This file is indexed.

/usr/include/vtk-5.10/vtkHyperOctree.h is in libvtk5-dev 5.10.1+dfsg-2.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkHyperOctree.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkHyperOctree - A dataset structured as a tree where each node has
// exactly 2^n children.
// .SECTION Description
// An hyperoctree is a dataset where each node has either exactly 2^n children
// or no child at all if the node is a leaf. `n' is the dimension of the
// dataset (1 (binary tree), 2 (quadtree) or 3 (octree) ).
// The class name comes from the following paper:
//
// \verbatim
// @ARTICLE{yau-srihari-1983,
//  author={Mann-May Yau and Sargur N. Srihari},
//  title={A Hierarchical Data Structure for Multidimensional Digital Images},
//  journal={Communications of the ACM},
//  month={July},
//  year={1983},
//  volume={26},
//  number={7},
//  pages={504--515}
//  }
// \endverbatim
//
// Each node is a cell. Attributes are associated with cells, not with points.
// The geometry is implicitly given by the size of the root node on each axis
// and position of the center and the orientation. (TODO: review center
// position and orientation). The geometry is then not limited to an hybercube
// but can have a rectangular shape.
// Attributes are associated with leaves. For LOD (Level-Of-Detail) purpose,
// attributes can be computed on none-leaf nodes by computing the average
// values from its children (which can be leaves or not).
//
// By construction, an hyperoctree is efficient in memory usage when the
// geometry is sparse. The LOD feature allows to cull quickly part of the
// dataset.
//
// A couple of filters can be applied on this dataset: contour, outline,
// geometry.
//
// * 3D case (octree)
// for each node, each child index (from 0 to 7) is encoded in the following
// orientation. It is easy to access each child as a cell of a grid.
// Note also that the binary representation is relevant, each bit code a
// side: bit 0 encodes -x side (0) or +x side (1)
// bit 1 encodes -y side (0) or +y side (1)
// bit 2 encodes -z side (0) or +z side (2)
// - the -z side first
// - 0: -y -x sides
// - 1: -y +x sides
// - 2: +y -x sides
// - 3: +y +x sides
// \verbatim
//              +y
// +-+-+        ^
// |2|3|        |
// +-+-+  O +z  +-> +x
// |0|1|
// +-+-+
// \endverbatim
//
// - then the +z side, in counter-clockwise
// - 4: -y -x sides
// - 5: -y +x sides
// - 6: +y -x sides
// - 7: +y +x sides
// \verbatim
//              +y
// +-+-+        ^
// |6|7|        |
// +-+-+  O +z  +-> +x
// |4|5|
// +-+-+
// \endverbatim
//
// The cases with fewer dimensions are consistent with the octree case:
//
// * Quadtree:
// in counter-clockwise
// - 0: -y -x edges
// - 1: -y +x edges
// - 2: +y -x edges
// - 3: +y +x edges
// \verbatim
//         +y
// +-+-+   ^
// |2|3|   |
// +-+-+  O+-> +x
// |0|1|
// +-+-+
// \endverbatim
//
// * Binary tree:
// \verbatim
// +0+1+  O+-> +x
// \endverbatim
//
// .SECTION Caveats
// It is not a spatial search object! If you looking for this kind of
// octree see vtkCellLocator instead.

// .SECTION See Also
// vtkHyperOctreeAlgorithm

#ifndef __vtkHyperOctree_h
#define __vtkHyperOctree_h

#include "vtkDataSet.h"

class vtkHyperOctreeLightWeightCursor;
class vtkHyperOctreeCursor;
class vtkHyperOctreeInternal;
class vtkHyperOctreePointsGrabber;

class vtkHyperOctreeIdSet; // Pimpl idiom
class vtkPolygon;
class vtkIdTypeArray;
class vtkPoints;
class vtkPointLocator;
class vtkOrderedTriangulator;
class vtkDataSetAttributes;

class vtkLine;
class vtkPixel;
class vtkVoxel;
class vtkCellLinks;

class VTK_FILTERING_EXPORT vtkHyperOctree : public vtkDataSet
{
public:
  static vtkInformationIntegerKey* LEVELS();
  static vtkInformationIntegerKey* DIMENSION();
  static vtkInformationDoubleVectorKey* SIZES();
  static vtkHyperOctree *New();
  
  vtkTypeMacro(vtkHyperOctree,vtkDataSet);
  void PrintSelf(ostream& os, vtkIndent indent);
  
  // Description:
  // Return what type of dataset this is.
  int GetDataObjectType();
  
  // Description:
  // Copy the geometric and topological structure of an input rectilinear grid
  // object.
  void CopyStructure(vtkDataSet *ds);
  
  // Return the node describes by the path from the root.
  // Path is a sequence of number between 0 and 7.
  // \pre path_exists: path!=0
  // \pre node_exists: IsANode(path)
//  vtkOctree *GetNode(vtkPath *path);
  
  // Description:
  // Return the dimension of the tree (1D:binary tree(2 children), 2D:quadtree(4 children),
  // 3D:octree (8 children))
  // \post valid_result: result>=1 && result<=3
  int GetDimension();
  
  // Description:
  // Set the dimension of the tree with `dim'. See GetDimension() for details.
  // \pre valid_dim: dim>=1 && dim<=3
  // \post dimension_is_set: GetDimension()==dim
  void SetDimension(int dim);
  
  // Return if the node for the given path exists or not.
  // \pre path_exists: path!=0
//  int IsANode(vtkPath *path);
  
  // Return if the node for the given path is a leaf or not.
  // \pre path_exists: path!=0
  // \pre node_exists: IsANode(path)
//  int IsALeaf(vtkPath *path);
  
  // Measurement: topology
  
  // Description:
  // Return the number of cells in the dual grid.
  // \post positive_result: result>=0
  vtkIdType GetNumberOfCells();
  
  // Description:
  // Get the number of leaves in the tree.
  vtkIdType GetNumberOfLeaves();
  
  // Description:
  // Return the number of points in the dual grid.
  // \post positive_result: result>=0
  vtkIdType GetNumberOfPoints();
  
  // Description:
  // Return the number of points corresponding to an hyperoctree starting at
  // level `level' where all the leaves at at the last level. In this case, the
  // hyperoctree is like a uniform grid. So this number is the number of points
  // of the uniform grid. 
  // \pre positive_level: level>=0 && level<this->GetNumberOfLevels()
  // \post definition: result==(2^(GetNumberOfLevels()-level-1)+1)^GetDimension()
  vtkIdType GetMaxNumberOfPoints(int level);
  
  // Description:
  // Return the number of points corresponding to the boundary of an
  // hyperoctree starting at level `level' where all the leaves at at the last
  // level. In this case, the hyperoctree is like a uniform grid. So this
  // number is the number of points of on the boundary of the uniform grid.
  // For an octree, the boundary are the faces. For a quadtree, the boundary
  // are the edges.
  // \pre 2d_or_3d: this->GetDimension()==2 || this->GetDimension()==3
  // \pre positive_level: level>=0 && level<this->GetNumberOfLevels()
  // \post min_result: result>=GetMaxNumberOfPoints(this->GetNumberOfLevels()-1)
  // \post max_result: result<=GetMaxNumberOfPoints(level)
  vtkIdType GetMaxNumberOfPointsOnBoundary(int level);
 
  // Description:
  // Return the number of cells corresponding to the boundary of a cell
  // of level `level' where all the leaves at at the last level. 
  // \pre positive_level: level>=0 && level<this->GetNumberOfLevels()
  // \post positive_result: result>=0
  vtkIdType GetMaxNumberOfCellsOnBoundary(int level);
  
  // Description:
  // Return the number of levels.
  // \post result_greater_or_equal_to_one: result>=1
  vtkIdType GetNumberOfLevels();

  // Measurement: geometry
  
  // Description:
  // Set the size on each axis.
  vtkSetVector3Macro(Size,double);
  
  // Description:
  // Return the size on each axis.
  vtkGetVector3Macro(Size,double);
  
  // Description:
  // Set the origin (position of corner (0,0,0) of the root.
  vtkSetVector3Macro(Origin,double);
  // Return the origin (position of corner (0,0,0) ) of the root.
  vtkGetVector3Macro(Origin,double);
  
  // Description:
  // Create a new cursor: an object that can traverse
  // the cell of an hyperoctree.
  // \post result_exists: result!=0
  vtkHyperOctreeCursor *NewCellCursor();
    
  // Description:
  // Subdivide node pointed by cursor, only if its a leaf.
  // At the end, cursor points on the node that used to be leaf.
  // \pre leaf_exists: leaf!=0
  // \pre is_a_leaf: leaf->CurrentIsLeaf()
  void SubdivideLeaf(vtkHyperOctreeCursor *leaf);
  
  // Description:
  // Collapse a node for which all children are leaves.
  // At the end, cursor points on the leaf that used to be a node.
  // \pre node_exists: node!=0
  // \pre node_is_node: !node->CurrentIsLeaf()
  // \pre children_are_leaves: node->CurrentIsTerminalNode()
  void CollapseTerminalNode(vtkHyperOctreeCursor *node);
  
  // Description:
  // Get point coordinates with ptId such that: 0 <= ptId < NumberOfPoints.
  // THIS METHOD IS NOT THREAD SAFE.
  virtual double *GetPoint(vtkIdType ptId);

  // Description:
  // Copy point coordinates into user provided array x[3] for specified
  // point id.
  // THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
  // THE DATASET IS NOT MODIFIED
  virtual void GetPoint(vtkIdType id, double x[3]);
  
  // Description:
  // Get cell with cellId such that: 0 <= cellId < NumberOfCells.
  // THIS METHOD IS NOT THREAD SAFE.
  virtual vtkCell *GetCell(vtkIdType cellId);

  // Description:
  // Get cell with cellId such that: 0 <= cellId < NumberOfCells. 
  // This is a thread-safe alternative to the previous GetCell()
  // method.
  // THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
  // THE DATASET IS NOT MODIFIED
  virtual void GetCell(vtkIdType cellId, vtkGenericCell *cell);
  
   
  // Description:
  // Get type of cell with cellId such that: 0 <= cellId < NumberOfCells.
  // THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
  // THE DATASET IS NOT MODIFIED
  virtual int GetCellType(vtkIdType cellId);

  // Description:
  // Topological inquiry to get points defining cell.
  // THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
  // THE DATASET IS NOT MODIFIED
  virtual void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds);
  virtual void GetCellPoints(vtkIdType cellId, vtkIdType& npts,
                             vtkIdType* &pts);

  // Description:
  // Topological inquiry to get cells using point.
  // THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
  // THE DATASET IS NOT MODIFIED
  virtual void GetPointCells(vtkIdType ptId, vtkIdList *cellIds);

  
  // Description:
  // Topological inquiry to get all cells using list of points exclusive of
  // cell specified (e.g., cellId). Note that the list consists of only
  // cells that use ALL the points provided.
  // THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
  // THE DATASET IS NOT MODIFIED
  virtual void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds, 
                                vtkIdList *cellIds);

  virtual vtkIdType FindPoint(double x[3]);

  // Description:
  // Locate cell based on global coordinate x and tolerance
  // squared. If cell and cellId is non-NULL, then search starts from
  // this cell and looks at immediate neighbors.  Returns cellId >= 0
  // if inside, < 0 otherwise.  The parametric coordinates are
  // provided in pcoords[3]. The interpolation weights are returned in
  // weights[]. (The number of weights is equal to the number of
  // points in the found cell). Tolerance is used to control how close
  // the point is to be considered "in" the cell.
  // THIS METHOD IS NOT THREAD SAFE.
  virtual vtkIdType FindCell(double x[3], vtkCell *cell, vtkIdType cellId,
                             double tol2, int& subId, double pcoords[3],
                             double *weights);

  // Description:
  // This is a version of the above method that can be used with 
  // multithreaded applications. A vtkGenericCell must be passed in
  // to be used in internal calls that might be made to GetCell()
  // THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
  // THE DATASET IS NOT MODIFIED
  virtual vtkIdType FindCell(double x[3], vtkCell *cell,
                             vtkGenericCell *gencell, vtkIdType cellId,
                             double tol2, int& subId, double pcoords[3],
                             double *weights);
  
  // Description:
  // Restore data object to initial state,
  // THIS METHOD IS NOT THREAD SAFE.
  void Initialize();
  
  // Description:
  // Convenience method returns largest cell size in dataset. This is generally
  // used to allocate memory for supporting data structures.
  // This is the number of points of a cell.
  // THIS METHOD IS THREAD SAFE
  virtual int GetMaxCellSize();
  
  // Description:
  // Shallow and Deep copy.
  void ShallowCopy(vtkDataObject *src);  
  void DeepCopy(vtkDataObject *src);
  
  // Description:
  // Get the points of node `sibling' on its face `face'.
  // \pre sibling_exists: sibling!=0
  // \pre sibling_not_leaf: !sibling->CurrentIsLeaf()
  // \pre sibling_3d: sibling->GetDimension()==3
  // \pre valid_face: face>=0 && face<6
  // \pre valid_level_not_leaf: level>=0 level<(this->GetNumberOfLevels()-1)
  void GetPointsOnFace(vtkHyperOctreeCursor *sibling,
                       int face,
                       int level,
                       vtkHyperOctreePointsGrabber *grabber);
 
  // Description:
  // Get the points of the parent node of `cursor' on its faces `faces' at
  // level `level' or deeper.
  // \pre cursor_exists: cursor!=0
  // \pre cursor_3d: cursor->GetDimension()==3
  // \pre valid_level: level>=0
  // \pre boolean_faces: (faces[0]==0 || faces[0]==1) && (faces[1]==0 || faces[1]==1) && (faces[2]==0 || faces[2]==1)
  void GetPointsOnParentFaces(int faces[3],
                              int level,
                              vtkHyperOctreeCursor *cursor,
                              vtkHyperOctreePointsGrabber *grabber);
  
  // Description:
  // Get the points of node `sibling' on its edge `axis','k','j'.
  // If axis==0, the edge is X-aligned and k gives the z coordinate and j the
  // y-coordinate. If axis==1, the edge is Y-aligned and k gives the x coordinate
  // and j the z coordinate. If axis==2, the edge is Z-aligned and k gives the
  // y coordinate and j the x coordinate.
  // \pre sibling_exists: sibling!=0
  // \pre sibling_3d: sibling->GetDimension()==3
  // \pre sibling_not_leaf: !sibling->CurrentIsLeaf()
  // \pre valid_axis: axis>=0 && axis<3
  // \pre valid_k: k>=0 && k<=1
  // \pre valid_j: j>=0 && j<=1
  // \pre valid_level_not_leaf: level>=0 level<(this->Input->GetNumberOfLevels()-1)
  void GetPointsOnEdge(vtkHyperOctreeCursor *sibling,
                       int level,
                       int axis,
                       int k,
                       int j,
                       vtkHyperOctreePointsGrabber *grabber);
  
  // Description:
  // Get the points of the parent node of `cursor' on its edge `axis','k','j'
  // at level `level' or deeper.
  // If axis==0, the edge is X-aligned and k gives the z coordinate and j the
  // y-coordinate. If axis==1, the edge is Y-aligned and k gives the x
  // coordinate and j the z coordinate. If axis==2, the edge is Z-aligned and
  // k gives the y coordinate and j the x coordinate.
  // \pre cursor_exists: cursor!=0
  // \pre cursor_3d: cursor->GetDimension()==3
  // \pre valid_level: level>=0
  // \pre valid_range_axis: axis>=0 && axis<3
  // \pre valid_range_k: k>=0 && k<=1
  // \pre valid_range_j: j>=0 && j<=1
  void GetPointsOnParentEdge(vtkHyperOctreeCursor *cursor,
                             int level,
                             int axis,
                             int k,
                             int j,
                             vtkHyperOctreePointsGrabber *grabber);
  
  // Description:
  // Get the points of node `sibling' on its edge `edge'.
  // \pre sibling_exists: sibling!=0
  // \pre sibling_not_leaf: !sibling->CurrentIsLeaf()
  // \pre sibling_2d: sibling->GetDimension()==2
  // \pre valid_edge: edge>=0 && edge<4
  // \pre valid_level_not_leaf: level>=0 level<(this->Input->GetNumberOfLevels()-1)
  void GetPointsOnEdge2D(vtkHyperOctreeCursor *sibling,
                         int edge,
                         int level,
                         vtkHyperOctreePointsGrabber *grabber);
  
  // Description:
  // Get the points of the parent node of `cursor' on its edge `edge' at
  // level `level' or deeper. (edge=0 for -X, 1 for +X, 2 for -Y, 3 for +Y)
  // \pre cursor_exists: cursor!=0
  // \pre cursor_2d: cursor->GetDimension()==2
  // \pre valid_level: level>=0
  // \pre valid_edge: edge>=0 && edge<4
  void GetPointsOnParentEdge2D(vtkHyperOctreeCursor *cursor,
                               int edge,
                               int level,
                               vtkHyperOctreePointsGrabber *grabber);
  
  // Description:
  // A generic way to set the leaf data attributes.
  // This can be either point data for dual or cell data for normal grid.
  vtkDataSetAttributes* GetLeafData();
  
  // Description:
  // Switch between returning leaves as cells, or the dual grid.
  void SetDualGridFlag(int flag);
  vtkGetMacro(DualGridFlag,int);

  // Description:
  // Return the actual size of the data in kilobytes. This number
  // is valid only after the pipeline has updated. The memory size
  // returned is guaranteed to be greater than or equal to the
  // memory required to represent the data (e.g., extra space in
  // arrays, etc. are not included in the return value). THIS METHOD
  // IS THREAD SAFE.
  unsigned long GetActualMemorySize();

  //BTX
  // Description:
  // Retrieve an instance of this class from an information object.
  static vtkHyperOctree* GetData(vtkInformation* info);
  static vtkHyperOctree* GetData(vtkInformationVector* v, int i=0);
  //ETX

protected:
  // Constructor with default bounds (0,1, 0,1, 0,1).
  vtkHyperOctree();
  ~vtkHyperOctree();

  void ComputeBounds();
  
  int Dimension; // 1, 2 or 3.
  
  double Size[3]; // size on each axis
  double Origin[3]; // position of corner (0,0,0) of the root.
  
  vtkHyperOctreeInternal *CellTree;

  vtkHyperOctreeCursor *TmpChild; // to avoid allocation in the loop

  //BTX
  friend class vtkHyperOctreeLightWeightCursor;
  //ETX
  
  // Initialize the arrays if necessary, then return it.
  void UpdateDualArrays();
  vtkPoints* GetLeafCenters();
  vtkIdTypeArray* GetCornerLeafIds();
  vtkPoints *LeafCenters;
  vtkIdTypeArray *CornerLeafIds;
  
  void UpdateGridArrays();
  vtkPoints* GetCornerPoints();
  vtkIdTypeArray* GetLeafCornerIds();
  vtkPoints* CornerPoints;
  vtkIdTypeArray* LeafCornerIds;
  
  void DeleteInternalArrays();

  void TraverseDualRecursively(vtkHyperOctreeLightWeightCursor* neighborhood, 
                               unsigned short *xyzIds, int level);
  void TraverseGridRecursively(vtkHyperOctreeLightWeightCursor* neighborhood, 
                               unsigned char* visited,
                               double* origin, double* size);
  void EvaluateDualCorner(vtkHyperOctreeLightWeightCursor* neighborhood);
  vtkIdType EvaluateGridCorner(int level,vtkHyperOctreeLightWeightCursor* neighborhood,
                               unsigned char* visited, int* cornerNeighborIds);

  // This is a table for traversing a neighborhood down an octree.
  // 8 children x 27 cursors
  // First three bits encode the child,  rest encode the cursor id.
  // 8xCursorId + childId.
  // This will be shorter when we get rid of the 3x3x3 neighborhood.
  // I was using unsigned char, but VS60 optimized build had a problem.
  int NeighborhoodTraversalTable[216];
  void GenerateGridNeighborhoodTraversalTable();  
  void GenerateDualNeighborhoodTraversalTable();  

  // for the GetCell method
  vtkLine *Line;
  vtkPixel *Pixel;
  vtkVoxel *Voxel;

  vtkCellLinks* Links;  
  void BuildLinks();

  vtkIdType RecursiveFindPoint(double x[3], 
    vtkHyperOctreeLightWeightCursor* cursor, 
    double *origin, double *size);

  // This toggles the data set API between the leaf cells and
  // the dual grid (leaves are points, corners are cells). 
  int DualGridFlag;

private:
  vtkHyperOctree(const vtkHyperOctree&);  // Not implemented.
  void operator=(const vtkHyperOctree&);    // Not implemented.
};


//BTX

class VTK_FILTERING_EXPORT vtkHyperOctreeLightWeightCursor
{
public:  
  vtkHyperOctreeLightWeightCursor();
  ~vtkHyperOctreeLightWeightCursor();

  void Initialize(vtkHyperOctree* tree);
  void ToRoot();
  void ToChild(int child);
  unsigned short GetIsLeaf();
  int GetLeafIndex() {return this->Index;} // Only valid for leaves.
  vtkHyperOctree* GetTree() { return this->Tree; }
  unsigned short GetLevel() {return this->Level;}
private:
  vtkHyperOctree* Tree;
  int Index;
  unsigned short IsLeaf;
  unsigned short Level;
};

//ETX

#endif