/usr/include/libwildmagic/Wm5Delaunay2.h is in libwildmagic-dev 5.13-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.3 (2014/01/21)
#ifndef WM5DELAUNAY2_H
#define WM5DELAUNAY2_H
#include "Wm5MathematicsLIB.h"
#include "Wm5Delaunay1.h"
#include "Wm5Query2.h"
#include "Wm5ETManifoldMesh.h"
namespace Wm5
{
template <typename Real>
class WM5_MATHEMATICS_ITEM Delaunay2 : public Delaunay<Real>
{
public:
// The input to the constructor is the array of vertices whose Delaunay
// triangulation is required. If you want Delaunay2 to delete the
// vertices during destruction, set bOwner to 'true'. Otherwise, you
// own the vertices and must delete them yourself.
//
// You have a choice of speed versus accuracy. The fastest choice is
// Query::QT_INT64, but it gives up a lot of precision, scaling the points
// to [0,2^{16}]^3. The choice Query::QT_INTEGER gives up less precision,
// scaling the points to [0,2^{20}]^3. The choice Query::QT_RATIONAL uses
// exact arithmetic, but is the slowest choice. The choice Query::QT_REAL
// uses floating-point arithmetic, but is not robust in all cases.
Delaunay2 (int numVertices, Vector2<Real>* vertices, Real epsilon,
bool owner, Query::Type queryType);
virtual ~Delaunay2 ();
// The input vertex array.
const Vector2<Real>* GetVertices () const;
// The number of unique vertices processed.
int GetNumUniqueVertices () const;
// If GetDimension() returns 1, then the points lie on a line. You must
// create a Delaunay1 object using the function provided.
const Vector2<Real>& GetLineOrigin () const;
const Vector2<Real>& GetLineDirection () const;
Delaunay1<Real>* GetDelaunay1 () const;
// Locate those triangle edges that do not share other triangles. The
// returned quantity is the number of edges in the hull. The returned
// array has 2*numEdges indices, each pair representing an edge. The
// edges are not ordered, but the pair of vertices for an edge is ordered
// so that they conform to a counterclockwise traversal of the hull. The
// return value is 'true' iff the dimension is 2.
bool GetHull (int& numEdges, int*& indices);
// Support for searching the triangulation for a triangle that contains
// a point. If there is a containing triangle, the returned value is a
// triangle index i with 0 <= i < riTQuantity. If there is not a
// containing triangle, -1 is returned.
int GetContainingTriangle (const Vector2<Real>& p) const;
// If GetContainingTriangle returns a nonnegative value, the path of
// triangles searched for the containing triangles is stored in an array.
// The last index of the array is returned by GetPathLast; it is one
// less than the number of array elements. The array itself is returned
// by GetPath.
int GetPathLast () const;
const int* GetPath () const;
// If GetContainingTriangle returns -1, the path of triangles searched
// may be obtained by GetPathLast and GetPath. The input point is outside
// an edge of the last triangle in the path. This function returns the
// vertex indices <v0,v1> of the edge, listed in counterclockwise order
// relative to the convex hull of the data points. The final output is
// the index of the vertex v2 opposite the edge. The return value of
// the function is the index of the triple of vertex indices; the value
// is 0, 1, or 2.
int GetLastEdge (int& v0, int& v1, int& v2) const;
// Get the vertices for triangle i. The function returns 'true' if i is
// a valid triangle index, in which case the vertices are valid.
// Otherwise, the function returns 'false' and the vertices are invalid.
bool GetVertexSet (int i, Vector2<Real> vertices[3]) const;
// Get the vertex indices for triangle i. The function returns 'true' if
// i is a valid triangle index, in which case the vertices are valid.
// Otherwise, the function returns 'false' and the vertices are invalid.
bool GetIndexSet (int i, int indices[3]) const;
// Get the indices for triangles adjacent to triangle i. The function
// returns 'true' if i is a valid triangle index, in which case the
// adjacencies are valid. Otherwise, the function returns 'false' and
// the adjacencies are invalid.
bool GetAdjacentSet (int i, int adjacencies[3]) const;
// Compute the barycentric coordinates of P with respect to triangle i.
// The function returns 'true' if i is a valid triangle index, in which
// case the coordinates are valid. Otherwise, the function returns
// 'false' and the coordinate array is invalid.
bool GetBarycentricSet (int i, const Vector2<Real>& p, Real bary[3])
const;
// Support for streaming to/from disk.
Delaunay2 (const char* filename, int mode = FileIO::FM_DEFAULT_READ);
bool Load (const char* filename, int mode = FileIO::FM_DEFAULT_READ);
bool Save (const char* filename, int mode = FileIO::FM_DEFAULT_WRITE)
const;
private:
using Delaunay<Real>::mQueryType;
using Delaunay<Real>::mNumVertices;
using Delaunay<Real>::mDimension;
using Delaunay<Real>::mNumSimplices;
using Delaunay<Real>::mIndices;
using Delaunay<Real>::mAdjacencies;
using Delaunay<Real>::mEpsilon;
using Delaunay<Real>::mOwner;
typedef ETManifoldMesh::Triangle Triangle;
bool GetContainingTriangle (int i, Triangle*& tri) const;
void GetAndRemoveInsertionPolygon (int i,
std::set<Triangle*>& candidates, std::set<OrderedEdgeKey>& boundary);
void Update (int i);
// The input vertices.
Vector2<Real>* mVertices;
// The number of unique vertices processed.
int mNumUniqueVertices;
// The scaled input vertices. This array and supporting data structures
// are for robust calculations.
Vector2<Real>* mSVertices;
Query2<Real>* mQuery;
Vector2<Real> mMin;
Real mScale;
// The current triangulation.
ETManifoldMesh mTriMesh;
// The line of containment if the dimension is 1.
Vector2<Real> mLineOrigin, mLineDirection;
// Store the path of tetrahedra visited in a GetContainingTetrahedron
// function call.
mutable int mPathLast;
mutable int* mPath;
// If a query point is not in the convex hull of the input points, the
// point is outside an edge of the last triangle in the search path.
// These are the vertex indices for that edge.
mutable int mLastEdgeV0, mLastEdgeV1;
mutable int mLastEdgeOpposite, mLastEdgeOppositeIndex;
// Indexing for the vertices of the triangle adjacent to a vertex.
// The edge adjacent to vertex j is <msIndex[j][0], msIndex[j][1]>
// and is listed so that the triangle interior is to your left as
// you walk around the edges. TODO: In Wild Magic 6, use the
// "opposite edge" to be consistent with TetrahedronKey. The
// "opposite" idea extends easily to higher dimensions.
static const int msIndex[3][2];
};
typedef Delaunay2<float> Delaunay2f;
typedef Delaunay2<double> Delaunay2d;
}
#endif
|