/usr/include/libwildmagic/Wm5Transform.h is in libwildmagic-dev 5.13-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2010/10/01)
#ifndef WM5TRANSFORM_H
#define WM5TRANSFORM_H
#include "Wm5GraphicsLIB.h"
#include "Wm5HMatrix.h"
#include "Wm5Math.h"
namespace Wm5
{
class WM5_GRAPHICS_ITEM Transform
{
public:
// The transform is Y = M*X+T, where M is a 3-by-3 matrix and T is a
// ranslation vector. In most cases, M = R, a rotation matrix, or
// M = R*S, where R is a rotation matrix and S is a diagonal matrix
// whose diagonal entries are positive scales. To support modeling
// packages that allow general affine transforms, M can be any invertible
// 3x3 matrix. The vector X is transformed in the "forward" direction to
// Y. The "inverse" direction transforms Y to X, namely X = M^{-1}*(Y-T)
// in the general case. In the special case of M = R*S, the inverse
// direction is X = S^{-1}*R^t*(Y-T), where S^{-1} is the diagonal matrix
// whose diagonal entries are the reciprocoals of those of S and where
// R^t is the transpose of R. For SIMD support of matrix-vector and
// matrix-matrix multiplications, a homogeneous matrix H = {{M,T},{0,1}}
// is stored by this class. The forward transform is {Y,1} = H*{X,1} and
// the inverse transform is {X,1} = H^{-1}*{Y,1}.
// Construction and destruction. The default constructor produces the
// identity transformation. The default copy constructor is created by
// the compiler, as is the default assignment operator. The defaults are
// consistent with the design of this class.
Transform ();
~Transform ();
// Set the transformation to the identity matrix.
void MakeIdentity ();
// Set the transformation to have scales of 1.
void MakeUnitScale ();
// Hints about the structure of the transformation.
inline bool IsIdentity () const; // I
inline bool IsRSMatrix () const; // R*S
inline bool IsUniformScale () const; // R*S, S = c*I
// Member access.
// (1) The Set* functions set the is-identity hint to false.
// (2) The SetRotate function sets the is-rsmatrix hint to true. If this
// hint is false, GetRotate fires an "assert" in debug mode.
// (3) The SetMatrix function sets the is-rsmatrix and is-uniform-scale
// hints to false.
// (4) The SetScale function sets the is-uniform-scale hint to false.
// The SetUniformScale function sets the is-uniform-scale hint to
// true. If this hint is false, GetUniformScale fires an "assert" in
// debug mode.
// (5) All Set* functions set the inverse-needs-update to true. When
// GetInverse is called, the inverse must be computed in this case and
// the inverse-needs-update is reset to false.
void SetRotate (const HMatrix& rotate);
void SetMatrix (const HMatrix& matrix);
void SetTranslate (const APoint& translate);
void SetScale (const APoint& scale);
void SetUniformScale (float scale);
inline const HMatrix& GetRotate () const;
inline const HMatrix& GetMatrix () const;
inline const APoint& GetTranslate () const;
inline const APoint& GetScale () const;
inline float GetUniformScale () const;
// For M = R*S, the largest value of S in absolute value is returned.
// For general M, the max-row-sum norm is returned, which is a reasonable
// measure of maximum scale of the transformation.
float GetNorm () const;
// Matrix-point multiplication, M*p.
inline APoint operator* (const APoint& pnt) const;
// Matrix-vector multiplication, M*v.
inline AVector operator* (const AVector& vec) const;
// Matrix-matrix multiplication.
Transform operator* (const Transform& transform) const;
// Get the homogeneous matrix.
inline const HMatrix& Matrix () const;
// Get the inverse homogeneous matrix, recomputing it when necessary. If
// H = {{M,T},{0,1}}, then H^{-1} = {{M^{-1},-M^{-1}*T},{0,1}}.
const HMatrix& Inverse () const;
// Get the inversion transform. No test is performed to determine whether
// the caller transform is invertible.
Transform InverseTransform () const;
// The identity transformation.
static const Transform IDENTITY;
// Streaming support.
inline static int GetStreamingSize ();
private:
// Fill in the entries of mHMatrix whenever one of the components
// mMatrix, mTranslate, or mScale changes.
void UpdateHMatrix ();
// Invert the 3x3 upper-left block of the input matrix.
static void Invert3x3 (const HMatrix& mat, HMatrix& invMat);
// The full 4x4 homogeneous matrix H = {{M,T},{0,1}} and its inverse
// H^{-1} = {M^{-1},-M^{-1}*T},{0,1}}. The inverse is computed only
// on demand.
HMatrix mHMatrix;
mutable HMatrix mInvHMatrix;
HMatrix mMatrix; // M (general) or R (rotation)
APoint mTranslate; // T
APoint mScale; // S
bool mIsIdentity, mIsRSMatrix, mIsUniformScale;
mutable bool mInverseNeedsUpdate;
// Support for streaming.
friend class InStream;
friend class OutStream;
};
#include "Wm5Transform.inl"
}
#endif
|