This file is indexed.

/usr/include/wireshark/epan/reassemble.h is in libwireshark-dev 2.0.2+ga16e22e-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/* reassemble.h
 * Declarations of routines for {fragment,segment} reassembly
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

/* make sure that all flags that are set in a fragment entry is also set for
 * the flags field of fd_head !!!
 */

#ifndef REASSEMBLE_H
#define REASSEMBLE_H

#include "ws_symbol_export.h"

/* only in fd_head: packet is defragmented */
#define FD_DEFRAGMENTED		0x0001

/* there are overlapping fragments */
#define FD_OVERLAP		0x0002

/* overlapping fragments contain different data */
#define FD_OVERLAPCONFLICT	0x0004

/* more than one fragment which indicates end-of data */
#define FD_MULTIPLETAILS	0x0008

/* fragment starts before the end of the datagram but extends
   past the end of the datagram */
#define FD_TOOLONGFRAGMENT	0x0010

/* fragment tvb is subset, don't tvb_free() it */
#define FD_SUBSET_TVB           0x0020

/* this flag is used to request fragment_add to continue the reassembly process */
#define FD_PARTIAL_REASSEMBLY   0x0040

/* fragment offset is indicated by sequence number and not byte offset
   into the defragmented packet */
#define FD_BLOCKSEQUENCE        0x0100

/* if REASSEMBLE_FLAGS_CHECK_DATA_PRESENT is set, and the first fragment is
 * incomplete, this flag is set in the flags word on the fd_head returned.
 *
 * It's all a fudge to preserve historical behaviour.
 */
#define FD_DATA_NOT_PRESENT	0x0200

/* This flag is set in (only) fd_head to denote that datalen has been set to a valid value.
 * It's implied by FD_DEFRAGMENTED (we must know the total length of the
 * datagram if we have defragmented it...)
 */
#define FD_DATALEN_SET		0x0400

typedef struct _fragment_item {
	struct _fragment_item *next;
	guint32 frame;					/* XXX - does this apply to reassembly heads? */
	guint32	offset;					/* XXX - does this apply to reassembly heads? */
	guint32	len;					/* XXX - does this apply to reassembly heads? */
	guint32 fragment_nr_offset;		/**< offset for frame numbering, for sequences, where the
									 * provided fragment number of the first fragment does
									 * not start with 0
									 * XXX - does this apply only to reassembly heads? */
	guint32 datalen;				/**< When flags&FD_BLOCKSEQUENCE is set, the
									  index of the last block (segments in
									  datagram + 1); otherwise the number of
									  bytes of the full datagram. Only valid in
									  the first item of the fragments list when
									  flags&FD_DATALEN is set.*/
	guint32 reassembled_in;			/**< frame where this PDU was reassembled,
										 only valid in the first item of the list
										 and when FD_DEFRAGMENTED is set*/
	guint8 reas_in_layer_num;		/**< The current "depth" or layer number in the current frame where reassembly was completed.
									 * Example: in SCTP there can be several data chunks and we want the reassemblied tvb for the final
									 * segment only.
									 */
	guint32 flags;					/**< XXX - do some of these apply only to reassembly
										 heads and others only to fragments within
										 a reassembly? */
	tvbuff_t *tvb_data;
	/**
	 * Null if the reassembly had no error; non-null if it had
	 * an error, in which case it's the string for the error.
	 *
	 * XXX - this is wasted in all but the reassembly head; we
	 * should probably have separate data structures for a
	 * reassembly and for the fragments in a reassembly.
	 */
	const char *error;
} fragment_item, fragment_head;


/*
 * Flags for fragment_add_seq_*
 */

/* we don't have any sequence numbers - fragments are assumed to appear in
 * order */
#define REASSEMBLE_FLAGS_NO_FRAG_NUMBER		0x0001

/* a special fudge for the 802.11 dissector */
#define REASSEMBLE_FLAGS_802_11_HACK		0x0002

/* causes fragment_add_seq_key to check that all the fragment data is present
 * in the tvb, and if not, do something a bit odd. */
#define REASSEMBLE_FLAGS_CHECK_DATA_PRESENT	0x0004

/*
 * Generates a fragment identifier based on the given parameters. "data" is an
 * opaque type whose interpretation is up to the caller of fragment_add*
 * functions and the fragment key function (possibly NULL if you do not care).
 *
 * Keys returned by this function are only used within this packet scope.
 */
typedef gpointer (*fragment_temporary_key)(const packet_info *pinfo,
    const guint32 id, const void *data);

/*
 * Like fragment_temporary_key, but used for identifying reassembled fragments
 * which may persist through multiple packets.
 */
typedef gpointer (*fragment_persistent_key)(const packet_info *pinfo,
    const guint32 id, const void *data);

/*
 * Data structure to keep track of fragments and reassemblies.
 */
typedef struct {
	GHashTable *fragment_table;
	GHashTable *reassembled_table;
	fragment_temporary_key temporary_key_func;
	fragment_persistent_key persistent_key_func;
	GDestroyNotify free_temporary_key_func;		/* temporary key destruction function */
} reassembly_table;

/*
 * Table of functions for a reassembly table.
 */
typedef struct {
	/* Functions for fragment table */
	GHashFunc hash_func;				/* hash function */
	GEqualFunc equal_func;				/* comparison function */
	fragment_temporary_key temporary_key_func;	/* temporary key creation function */
	fragment_persistent_key persistent_key_func;	/* persistent key creation function */
	GDestroyNotify free_temporary_key_func;		/* temporary key destruction function */
	GDestroyNotify free_persistent_key_func;	/* persistent key destruction function */
} reassembly_table_functions;

/*
 * Tables of functions exported for the benefit of dissectors that
 * don't need special items in their keys.
 */
WS_DLL_PUBLIC const reassembly_table_functions
	addresses_reassembly_table_functions;		/* keys have endpoint addresses and an ID */
WS_DLL_PUBLIC const reassembly_table_functions
	addresses_ports_reassembly_table_functions;	/* keys have endpoint addresses and ports and an ID */

/*
 * Initialize/destroy a reassembly table.
 *
 * init: If table doesn't exist: create table;
 *       else: just remove any entries;
 * destroy: remove entries and destroy table;
 */
WS_DLL_PUBLIC void
reassembly_table_init(reassembly_table *table,
		      const reassembly_table_functions *funcs);
WS_DLL_PUBLIC void
reassembly_table_destroy(reassembly_table *table);

/*
 * This function adds a new fragment to the reassembly table
 * If this is the first fragment seen for this datagram, a new entry
 * is created in the table, otherwise this fragment is just added
 * to the linked list of fragments for this packet.
 * The list of fragments for a specific datagram is kept sorted for
 * easier handling.
 *
 * Datagrams (messages) are identified by a key generated by
 * fragment_temporary_key or fragment_persistent_key, based on the "pinfo", "id"
 * and "data" pairs. (This is the sole purpose of "data".)
 *
 * Fragments are identified by "frag_offset".
 *
 * Returns a pointer to the head of the fragment data list if we have all the
 * fragments, NULL otherwise. Note that the reassembled fragments list may have
 * a non-zero fragment offset, the only guarantee is that no gaps exist within
 * the list.
 */
WS_DLL_PUBLIC fragment_head *
fragment_add(reassembly_table *table, tvbuff_t *tvb, const int offset,
	     const packet_info *pinfo, const guint32 id, const void *data,
	     const guint32 frag_offset, const guint32 frag_data_len,
	     const gboolean more_frags);
/*
 * Like fragment_add, except that the fragment may be added to multiple
 * reassembly tables. This is needed when multiple protocol layers try
 * to add the same packet to the reassembly table.
 */
WS_DLL_PUBLIC fragment_head *
fragment_add_multiple_ok(reassembly_table *table, tvbuff_t *tvb,
			 const int offset, const packet_info *pinfo,
			 const guint32 id, const void *data,
			 const guint32 frag_offset,
			 const guint32 frag_data_len,
			 const gboolean more_frags);

/*
 * Like fragment_add, but maintains a table for completed reassemblies.
 *
 * If the packet was seen before, return the head of the fully reassembled
 * fragments list (NULL if there was none).
 *
 * Otherwise (if reassembly was not possible before), try to to add the new
 * fragment to the fragments table. If reassembly is now possible, remove all
 * (reassembled) fragments from the fragments table and store it as a completed
 * reassembly. The head of this reassembled fragments list is returned.
 *
 * Otherwise (if reassembly is still not possible after adding this fragment),
 * return NULL.
 */
WS_DLL_PUBLIC fragment_head *
fragment_add_check(reassembly_table *table, tvbuff_t *tvb, const int offset,
		   const packet_info *pinfo, const guint32 id,
		   const void *data, const guint32 frag_offset,
		   const guint32 frag_data_len, const gboolean more_frags);

/*
 * Like fragment_add, but fragments have a block sequence number starting from
 * zero (for the first fragment of each datagram). This differs from
 * fragment_add for which the fragment may start at any offset.
 *
 * If this is the first fragment seen for this datagram, a new
 * "fragment_head" structure is allocated to refer to the reassembled
 * packet, and:
 *
 *	if "more_frags" is false, and either we have no sequence numbers, or
 *	are using the 802.11 hack (via fragment_add_seq_802_11), it is assumed that
 *	this is the only fragment in the datagram. The structure is not added to the
 *	hash table, and not given any fragments to refer to, but is just returned.
 *
 *      In this latter case reassembly wasn't done (since there was only one
 *      fragment in the packet); dissectors can check the 'next' pointer on the
 *      returned list to see if this case was hit or not.
 *
 * Otherwise, this fragment is just added to the linked list of fragments
 * for this packet; the fragment_item is also added to the fragment hash if
 * necessary.
 *
 * If this packet completes assembly, these functions return the head of the
 * fragment data; otherwise, they return null.
 */
WS_DLL_PUBLIC fragment_head *
fragment_add_seq(reassembly_table *table, tvbuff_t *tvb, const int offset,
		 const packet_info *pinfo, const guint32 id, const void *data,
		 const guint32 frag_number, const guint32 frag_data_len,
		 const gboolean more_frags, const guint32 flags);

/*
 * Like fragment_add_seq, but maintains a table for completed reassemblies
 * just like fragment_add_check.
 */
WS_DLL_PUBLIC fragment_head *
fragment_add_seq_check(reassembly_table *table, tvbuff_t *tvb, const int offset,
		       const packet_info *pinfo, const guint32 id,
		       const void *data,
		       const guint32 frag_number, const guint32 frag_data_len,
		       const gboolean more_frags);

/*
 * Like fragment_add_seq_check, but immediately returns a fragment list for a
 * new fragment. This is a workaround specific for the 802.11 dissector, do not
 * use it elsewhere.
 */
WS_DLL_PUBLIC fragment_head *
fragment_add_seq_802_11(reassembly_table *table, tvbuff_t *tvb,
			const int offset, const packet_info *pinfo,
			const guint32 id, const void *data,
			const guint32 frag_number, const guint32 frag_data_len,
			const gboolean more_frags);

/*
 * Like fragment_add_seq_check, but without explicit fragment number. Fragments
 * are simply appended until no "more_frags" is false.
 */
WS_DLL_PUBLIC fragment_head *
fragment_add_seq_next(reassembly_table *table, tvbuff_t *tvb, const int offset,
		      const packet_info *pinfo, const guint32 id,
		      const void *data, const guint32 frag_data_len,
		      const gboolean more_frags);

/*
 * Start a reassembly, expecting "tot_len" as the number of given fragments (not
 * the number of bytes). Data can be added later using fragment_add_seq_check.
 */
WS_DLL_PUBLIC void
fragment_start_seq_check(reassembly_table *table, const packet_info *pinfo,
			 const guint32 id, const void *data,
			 const guint32 tot_len);

/*
 * Mark end of reassembly and returns the reassembled fragment (if completed).
 * Use it when fragments were added with "more_flags" set while you discovered
 * that no more fragments have to be added.
 * XXX rename to fragment_finish as it works also for fragment_add?
 */
WS_DLL_PUBLIC fragment_head *
fragment_end_seq_next(reassembly_table *table, const packet_info *pinfo,
		      const guint32 id, const void *data);

/* To specify the offset for the fragment numbering, the first fragment is added with 0, and
 * afterwards this offset is set. All additional calls to off_seq_check will calculate
 * the number in sequence in regards to the offset */
WS_DLL_PUBLIC void
fragment_add_seq_offset(reassembly_table *table, const packet_info *pinfo, const guint32 id,
                    const void *data, const guint32 fragment_offset);

/*
 * Sets the expected index for the last block (for fragment_add_seq functions)
 * or the expected number of bytes (for fragment_add functions). A reassembly
 * must already have started.
 *
 * Note that for FD_BLOCKSEQUENCE tot_len is the index for the tail fragment.
 * i.e. since the block numbers start at 0, if we specify tot_len==2, that
 * actually means we want to defragment 3 blocks, block 0, 1 and 2.
 */
WS_DLL_PUBLIC void
fragment_set_tot_len(reassembly_table *table, const packet_info *pinfo,
		     const guint32 id, const void *data, const guint32 tot_len);

/*
 * Return the expected index for the last block (for fragment_add_seq functions)
 * or the expected number of bytes (for fragment_add functions).
 */
WS_DLL_PUBLIC guint32
fragment_get_tot_len(reassembly_table *table, const packet_info *pinfo,
		     const guint32 id, const void *data);

/*
 * This function will set the partial reassembly flag(FD_PARTIAL_REASSEMBLY) for a fh.
 * When this function is called, the fh MUST already exist, i.e.
 * the fh MUST be created by the initial call to fragment_add() before
 * this function is called. Also note that this function MUST be called to indicate
 * a fh will be extended (increase the already stored data). After calling this function,
 * and if FD_DEFRAGMENTED is set, the reassembly process will be continued.
 */
WS_DLL_PUBLIC void
fragment_set_partial_reassembly(reassembly_table *table,
				const packet_info *pinfo, const guint32 id,
				const void *data);

/* This function is used to check if there is partial or completed reassembly state
 * matching this packet. I.e. Are there reassembly going on or not for this packet?
 */
WS_DLL_PUBLIC fragment_head *
fragment_get(reassembly_table *table, const packet_info *pinfo,
	     const guint32 id, const void *data);

/* The same for the reassemble table */
/* id *must* be the frame number for this to work! */
WS_DLL_PUBLIC fragment_head *
fragment_get_reassembled(reassembly_table *table, const guint32 id);

WS_DLL_PUBLIC fragment_head *
fragment_get_reassembled_id(reassembly_table *table, const packet_info *pinfo,
			    const guint32 id);

/* This will free up all resources and delete reassembly state for this PDU.
 * Except if the PDU is completely reassembled, then it would NOT deallocate the
 * buffer holding the reassembled data but instead return the TVB
 *
 * So, if you call fragment_delete and it returns non-NULL, YOU are responsible to
 * tvb_free() .
 */
WS_DLL_PUBLIC tvbuff_t *
fragment_delete(reassembly_table *table, const packet_info *pinfo,
		const guint32 id, const void *data);

/* This struct holds references to all the tree and field handles used when
 * displaying the reassembled fragment tree in the packet details view. A
 * dissector will populate this structure with its own tree and field handles
 * and then invoke show_fragement_tree to have those items added to the packet
 * details tree.
 */
typedef struct _fragment_items {
    gint       *ett_fragment;
    gint       *ett_fragments;

    int        *hf_fragments;                  /* FT_NONE     */
    int        *hf_fragment;                   /* FT_FRAMENUM */
    int        *hf_fragment_overlap;           /* FT_BOOLEAN  */
    int        *hf_fragment_overlap_conflict;  /* FT_BOOLEAN  */
    int        *hf_fragment_multiple_tails;    /* FT_BOOLEAN  */
    int        *hf_fragment_too_long_fragment; /* FT_BOOLEAN  */
    int        *hf_fragment_error;             /* FT_FRAMENUM */
    int        *hf_fragment_count;             /* FT_UINT32   */
    int        *hf_reassembled_in;             /* FT_FRAMENUM */
    int        *hf_reassembled_length;         /* FT_UINT32   */
    int        *hf_reassembled_data;           /* FT_BYTES    */

    const char *tag;
} fragment_items;

WS_DLL_PUBLIC tvbuff_t *
process_reassembled_data(tvbuff_t *tvb, const int offset, packet_info *pinfo,
    const char *name, fragment_head *fd_head, const fragment_items *fit,
    gboolean *update_col_infop, proto_tree *tree);

WS_DLL_PUBLIC gboolean
show_fragment_tree(fragment_head *ipfd_head, const fragment_items *fit,
    proto_tree *tree, packet_info *pinfo, tvbuff_t *tvb, proto_item **fi);

WS_DLL_PUBLIC gboolean
show_fragment_seq_tree(fragment_head *ipfd_head, const fragment_items *fit,
    proto_tree *tree, packet_info *pinfo, tvbuff_t *tvb, proto_item **fi);

#endif