/usr/include/wfmath-1.0/wfmath/polygon.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 | // polygon.h (A 2D polygon embeded in a <dim> dimensional space)
//
// The WorldForge Project
// Copyright (C) 2002 The WorldForge Project
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// For information about WorldForge and its authors, please contact
// the Worldforge Web Site at http://www.worldforge.org.
//
// Author: Ron Steinke
#ifndef WFMATH_POLYGON_H
#define WFMATH_POLYGON_H
#include <wfmath/const.h>
#include <wfmath/axisbox.h>
#include <wfmath/ball.h>
#include <wfmath/quaternion.h>
#include <vector>
namespace WFMath {
template<int dim> class Polygon;
template<int dim>
std::ostream& operator<<(std::ostream& os, const Polygon<dim>& r);
template<int dim>
std::istream& operator>>(std::istream& is, Polygon<dim>& r);
/// The 2D specialization of the Polygon<> template
template<>
class Polygon<2>
{
public:
Polygon() : m_points() {}
Polygon(const Polygon& p) : m_points(p.m_points) {}
/// Construct a polygon from an object passed by Atlas
explicit Polygon(const AtlasInType& a) : m_points() {fromAtlas(a);}
~Polygon() {}
friend std::ostream& operator<< <2>(std::ostream& os, const Polygon& p);
friend std::istream& operator>> <2>(std::istream& is, Polygon& p);
/// Create an Atlas object from the box
AtlasOutType toAtlas() const;
/// Set the box's value to that given by an Atlas object
void fromAtlas(const AtlasInType& a);
Polygon& operator=(const Polygon& p)
{m_points = p.m_points; return *this;}
bool isEqualTo(const Polygon& p, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;
bool operator==(const Polygon& p) const {return isEqualTo(p);}
bool operator!=(const Polygon& p) const {return !isEqualTo(p);}
bool isValid() const;
// Descriptive characteristics
size_t numCorners() const {return m_points.size();}
Point<2> getCorner(size_t i) const {return m_points[i];}
Point<2> getCenter() const {return Barycenter(m_points);}
// For a Polygon<2>, addCorner() and moveCorner() always succeed.
// The return values are present for the sake of a unified template
// interface, and the epsilon argument is ignored
// Add before i'th corner, zero is beginning, numCorners() is end
bool addCorner(size_t i, const Point<2>& p, CoordType = numeric_constants<CoordType>::epsilon())
{m_points.insert(m_points.begin() + i, p); return true;}
// Remove the i'th corner
void removeCorner(size_t i) {m_points.erase(m_points.begin() + i);}
// Move the i'th corner to p
bool moveCorner(size_t i, const Point<2>& p, CoordType = numeric_constants<CoordType>::epsilon())
{m_points[i] = p; return true;}
// Remove all points
void clear() {m_points.clear();}
const Point<2>& operator[](size_t i) const {return m_points[i];}
Point<2>& operator[](size_t i) {return m_points[i];}
void resize(std::vector<Point<2> >::size_type size) {m_points.resize(size);}
// Movement functions
Polygon& shift(const Vector<2>& v);
Polygon& moveCornerTo(const Point<2>& p, size_t corner)
{return shift(p - getCorner(corner));}
Polygon& moveCenterTo(const Point<2>& p)
{return shift(p - getCenter());}
Polygon& rotateCorner(const RotMatrix<2>& m, size_t corner)
{rotatePoint(m, getCorner(corner)); return *this;}
Polygon& rotateCenter(const RotMatrix<2>& m)
{rotatePoint(m, getCenter()); return *this;}
Polygon& rotatePoint(const RotMatrix<2>& m, const Point<2>& p);
// Intersection functions
AxisBox<2> boundingBox() const {return BoundingBox(m_points);}
Ball<2> boundingSphere() const {return BoundingSphere(m_points);}
Ball<2> boundingSphereSloppy() const {return BoundingSphereSloppy(m_points);}
Polygon toParentCoords(const Point<2>& origin,
const RotMatrix<2>& rotation = RotMatrix<2>().identity()) const;
Polygon toParentCoords(const AxisBox<2>& coords) const;
Polygon toParentCoords(const RotBox<2>& coords) const;
// toLocal is just like toParent, expect we reverse the order of
// translation and rotation and use the opposite sense of the rotation
// matrix
Polygon toLocalCoords(const Point<2>& origin,
const RotMatrix<2>& rotation = RotMatrix<2>().identity()) const;
Polygon toLocalCoords(const AxisBox<2>& coords) const;
Polygon toLocalCoords(const RotBox<2>& coords) const;
friend bool Intersect<2>(const Polygon& r, const Point<2>& p, bool proper);
friend bool Contains<2>(const Point<2>& p, const Polygon& r, bool proper);
friend bool Intersect<2>(const Polygon& p, const AxisBox<2>& b, bool proper);
friend bool Contains<2>(const Polygon& p, const AxisBox<2>& b, bool proper);
friend bool Contains<2>(const AxisBox<2>& b, const Polygon& p, bool proper);
friend bool Intersect<2>(const Polygon& p, const Ball<2>& b, bool proper);
friend bool Contains<2>(const Polygon& p, const Ball<2>& b, bool proper);
friend bool Contains<2>(const Ball<2>& b, const Polygon& p, bool proper);
friend bool Intersect<2>(const Polygon& r, const Segment<2>& s, bool proper);
friend bool Contains<2>(const Polygon& p, const Segment<2>& s, bool proper);
friend bool Contains<2>(const Segment<2>& s, const Polygon& p, bool proper);
friend bool Intersect<2>(const Polygon& p, const RotBox<2>& r, bool proper);
friend bool Contains<2>(const Polygon& p, const RotBox<2>& r, bool proper);
friend bool Contains<2>(const RotBox<2>& r, const Polygon& p, bool proper);
friend bool Intersect<2>(const Polygon& p1, const Polygon& p2, bool proper);
friend bool Contains<2>(const Polygon& outer, const Polygon& inner, bool proper);
private:
std::vector<Point<2> > m_points;
typedef std::vector<Point<2> >::iterator theIter;
typedef std::vector<Point<2> >::const_iterator theConstIter;
};
// Helper classes, to keep track of the orientation of
// a 2D polygon in dim dimensions
typedef enum {
_WFMATH_POLY2REORIENT_NONE,
_WFMATH_POLY2REORIENT_CLEAR_AXIS2,
_WFMATH_POLY2REORIENT_CLEAR_BOTH_AXES,
_WFMATH_POLY2REORIENT_MOVE_AXIS2_TO_AXIS1,
_WFMATH_POLY2REORIENT_SCALE1_CLEAR2
} _Poly2ReorientType;
// Reorient a 2D polygon to match a change in the basis
// used by _Poly2Orient
class _Poly2Reorient
{
public:
_Poly2Reorient(_Poly2ReorientType type, CoordType scale = 0.0)
: m_type(type), m_scale(scale) {}
~_Poly2Reorient() {}
void reorient(Polygon<2>& poly, size_t skip = std::numeric_limits<size_t>::max()) const;
private:
_Poly2ReorientType m_type;
CoordType m_scale;
};
template<int dim> class _Poly2Orient;
struct _Poly2OrientIntersectData {
int dim;
Point<2> p1, p2;
Vector<2> v1, v2, off;
bool o1_is_line, o2_is_line;
};
// Finds the intersection of the two planes, returns the
// dimension of the intersection space, the rest of the arguments
// are various information returned depending on the dimension of
// the intersection
template<int dim>
int _Intersect(const _Poly2Orient<dim> &, const _Poly2Orient<dim> &,
_Poly2OrientIntersectData &);
// Keep track of the orientation of a 2D polygon in dim dimensions
template<int dim>
class _Poly2Orient
{
public:
_Poly2Orient() : m_origin() {}
_Poly2Orient(const _Poly2Orient& p) : m_origin() {operator=(p);}
~_Poly2Orient() {}
_Poly2Orient& operator=(const _Poly2Orient& p);
// Convert a point in the 2D polygon to a point in dim dimensional space
Point<dim> convert(const Point<2>& p) const;
// Try to convert a point from dim dimensions into 2D, expanding the
// basis if necessary. Returns true on success. On failure, the
// basis is unchanged.
bool expand(const Point<dim>& pd, Point<2>& p2, CoordType epsilon = numeric_constants<CoordType>::epsilon());
// Reduce the basis to the minimum necessary to span the points in
// poly (with the exception of skip). Returns _Poly2Reorient, which needs
// to be used to reorient the points to match the new basis.
_Poly2Reorient reduce(const Polygon<2>& poly, size_t skip = std::numeric_limits<size_t>::max());
void shift(const Vector<dim>& v) {if(m_origin.isValid()) m_origin += v;}
void rotate(const RotMatrix<dim>& m, const Point<dim>& p);
// Rotates about the point which corresponds to "p" in the oriented plane
void rotate2(const RotMatrix<dim>& m, const Point<2>& p);
//3D only
void rotate(const Quaternion& q, const Point<3>& p);
// Rotates about the point which corresponds to "p" in the oriented plane
void rotate2(const Quaternion& q, const Point<2>& p);
_Poly2Orient toParentCoords(const Point<dim>& origin,
const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
{_Poly2Orient p(*this); p.m_origin = m_origin.toParentCoords(origin, rotation);
p.m_axes[0].rotate(rotation); p.m_axes[1].rotate(rotation); return p;}
_Poly2Orient toParentCoords(const AxisBox<dim>& coords) const
{_Poly2Orient p(*this); p.m_origin = m_origin.toParentCoords(coords); return p;}
_Poly2Orient toParentCoords(const RotBox<dim>& coords) const
{_Poly2Orient p(*this); p.m_origin = m_origin.toParentCoords(coords);
p.m_axes[0].rotate(coords.orientation());
p.m_axes[1].rotate(coords.orientation()); return p;}
// toLocal is just like toParent, expect we reverse the order of
// translation and rotation and use the opposite sense of the rotation
// matrix
_Poly2Orient toLocalCoords(const Point<dim>& origin,
const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
{_Poly2Orient p(*this); p.m_origin = m_origin.toLocalCoords(origin, rotation);
p.m_axes[0] = rotation * p.m_axes[0];
p.m_axes[1] = rotation * p.m_axes[1]; return p;}
_Poly2Orient toLocalCoords(const AxisBox<dim>& coords) const
{_Poly2Orient p(*this); p.m_origin = m_origin.toLocalCoords(coords); return p;}
_Poly2Orient toLocalCoords(const RotBox<dim>& coords) const
{_Poly2Orient p(*this); p.m_origin = m_origin.toLocalCoords(coords);
p.m_axes[0] = coords.orientation() * p.m_axes[0];
p.m_axes[1] = coords.orientation() * p.m_axes[1]; return p;}
// 3D only
_Poly2Orient<3> toParentCoords(const Point<3>& origin, const Quaternion& rotation) const
{_Poly2Orient p(*this); p.m_origin = m_origin.toParentCoords(origin, rotation);
p.m_axes[0].rotate(rotation); p.m_axes[0].rotate(rotation); return p;}
_Poly2Orient<3> toLocalCoords(const Point<3>& origin, const Quaternion& rotation) const
{_Poly2Orient p(*this); p.m_origin = m_origin.toLocalCoords(origin, rotation);
p.m_axes[0].rotate(rotation.inverse());
p.m_axes[0].rotate(rotation.inverse()); return p;}
// Gives the offset from pd to the space spanned by
// the basis, and puts the nearest point in p2.
Vector<dim> offset(const Point<dim>& pd, Point<2>& p2) const;
// Like offset, but returns true if the point is in the plane
bool checkContained(const Point<dim>& pd, Point<2> & p2) const;
// Check if the AxisBox intersects the spanned space, and if so
// return a point in the intersection.
bool checkIntersect(const AxisBox<dim>& b, Point<2>& p2, bool proper) const;
friend int _Intersect<dim>(const _Poly2Orient<dim> &, const _Poly2Orient<dim> &,
_Poly2OrientIntersectData &);
private:
// special case of the above when both axes are valid
bool checkIntersectPlane(const AxisBox<dim>& b, Point<2>& p2, bool proper) const;
Point<dim> m_origin;
Vector<dim> m_axes[2]; // Normalized to unit length
};
/// A polygon, all of whose points lie in a plane, embedded in dim dimensions
template<int dim = 3>
class Polygon
{
public:
Polygon() : m_orient(), m_poly() {}
Polygon(const Polygon& p) : m_orient(p.m_orient), m_poly(p.m_poly) {}
~Polygon() {}
friend std::ostream& operator<< <dim>(std::ostream& os, const Polygon& p);
friend std::istream& operator>> <dim>(std::istream& is, Polygon& p);
Polygon& operator=(const Polygon& p)
{m_orient = p.m_orient; m_poly = p.m_poly; return *this;}
bool isEqualTo(const Polygon& p2, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;
bool operator==(const Polygon& p) const {return isEqualTo(p);}
bool operator!=(const Polygon& p) const {return !isEqualTo(p);}
bool isValid() const {return m_poly.isValid();}
// Descriptive characteristics
size_t numCorners() const {return m_poly.numCorners();}
Point<dim> getCorner(size_t i) const {return m_orient.convert(m_poly[i]);}
Point<dim> getCenter() const {return m_orient.convert(m_poly.getCenter());}
// The failure of the following functions does not invalidate the
// polygon, but merely leaves it unchaged.
// Add before i'th corner, zero is beginning, numCorners() is end
// Only succeeds if p lies in a plane with all current points
bool addCorner(size_t i, const Point<dim>& p, CoordType epsilon = numeric_constants<CoordType>::epsilon());
// Remove the i'th corner
void removeCorner(size_t i);
// Move the i'th corner to p, only succeeds if new location
// lies in the same plane as all the other points. Note that,
// under certain circumstances, this plane may not contain the
// original location of the point.
bool moveCorner(size_t i, const Point<dim>& p, CoordType epsilon = numeric_constants<CoordType>::epsilon());
// Remove all points
void clear() {m_poly.clear(); m_orient = _Poly2Orient<dim>();}
// Movement functions
Polygon& shift(const Vector<dim>& v)
{m_orient.shift(v); return *this;}
Polygon& moveCornerTo(const Point<dim>& p, size_t corner)
{return shift(p - getCorner(corner));}
Polygon& moveCenterTo(const Point<dim>& p)
{return shift(p - getCenter());}
Polygon& rotateCorner(const RotMatrix<dim>& m, size_t corner)
{m_orient.rotate2(m, m_poly[corner]); return *this;}
Polygon& rotateCenter(const RotMatrix<dim>& m)
{if(m_poly.numCorners() > 0)
m_orient.rotate2(m, m_poly.getCenter());
return *this;}
Polygon& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p)
{m_orient.rotate(m, p); return *this;}
// 3D rotation functions
Polygon<3>& rotateCorner(const Quaternion& q, size_t corner)
{m_orient.rotate2(q, m_poly[corner]); return *this;}
Polygon<3>& rotateCenter(const Quaternion& q)
{if(m_poly.numCorners() > 0)
m_orient.rotate2(q, m_poly.getCenter());
return *this;}
Polygon<3>& rotatePoint(const Quaternion& q, const Point<3>& p)
{m_orient.rotate(q, p); return *this;}
// Intersection functions
AxisBox<dim> boundingBox() const;
Ball<dim> boundingSphere() const;
Ball<dim> boundingSphereSloppy() const;
Polygon toParentCoords(const Point<dim>& origin,
const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
{Polygon p(*this); p.m_orient = m_orient.toParentCoords(origin, rotation); return p;}
Polygon toParentCoords(const AxisBox<dim>& coords) const
{Polygon p(*this); p.m_orient = m_orient.toParentCoords(coords); return p;}
Polygon toParentCoords(const RotBox<dim>& coords) const
{Polygon p(*this); p.m_orient = m_orient.toParentCoords(coords); return p;}
// toLocal is just like toParent, expect we reverse the order of
// translation and rotation and use the opposite sense of the rotation
// matrix
Polygon toLocalCoords(const Point<dim>& origin,
const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
{Polygon p(*this); p.m_orient = m_orient.toLocalCoords(origin, rotation); return p;}
Polygon toLocalCoords(const AxisBox<dim>& coords) const
{Polygon p(*this); p.m_orient = m_orient.toLocalCoords(coords); return p;}
Polygon toLocalCoords(const RotBox<dim>& coords) const
{Polygon p(*this); p.m_orient = m_orient.toLocalCoords(coords); return p;}
// 3D only
Polygon<3> toParentCoords(const Point<3>& origin, const Quaternion& rotation) const
{Polygon<3> p(*this); p.m_orient = m_orient.toParentCoords(origin, rotation); return p;}
Polygon<3> toLocalCoords(const Point<3>& origin, const Quaternion& rotation) const
{Polygon<3> p(*this); p.m_orient = m_orient.toLocalCoords(origin, rotation); return p;}
friend bool Intersect<dim>(const Polygon& r, const Point<dim>& p, bool proper);
friend bool Contains<dim>(const Point<dim>& p, const Polygon& r, bool proper);
friend bool Intersect<dim>(const Polygon& p, const AxisBox<dim>& b, bool proper);
friend bool Contains<dim>(const Polygon& p, const AxisBox<dim>& b, bool proper);
friend bool Contains<dim>(const AxisBox<dim>& b, const Polygon& p, bool proper);
friend bool Intersect<dim>(const Polygon& p, const Ball<dim>& b, bool proper);
friend bool Contains<dim>(const Polygon& p, const Ball<dim>& b, bool proper);
friend bool Contains<dim>(const Ball<dim>& b, const Polygon& p, bool proper);
friend bool Intersect<dim>(const Polygon& r, const Segment<dim>& s, bool proper);
friend bool Contains<dim>(const Polygon& p, const Segment<dim>& s, bool proper);
friend bool Contains<dim>(const Segment<dim>& s, const Polygon& p, bool proper);
friend bool Intersect<dim>(const Polygon& p, const RotBox<dim>& r, bool proper);
friend bool Contains<dim>(const Polygon& p, const RotBox<dim>& r, bool proper);
friend bool Contains<dim>(const RotBox<dim>& r, const Polygon& p, bool proper);
friend bool Intersect<dim>(const Polygon& p1, const Polygon& p2, bool proper);
friend bool Contains<dim>(const Polygon& outer, const Polygon& inner, bool proper);
private:
_Poly2Orient<dim> m_orient;
Polygon<2> m_poly;
};
template<int dim>
inline bool Polygon<dim>::addCorner(size_t i, const Point<dim>& p, CoordType epsilon)
{
Point<2> p2;
bool succ = m_orient.expand(p, p2, epsilon);
if(succ)
m_poly.addCorner(i, p2, epsilon);
return succ;
}
template<int dim>
inline void Polygon<dim>::removeCorner(size_t i)
{
m_poly.removeCorner(i);
_Poly2Reorient r = m_orient.reduce(m_poly);
r.reorient(m_poly);
}
template<int dim>
inline bool Polygon<dim>::moveCorner(size_t i, const Point<dim>& p, CoordType epsilon)
{
_Poly2Orient<dim> try_orient = m_orient;
_Poly2Reorient r = try_orient.reduce(m_poly, i);
Point<2> p2;
if(!try_orient.expand(p, p2, epsilon))
return false;
r.reorient(m_poly, i);
m_poly[i] = p2;
m_orient = try_orient;
return true;
}
} // namespace WFMath
#endif // WFMATH_POLYGON_H
|