _r[getInterval(r)+1]-_r[getInterval(r)]; 
    
    return ( (1.0/6.0)*xxi*xxi*xxi/h - (1.0/6.0)*xxi*h ) ;
}
inline double CubicSpline::Dprime(const double &r)
{
    double xxi, h;
    xxi = r -_r[getInterval(r)];
    h   = _r[getInterval(r)+1]-_r[getInterval(r)];

    return ( 0.5*xxi*xxi/h - (1.0/6.0)*h ) ;
}

/**
inline int CubicSpline::getInterval(double &r)
{
    if (r < _r[0] || r > _r[_r.size() - 1]) return -1;
    return int( (r - _r[0]) / (_r[_r.size()-1] - _r[0]) * (_r.size() - 1) );
}
 **/

inline double CubicSpline::A_prime_l(int i)
{
    return -1.0/(_r[i+1]-_r[i]);
}

inline double CubicSpline::B_prime_l(int i)
{
    return 1.0/(_r[i+1]-_r[i]);
}

inline double CubicSpline::C_prime_l(int i)
{
    return (1.0/6.0)*(_r[i+1]-_r[i]);
}

inline double CubicSpline::D_prime_l(int i)
{
    return (1.0/3.0)*(_r[i+1]-_r[i]);
}

inline double CubicSpline::A_prime_r(int i)
{
    return -1.0/(_r[i+2]-_r[i+1]);
}

inline double CubicSpline::B_prime_r(int i)
{
    return 1.0/(_r[i+2]-_r[i+1]);
}

inline double CubicSpline::C_prime_r(int i)
{
    return -(1.0/3.0)*(_r[i+2]-_r[i+1]);
}

inline double CubicSpline::D_prime_r(int i)
{
    return -(1.0/6.0)*(_r[i+2]-_r[i+1]);
}

}}

#endif	/* _CUBICSPLINE_H */