/usr/include/vtk-5.10/vtkCellLocator.h is in libvtk5-dev 5.10.1+dfsg-2.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkCellLocator.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkCellLocator - octree-based spatial search object to quickly locate cells
// .SECTION Description
// vtkCellLocator is a spatial search object to quickly locate cells in 3D.
// vtkCellLocator uses a uniform-level octree subdivision, where each octant
// (an octant is also referred to as a bucket) carries an indication of
// whether it is empty or not, and each leaf octant carries a list of the
// cells inside of it. (An octant is not empty if it has one or more cells
// inside of it.) Typical operations are intersection with a line to return
// candidate cells, or intersection with another vtkCellLocator to return
// candidate cells.
// .SECTION Caveats
// Many other types of spatial locators have been developed, such as
// variable depth octrees and kd-trees. These are often more efficient
// for the operations described here. vtkCellLocator has been designed
// for subclassing; so these locators can be derived if necessary.
// .SECTION See Also
// vtkLocator vtkPointLocator vtkOBBTree
#ifndef __vtkCellLocator_h
#define __vtkCellLocator_h
#include "vtkAbstractCellLocator.h"
class vtkNeighborCells;
class VTK_FILTERING_EXPORT vtkCellLocator : public vtkAbstractCellLocator
{
public:
vtkTypeMacro(vtkCellLocator,vtkAbstractCellLocator);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct with automatic computation of divisions, averaging
// 25 cells per bucket.
static vtkCellLocator *New();
// Description:
// Specify the average number of cells in each octant.
void SetNumberOfCellsPerBucket(int N)
{ this->SetNumberOfCellsPerNode(N); }
int GetNumberOfCellsPerBucket()
{ return this->NumberOfCellsPerNode; }
//BTX
/*
if the borland compiler is ever removed, we can use these declarations
instead of reimplementaing the calls in this subclass
using vtkAbstractCellLocator::IntersectWithLine;
using vtkAbstractCellLocator::FindClosestPoint;
using vtkAbstractCellLocator::FindClosestPointWithinRadius;
*/
//ETX
// Description:
// reimplemented from vtkAbstractCellLocator to support bad compilers
virtual int IntersectWithLine(
double a0[3], double a1[3], double tol,
double& t, double x[3], double pcoords[3],
int &subId)
{
return Superclass::
IntersectWithLine(a0, a1, tol,t, x, pcoords, subId);
}
// Description:
// reimplemented from vtkAbstractCellLocator to support bad compilers
virtual int IntersectWithLine(
double a0[3], double a1[3], double tol,
double& t, double x[3], double pcoords[3],
int &subId, vtkIdType &cellId)
{
return Superclass::
IntersectWithLine(a0, a1, tol,t, x, pcoords, subId, cellId);
}
// Description:
// reimplemented from vtkAbstractCellLocator to support bad compilers
virtual int IntersectWithLine(
const double a0[3], const double a1[3],
vtkPoints *points, vtkIdList *cellIds)
{
return Superclass::
IntersectWithLine(a0, a1, points, cellIds);
}
// Description:
// Return intersection point (if any) AND the cell which was intersected by
// the finite line. The cell is returned as a cell id and as a generic cell.
// For other IntersectWithLine signatures, see vtkAbstractCellLocator
virtual int IntersectWithLine(double a0[3], double a1[3], double tol,
double& t, double x[3], double pcoords[3],
int &subId, vtkIdType &cellId,
vtkGenericCell *cell);
// Description:
// reimplemented from vtkAbstractCellLocator to support bad compilers
virtual void FindClosestPoint(
double x[3], double closestPoint[3],
vtkIdType &cellId, int &subId, double& dist2)
{
Superclass::
FindClosestPoint(x, closestPoint, cellId, subId, dist2);
}
// Description:
// Return the closest point and the cell which is closest to the point x.
// The closest point is somewhere on a cell, it need not be one of the
// vertices of the cell. This version takes in a vtkGenericCell
// to avoid allocating and deallocating the cell. This is much faster than
// the version which does not take a *cell, especially when this function is
// called many times in a row such as by a for loop, where the allocation and
// deallocation can be done only once outside the for loop. If a cell is
// found, "cell" contains the points and ptIds for the cell "cellId" upon
// exit.
virtual void FindClosestPoint(
double x[3], double closestPoint[3],
vtkGenericCell *cell, vtkIdType &cellId,
int &subId, double& dist2);
// Description:
// reimplemented from vtkAbstractCellLocator to support bad compilers
virtual vtkIdType FindClosestPointWithinRadius(
double x[3], double radius,
double closestPoint[3], vtkIdType &cellId,
int &subId, double& dist2)
{
return Superclass::FindClosestPointWithinRadius
(x, radius, closestPoint, cellId, subId, dist2);
}
// Description:
// reimplemented from vtkAbstractCellLocator to support bad compilers
virtual vtkIdType FindClosestPointWithinRadius(
double x[3], double radius,
double closestPoint[3],
vtkGenericCell *cell, vtkIdType &cellId,
int &subId, double& dist2)
{
return Superclass::FindClosestPointWithinRadius
(x, radius, closestPoint, cell, cellId, subId, dist2);
}
// Description:
// Return the closest point within a specified radius and the cell which is
// closest to the point x. The closest point is somewhere on a cell, it
// need not be one of the vertices of the cell. This method returns 1 if a
// point is found within the specified radius. If there are no cells within
// the specified radius, the method returns 0 and the values of
// closestPoint, cellId, subId, and dist2 are undefined. This version takes
// in a vtkGenericCell to avoid allocating and deallocating the cell. This
// is much faster than the version which does not take a *cell, especially
// when this function is called many times in a row such as by a for loop,
// where the allocation and dealloction can be done only once outside the
// for loop. If a closest point is found, "cell" contains the points and
// ptIds for the cell "cellId" upon exit. If a closest point is found,
// inside returns the return value of the EvaluatePosition call to the
// closest cell; inside(=1) or outside(=0).
// For other FindClosestPointWithinRadius signatures, see vtkAbstractCellLocator
virtual vtkIdType FindClosestPointWithinRadius(
double x[3], double radius, double closestPoint[3],
vtkGenericCell *cell, vtkIdType &cellId,
int &subId, double& dist2, int &inside);
// Description:
// Get the cells in a particular bucket.
virtual vtkIdList *GetCells(int bucket);
// Description:
// Return number of buckets available. Insure that the locator has been
// built before attempting to access buckets (octants).
virtual int GetNumberOfBuckets(void);
// Description:
// Returns the Id of the cell containing the point,
// returns -1 if no cell found. This interface uses a tolerance of zero
virtual vtkIdType FindCell(double x[3])
{ return this->Superclass::FindCell(x); }
// Description:
// Find the cell containing a given point. returns -1 if no cell found
// the cell parameters are copied into the supplied variables, a cell must
// be provided to store the information.
virtual vtkIdType FindCell(
double x[3], double tol2, vtkGenericCell *GenCell,
double pcoords[3], double *weights);
// Description:
// Return a list of unique cell ids inside of a given bounding box. The
// user must provide the vtkIdList to populate. This method returns data
// only after the locator has been built.
virtual void FindCellsWithinBounds(double *bbox, vtkIdList *cells);
// Description:
// Given a finite line defined by the two points (p1,p2), return the list
// of unique cell ids in the buckets containing the line. It is possible
// that an empty cell list is returned. The user must provide the vtkIdList
// to populate. This method returns data only after the locator has been
// built.
virtual void FindCellsAlongLine(
double p1[3], double p2[3], double tolerance, vtkIdList *cells);
// Description:
// Satisfy vtkLocator abstract interface.
virtual void FreeSearchStructure();
virtual void BuildLocator();
virtual void BuildLocatorIfNeeded();
virtual void ForceBuildLocator();
virtual void BuildLocatorInternal();
virtual void GenerateRepresentation(int level, vtkPolyData *pd);
protected:
vtkCellLocator();
~vtkCellLocator();
void GetBucketNeighbors(int ijk[3], int ndivs, int level);
void GetOverlappingBuckets(double x[3], int ijk[3], double dist,
int prevMinLevel[3], int prevMaxLevel[3]);
void ClearCellHasBeenVisited();
void ClearCellHasBeenVisited(int id);
double Distance2ToBucket(double x[3], int nei[3]);
double Distance2ToBounds(double x[3], double bounds[6]);
int NumberOfOctants; // number of octants in tree
double Bounds[6]; // bounding box root octant
int NumberOfParents; // number of parent octants
double H[3]; // width of leaf octant in x-y-z directions
int NumberOfDivisions; // number of "leaf" octant sub-divisions
vtkIdList **Tree; // octree
void MarkParents(void*, int, int, int, int, int);
void GetChildren(int idx, int level, int children[8]);
int GenerateIndex(int offset, int numDivs, int i, int j, int k,
vtkIdType &idx);
void GenerateFace(int face, int numDivs, int i, int j, int k,
vtkPoints *pts, vtkCellArray *polys);
vtkNeighborCells *Buckets;
unsigned char *CellHasBeenVisited;
unsigned char QueryNumber;
void ComputeOctantBounds(int i, int j, int k);
double OctantBounds[6]; //the bounds of the current octant
int IsInOctantBounds(double x[3])
{
if ( this->OctantBounds[0] <= x[0] && x[0] <= this->OctantBounds[1] &&
this->OctantBounds[2] <= x[1] && x[1] <= this->OctantBounds[3] &&
this->OctantBounds[4] <= x[2] && x[2] <= this->OctantBounds[5] )
{
return 1;
}
else
{
return 0;
}
}
private:
vtkCellLocator(const vtkCellLocator&); // Not implemented.
void operator=(const vtkCellLocator&); // Not implemented.
};
#endif
|