/usr/include/votca/tools/spline.h is in libvotca-tools-dev 1.2.4-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | /*
* File: spline.h
* Author: hahng
*
* Created on December 10, 2010, 1:42 PM
*/
#ifndef __VOTCA_SPLINE_H
#define __VOTCA_SPLINE_H
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/vector_proxy.hpp>
#include <boost/numeric/ublas/vector_expression.hpp>
namespace votca{namespace tools{
namespace ub = boost::numeric::ublas;
/**
* \brief Spline Class
*
* class supports spline interpolation and fit of data
* the cubic spline class, akima spline class and linear spline class are inherited from this one
*/
class Spline
{
public:
Spline() :
_boundaries(splineNormal) {}
virtual ~Spline() {}
/**
* \brief Calculate interpolating spline for given (x,y) values. Points on resulting spline can be obtained via Calculate().
* \param x values of data to be interpolated
* \param y values of data to be interpolated
* both vectors must be of same size
*/
virtual void Interpolate(ub::vector<double> &x, ub::vector<double> &y) = 0;
/**
* \brief Fit spline through noisy (x,y) values. Points on resulting fitted spline can be obtained via Calculate().
* \param x values of data to be fitted
* \param y values of data to be fitted
* both vectors must be of same size
*/
virtual void Fit(ub::vector<double> &x, ub::vector<double> &y) = 0;
/**
* \brief Calculate spline function value for a given x value on the spline created by Interpolate() or Fit()
* \param x data value
* \return y value
*/
virtual double Calculate(const double &x) = 0;
/**
* \brief Calculate y value for a given x value on the derivative of the spline created by function Interpolate or Fit
* \param x data value
* \return y value of derivative
*/
virtual double CalculateDerivative(const double &x) = 0;
/// enum for type of boundary condition
enum eBoundary {
splineNormal = 0, ///< normal boundary conditions: \f$f_0=f_N=0\f$
splinePeriodic, ///< periodic boundary conditions: \f$f_0=f_N\f$
splineDerivativeZero ///< derivatives and end-points are zero.
};
/**
* \brief Set the boundary type of the spline
* \param boundary of type eBoundary
*/
void setBC(eBoundary bc) {_boundaries = bc;}
/**
* \brief Get the grid point of certain index
* \param index of grid point
* \return grid value
*/
inline double getGridPoint(const size_t &i);
/**
* \brief Calculate spline function values for given x values on the spline created by Interpolate() or Fit()
* \param vector of x data values
* \return vector of y value
*/
template<typename vector_type1, typename vector_type2>
inline void Calculate(vector_type1 &x, vector_type2 &y);
/**
* \brief Calculate y values for given x values on the derivative of the spline created by function Interpolate or Fit
* \param vector of x data values
* \return vector of y value
*/
template<typename vector_type1, typename vector_type2>
inline void CalculateDerivative(vector_type1 &x, vector_type2 &y);
/**
* \brief Print spline values (using Calculate()) on output "out" on the entire grid in steps of "interval"
* \param reference "out" to output
* \param steps of size "interval"
*/
inline void Print(std::ostream &out, double interval);
/**
* \brief Determine the index of the interval containing value r
* \param value r
* \return interval index
*/
inline int getInterval(const double &r);
/**
* \brief Generate the grid for fitting from "min" to "max" in steps of "h"
* \param left interval border "min"
* \param right interval border "max"
* \param step "h"
* \return number of grid values in the interval
*/
int GenerateGrid(double min, double max, double h);
/**
* \brief Get the grid array x
* \return pointer to the corresponding array
*/
ub::vector<double> &getX() {return _r; }
/**
* \brief Get the spline data _f
* \return pointer to the corresponding array
*/
ub::vector<double> &getSplineF() { return _f; }
/**
* \brief Get second derivatives (cubic splines)
* \return pointer to the corresponding array
*/
ub::vector<double> &getSplineF2() { return _f2; }
protected:
eBoundary _boundaries;
// the grid points
ub::vector<double> _r;
// y values of grid points
ub::vector<double> _f;
// second derivatives of grid points
ub::vector<double> _f2;
};
template<typename vector_type1, typename vector_type2>
inline void Spline::Calculate(vector_type1 &x, vector_type2 &y)
{
for(size_t i=0; i<x.size(); ++i)
y(i) = Calculate(x(i));
}
template<typename vector_type1, typename vector_type2>
inline void Spline::CalculateDerivative(vector_type1 &x, vector_type2 &y)
{
for(size_t i=0; i<x.size(); ++i)
y(i) = CalculateDerivative(x(i));
}
inline void Spline::Print(std::ostream &out, double interval)
{
for (double x = _r[0]; x < _r[_r.size() - 1]; x += interval)
out << x << " " << Calculate(x) << "\n";
}
inline int Spline::getInterval(const double &r)
{
if (r < _r[0]) return 0;
if(r > _r[_r.size() - 2]) return _r.size()-2;
size_t i;
for(i=0; i<_r.size(); ++i)
if(_r[i]>r) break;
return i-1;
}
inline double Spline::getGridPoint(const size_t &i)
{
if(i>=_r.size()) {
return 0;
}
return _r[i];
}
}}
#endif /* __VOTCA_SPLINE_H */
|