This file is indexed.

/usr/include/wfmath-1.0/wfmath/ball_funcs.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// ball_funcs.h (n-dimensional ball implementation)
//
//  The WorldForge Project
//  Copyright (C) 2000, 2001  The WorldForge Project
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software
//  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
//  For information about WorldForge and its authors, please contact
//  the Worldforge Web Site at http://www.worldforge.org.
//

// Author: Ron Steinke

#ifndef WFMATH_BALL_FUNCS_H
#define WFMATH_BALL_FUNCS_H

#include <wfmath/ball.h>

#include <wfmath/axisbox.h>
#include <wfmath/miniball.h>

#include <cassert>

namespace WFMath {

template<int dim>
AxisBox<dim> Ball<dim>::boundingBox() const
{
  Point<dim> p_low, p_high;

  for(int i = 0; i < dim; ++i) {
    p_low[i] = m_center[i] - m_radius;
    p_high[i] = m_center[i] + m_radius;
  }

  bool valid = m_center.isValid();

  p_low.setValid(valid);
  p_high.setValid(valid);

  return AxisBox<dim>(p_low, p_high, true);
}

template<int dim, template<class, class> class container>
Ball<dim> BoundingSphere(const container<Point<dim>, std::allocator<Point<dim> > >& c)
{
  _miniball::Miniball<dim> m;
  _miniball::Wrapped_array<dim> w;

  typename container<Point<dim>, std::allocator<Point<dim> > >::const_iterator i, end = c.end();
  bool valid = true;

  for(i = c.begin(); i != end; ++i) {
    valid = valid && i->isValid();
    for(int j = 0; j < dim; ++j)
      w[j] = (*i)[j];
    m.check_in(w);
  }

  m.build();

#ifndef NDEBUG
  double dummy;
#endif
  assert("Check that bounding sphere is good to library accuracy" &&
         m.accuracy(dummy) < numeric_constants<CoordType>::epsilon());

  w = m.center();
  Point<dim> center;

  for(int j = 0; j < dim; ++j)
    center[j] = w[j];

  center.setValid(valid);

  return Ball<dim>(center, std::sqrt(m.squared_radius()));
}

template<int dim, template<class, class> class container>
Ball<dim> BoundingSphereSloppy(const container<Point<dim>, std::allocator<Point<dim> > >& c)
{
  // This is based on the algorithm given by Jack Ritter
  // in Volume 2, Number 4 of Ray Tracing News
  // <http://www.acm.org/tog/resources/RTNews/html/rtnews7b.html>

  typename container<Point<dim>, std::allocator<Point<dim> > >::const_iterator i = c.begin(),
						end = c.end();
  if (i == end) {
    return Ball<dim>();
  }

  CoordType min[dim], max[dim];
  typename container<Point<dim>, std::allocator<Point<dim> > >::const_iterator min_p[dim], max_p[dim];
  bool valid = i->isValid();

  for(int j = 0; j < dim; ++j) {
    min[j] = max[j] = (*i)[j];
    min_p[j] = max_p[j] = i;
  }

  while(++i != end) {
    valid = valid && i->isValid();
    for(int j = 0; j < dim; ++j) {
      if(min[j] > (*i)[j]) {
        min[j] = (*i)[j];
        min_p[j] = i;
      }
      if(max[j] < (*i)[j]) {
        max[j] = (*i)[j];
        max_p[j] = i;
      }
    }
  }

  CoordType span = -1;
  int direction = -1;

  for(int j = 0; j < dim; ++j) {
    CoordType new_span = max[j] - min[j];
    if(new_span > span) {
      span = new_span;
      direction = j;
    }
  }

  assert("Have a direction of maximum size" && direction != -1);

  Point<dim> center = Midpoint(*(min_p[direction]), *(max_p[direction]));
  CoordType dist = SloppyDistance(*(min_p[direction]), center);

  for(i = c.begin(); i != end; ++i) {
    if(i == min_p[direction] || i == max_p[direction])
      continue; // We already have these

    CoordType new_dist = SloppyDistance(*i, center);

    if(new_dist > dist) {
      CoordType delta_dist = (new_dist - dist) / 2;
      // Even though new_dist may be too large, delta_dist / new_dist
      // always gives enough of a shift to include the new point.
      center += (*i - center) * delta_dist / new_dist;
      dist += delta_dist;
      assert("Shifted ball contains new point" &&
             SquaredDistance(*i, center) <= dist * dist);
    }
  }

  center.setValid(valid);

  return Ball<dim>(center, dist);
}

// These two are here, instead of defined in the class, to
// avoid include order problems

template<int dim>
inline Ball<dim> Point<dim>::boundingSphere() const
{
  return Ball<dim>(*this, 0);
}

template<int dim>
inline Ball<dim> Point<dim>::boundingSphereSloppy() const
{
  return Ball<dim>(*this, 0);
}

} // namespace WFMath

#endif  // WFMATH_BALL_FUNCS_H