/usr/include/wfmath-1.0/wfmath/segment.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | // segment.h (A line segment)
//
// The WorldForge Project
// Copyright (C) 2000, 2001 The WorldForge Project
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// For information about WorldForge and its authors, please contact
// the Worldforge Web Site at http://www.worldforge.org.
//
// Author: Ron Steinke
#ifndef WFMATH_SEGMENT_H
#define WFMATH_SEGMENT_H
#include <wfmath/point.h>
#include <wfmath/intersect_decls.h>
namespace WFMath {
template<int dim>
std::ostream& operator<<(std::ostream& os, const Segment<dim>& s);
template<int dim>
std::istream& operator>>(std::istream& is, Segment<dim>& s);
/// A line segment embedded in dim dimensions
/**
* This class implements the full shape interface, as described in
* the fake class Shape.
**/
template<int dim = 3>
class Segment
{
public:
/// construct an uninitialized segment
Segment() :m_p1(), m_p2() {}
/// construct a segment with endpoints p1 and p2
Segment(const Point<dim>& p1, const Point<dim>& p2) : m_p1(p1), m_p2(p2) {}
/// construct a copy of a segment
Segment(const Segment& s) : m_p1(s.m_p1), m_p2(s.m_p2) {}
~Segment() {}
friend std::ostream& operator<< <dim>(std::ostream& os, const Segment& s);
friend std::istream& operator>> <dim>(std::istream& is, Segment& s);
Segment& operator=(const Segment& s)
{m_p1 = s.m_p1; m_p2 = s.m_p2; return *this;}
bool isEqualTo(const Segment& s, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;
bool operator==(const Segment& b) const {return isEqualTo(b);}
bool operator!=(const Segment& b) const {return !isEqualTo(b);}
bool isValid() const {return m_p1.isValid() && m_p2.isValid();}
// Descriptive characteristics
size_t numCorners() const {return 2;}
Point<dim> getCorner(size_t i) const {return i ? m_p2 : m_p1;}
Point<dim> getCenter() const {return Midpoint(m_p1, m_p2);}
/// get one end of the segment
const Point<dim>& endpoint(const int i) const {return i ? m_p2 : m_p1;}
/// get one end of the segment
Point<dim>& endpoint(const int i) {return i ? m_p2 : m_p1;}
// Movement functions
Segment& shift(const Vector<dim>& v)
{m_p1 += v; m_p2 += v; return *this;}
Segment& moveCornerTo(const Point<dim>& p, size_t corner);
Segment& moveCenterTo(const Point<dim>& p)
{return shift(p - getCenter());}
Segment& rotateCorner(const RotMatrix<dim>& m, size_t corner);
Segment& rotateCenter(const RotMatrix<dim>& m)
{rotatePoint(m, getCenter()); return *this;}
Segment<dim>& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p)
{m_p1.rotate(m, p); m_p2.rotate(m, p); return *this;}
// 3D rotation functions
Segment& rotateCorner(const Quaternion& q, size_t corner);
Segment& rotateCenter(const Quaternion& q);
Segment& rotatePoint(const Quaternion& q, const Point<dim>& p);
// Intersection functions
AxisBox<dim> boundingBox() const {return AxisBox<dim>(m_p1, m_p2);}
Ball<dim> boundingSphere() const
{return Ball<dim>(getCenter(), Distance(m_p1, m_p2) / 2);}
Ball<dim> boundingSphereSloppy() const
{return Ball<dim>(getCenter(), SloppyDistance(m_p1, m_p2) / 2);}
Segment toParentCoords(const Point<dim>& origin,
const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
{return Segment(m_p1.toParentCoords(origin, rotation),
m_p2.toParentCoords(origin, rotation));}
Segment toParentCoords(const AxisBox<dim>& coords) const
{return Segment(m_p1.toParentCoords(coords), m_p2.toParentCoords(coords));}
Segment toParentCoords(const RotBox<dim>& coords) const
{return Segment(m_p1.toParentCoords(coords), m_p2.toParentCoords(coords));}
// toLocal is just like toParent, expect we reverse the order of
// translation and rotation and use the opposite sense of the rotation
// matrix
Segment toLocalCoords(const Point<dim>& origin,
const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
{return Segment(m_p1.toLocalCoords(origin, rotation),
m_p2.toLocalCoords(origin, rotation));}
Segment toLocalCoords(const AxisBox<dim>& coords) const
{return Segment(m_p1.toLocalCoords(coords), m_p2.toLocalCoords(coords));}
Segment toLocalCoords(const RotBox<dim>& coords) const
{return Segment(m_p1.toLocalCoords(coords), m_p2.toLocalCoords(coords));}
// 3D only
Segment toParentCoords(const Point<dim>& origin,
const Quaternion& rotation) const;
Segment toLocalCoords(const Point<dim>& origin,
const Quaternion& rotation) const;
friend bool Intersect<dim>(const Segment& s, const Point<dim>& p, bool proper);
friend bool Contains<dim>(const Point<dim>& p, const Segment& s, bool proper);
friend bool Intersect<dim>(const Segment& s, const AxisBox<dim>& b, bool proper);
friend bool Contains<dim>(const AxisBox<dim>& b, const Segment& s, bool proper);
friend bool Intersect<dim>(const Segment& s, const Ball<dim>& b, bool proper);
friend bool Contains<dim>(const Ball<dim>& b, const Segment& s, bool proper);
friend bool Intersect<dim>(const Segment& s1, const Segment& s2, bool proper);
friend bool Contains<dim>(const Segment& s1, const Segment& s2, bool proper);
friend bool Intersect<dim>(const RotBox<dim>& r, const Segment& s, bool proper);
friend bool Contains<dim>(const RotBox<dim>& r, const Segment& s, bool proper);
friend bool Contains<dim>(const Segment& s, const RotBox<dim>& r, bool proper);
friend bool Intersect<dim>(const Polygon<dim>& r, const Segment& s, bool proper);
friend bool Contains<dim>(const Polygon<dim>& p, const Segment& s, bool proper);
friend bool Contains<dim>(const Segment& s, const Polygon<dim>& p, bool proper);
private:
Point<dim> m_p1, m_p2;
};
template<int dim>
inline bool Segment<dim>::isEqualTo(const Segment<dim>& s,
CoordType epsilon) const
{
return Equal(m_p1, s.m_p1, epsilon)
&& Equal(m_p2, s.m_p2, epsilon);
}
} // namespace WFMath
#endif // WFMATH_SEGMENT_H
|