/usr/include/xapian-1.3/xapian/weight.h is in libxapian-1.3-dev 1.3.4-0ubuntu6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 | /** @file weight.h
* @brief Weighting scheme API.
*/
/* Copyright (C) 2007,2008,2009,2010,2011,2012,2015 Olly Betts
* Copyright (C) 2009 Lemur Consulting Ltd
* Copyright (C) 2013,2014 Aarsh Shah
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef XAPIAN_INCLUDED_WEIGHT_H
#define XAPIAN_INCLUDED_WEIGHT_H
#include <string>
#include <xapian/types.h>
#include <xapian/visibility.h>
namespace Xapian {
/** Abstract base class for weighting schemes. */
class XAPIAN_VISIBILITY_DEFAULT Weight {
protected:
/// Stats which the weighting scheme can use (see @a need_stat()).
typedef enum {
/// Number of documents in the collection.
COLLECTION_SIZE = 1,
/// Number of documents in the RSet.
RSET_SIZE = 2,
/// Average length of documents in the collection.
AVERAGE_LENGTH = 4,
/// How many documents the current term is in.
TERMFREQ = 8,
/// How many documents in the RSet the current term is in.
RELTERMFREQ = 16,
/// Sum of wqf for terms in the query.
QUERY_LENGTH = 32,
/// Within-query-frequency of the current term.
WQF = 64,
/// Within-document-frequency of the current term in the current document.
WDF = 128,
/// Length of the current document (sum wdf).
DOC_LENGTH = 256,
/// Lower bound on (non-zero) document lengths.
DOC_LENGTH_MIN = 512,
/// Upper bound on document lengths.
DOC_LENGTH_MAX = 1024,
/// Upper bound on wdf.
WDF_MAX = 2048,
/// Sum of wdf over the whole collection for the current term.
COLLECTION_FREQ = 4096,
/// Number of unique terms in the current document.
UNIQUE_TERMS = 8192
} stat_flags;
/** Tell Xapian that your subclass will want a particular statistic.
*
* Some of the statistics can be costly to fetch or calculate, so
* Xapian needs to know which are actually going to be used. You
* should call need_stat() from your constructor for each such
* statistic.
*
* @param flag The stat_flags value for a required statistic.
*/
void need_stat(stat_flags flag) {
stats_needed = stat_flags(stats_needed | flag);
}
/** Allow the subclass to perform any initialisation it needs to.
*
* @param factor Any scaling factor (e.g. from OP_SCALE_WEIGHT).
* If the Weight object is for the term-independent
* weight supplied by get_sumextra()/get_maxextra(),
* then init(0.0) is called (starting from Xapian
* 1.2.11 and 1.3.1 - earlier versions failed to
* call init() for such Weight objects).
*/
virtual void init(double factor) = 0;
private:
/// Don't allow assignment.
void operator=(const Weight &);
/// A bitmask of the statistics this weighting scheme needs.
stat_flags stats_needed;
/// The number of documents in the collection.
Xapian::doccount collection_size_;
/// The number of documents marked as relevant.
Xapian::doccount rset_size_;
/// The average length of a document in the collection.
Xapian::doclength average_length_;
/// The number of documents which this term indexes.
Xapian::doccount termfreq_;
// The collection frequency of the term.
Xapian::termcount collectionfreq_;
/// The number of relevant documents which this term indexes.
Xapian::doccount reltermfreq_;
/// The length of the query.
Xapian::termcount query_length_;
/// The within-query-frequency of this term.
Xapian::termcount wqf_;
/// A lower bound on the minimum length of any document in the database.
Xapian::termcount doclength_lower_bound_;
/// An upper bound on the maximum length of any document in the database.
Xapian::termcount doclength_upper_bound_;
/// An upper bound on the wdf of this term.
Xapian::termcount wdf_upper_bound_;
public:
/// Default constructor, needed by subclass constructors.
Weight() : stats_needed() { }
/** Type of smoothing to use with the Language Model Weighting scheme.
*
* Default is TWO_STAGE_SMOOTHING.
*/
typedef enum {
TWO_STAGE_SMOOTHING = 1,
DIRICHLET_SMOOTHING = 2,
ABSOLUTE_DISCOUNT_SMOOTHING = 3,
JELINEK_MERCER_SMOOTHING = 4
} type_smoothing;
class Internal;
/** Virtual destructor, because we have virtual methods. */
virtual ~Weight();
/** Clone this object.
*
* This method allocates and returns a copy of the object it is called on.
*
* If your subclass is called FooWeight and has parameters a and b, then
* you would implement FooWeight::clone() like so:
*
* FooWeight * FooWeight::clone() const { return new FooWeight(a, b); }
*
* Note that the returned object will be deallocated by Xapian after use
* with "delete". If you want to handle the deletion in a special way
* (for example when wrapping the Xapian API for use from another
* language) then you can define a static <code>operator delete</code>
* method in your subclass as shown here:
* http://trac.xapian.org/ticket/554#comment:1
*/
virtual Weight * clone() const = 0;
/** Return the name of this weighting scheme.
*
* This name is used by the remote backend. It is passed along with the
* serialised parameters to the remote server so that it knows which class
* to create.
*
* Return the full namespace-qualified name of your class here - if
* your class is called FooWeight, return "FooWeight" from this method
* (Xapian::BM25Weight returns "Xapian::BM25Weight" here).
*
* If you don't want to support the remote backend, you can use the
* default implementation which simply returns an empty string.
*/
virtual std::string name() const;
/** Return this object's parameters serialised as a single string.
*
* If you don't want to support the remote backend, you can use the
* default implementation which simply throws Xapian::UnimplementedError.
*/
virtual std::string serialise() const;
/** Unserialise parameters.
*
* This method unserialises parameters serialised by the @a serialise()
* method and allocates and returns a new object initialised with them.
*
* If you don't want to support the remote backend, you can use the
* default implementation which simply throws Xapian::UnimplementedError.
*
* Note that the returned object will be deallocated by Xapian after use
* with "delete". If you want to handle the deletion in a special way
* (for example when wrapping the Xapian API for use from another
* language) then you can define a static <code>operator delete</code>
* method in your subclass as shown here:
* http://trac.xapian.org/ticket/554#comment:1
*
* @param serialised A string containing the serialised parameters.
*/
virtual Weight * unserialise(const std::string & serialised) const;
/** Calculate the weight contribution for this object's term to a document.
*
* The parameters give information about the document which may be used
* in the calculations:
*
* @param wdf The within document frequency of the term in the document.
* @param doclen The document's length (unnormalised).
* @param uniqterms Number of unique terms in the document (used
* for absolute smoothing).
*/
virtual double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterms) const = 0;
/** Return an upper bound on what get_sumpart() can return for any document.
*
* This information is used by the matcher to perform various
* optimisations, so strive to make the bound as tight as possible.
*/
virtual double get_maxpart() const = 0;
/** Calculate the term-independent weight component for a document.
*
* The parameter gives information about the document which may be used
* in the calculations:
*
* @param doclen The document's length (unnormalised).
* @param uniqterms The number of unique terms in the document.
*/
virtual double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const = 0;
/** Return an upper bound on what get_sumextra() can return for any
* document.
*
* This information is used by the matcher to perform various
* optimisations, so strive to make the bound as tight as possible.
*/
virtual double get_maxextra() const = 0;
/** @private @internal Initialise this object to calculate weights for term
* @a term.
*
* @param stats Source of statistics.
* @param query_len_ Query length.
* @param term The term for the new object.
* @param wqf_ The within-query-frequency of @a term.
* @param factor Any scaling factor (e.g. from OP_SCALE_WEIGHT).
*/
void init_(const Internal & stats, Xapian::termcount query_len_,
const std::string & term, Xapian::termcount wqf_,
double factor);
/** @private @internal Initialise this object to calculate weights for a
* synonym.
*
* @param stats Source of statistics.
* @param query_len_ Query length.
* @param factor Any scaling factor (e.g. from OP_SCALE_WEIGHT).
* @param termfreq The termfreq to use.
* @param reltermfreq The reltermfreq to use.
* @param collection_freq The collection frequency to use.
*/
void init_(const Internal & stats, Xapian::termcount query_len_,
double factor, Xapian::doccount termfreq,
Xapian::doccount reltermfreq, Xapian::termcount collection_freq);
/** @private @internal Initialise this object to calculate the extra weight
* component.
*
* @param stats Source of statistics.
* @param query_len_ Query length.
*/
void init_(const Internal & stats, Xapian::termcount query_len_);
/** @private @internal Return true if the document length is needed.
*
* If this method returns true, then the document length will be fetched
* and passed to @a get_sumpart(). Otherwise 0 may be passed for the
* document length.
*/
bool get_sumpart_needs_doclength_() const {
return stats_needed & DOC_LENGTH;
}
/** @private @internal Return true if the WDF is needed.
*
* If this method returns true, then the WDF will be fetched and passed to
* @a get_sumpart(). Otherwise 0 may be passed for the wdf.
*/
bool get_sumpart_needs_wdf_() const {
return stats_needed & WDF;
}
/** @private @internal Return true if the number of unique terms is needed.
*
* If this method returns true, then the number of unique terms will be
* fetched and passed to @a get_sumpart(). Otherwise 0 may be passed for
* the number of unique terms.
*/
bool get_sumpart_needs_uniqueterms_() const {
return stats_needed & UNIQUE_TERMS;
}
protected:
/** Don't allow copying.
*
* This would ideally be private, but that causes a compilation error
* with GCC 4.1 (which appears to be a bug).
*/
Weight(const Weight &);
/// The number of documents in the collection.
Xapian::doccount get_collection_size() const { return collection_size_; }
/// The number of documents marked as relevant.
Xapian::doccount get_rset_size() const { return rset_size_; }
/// The average length of a document in the collection.
Xapian::doclength get_average_length() const { return average_length_; }
/// The number of documents which this term indexes.
Xapian::doccount get_termfreq() const { return termfreq_; }
/// The number of relevant documents which this term indexes.
Xapian::doccount get_reltermfreq() const { return reltermfreq_; }
// The collection frequency of the term.
Xapian::termcount get_collection_freq() const { return collectionfreq_; }
/// The length of the query.
Xapian::termcount get_query_length() const { return query_length_; }
/// The within-query-frequency of this term.
Xapian::termcount get_wqf() const { return wqf_; }
/** An upper bound on the maximum length of any document in the database.
*
* This should only be used by get_maxpart() and get_maxextra().
*/
Xapian::termcount get_doclength_upper_bound() const {
return doclength_upper_bound_;
}
/** A lower bound on the minimum length of any document in the database.
*
* This bound does not include any zero-length documents.
*
* This should only be used by get_maxpart() and get_maxextra().
*/
Xapian::termcount get_doclength_lower_bound() const {
return doclength_lower_bound_;
}
/** An upper bound on the wdf of this term.
*
* This should only be used by get_maxpart() and get_maxextra().
*/
Xapian::termcount get_wdf_upper_bound() const {
return wdf_upper_bound_;
}
};
/** Class implementing a "boolean" weighting scheme.
*
* This weighting scheme gives all documents zero weight.
*/
class XAPIAN_VISIBILITY_DEFAULT BoolWeight : public Weight {
BoolWeight * clone() const;
void init(double factor);
public:
/** Construct a BoolWeight. */
BoolWeight() { }
std::string name() const;
std::string serialise() const;
BoolWeight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/// Xapian::Weight subclass implementing the tf-idf weighting scheme.
class XAPIAN_VISIBILITY_DEFAULT TfIdfWeight : public Weight {
/* Three character string indicating the normalizations for tf(wdf), idf and
tfidf weight. */
std::string normalizations;
/// The factor to multiply with the weight.
double factor;
TfIdfWeight * clone() const;
void init(double factor);
/* When additional normalizations are implemented in the future, the additional statistics for them
should be accessed by these functions. */
double get_wdfn(Xapian::termcount wdf, char c) const;
double get_idfn(Xapian::doccount termfreq, char c) const;
double get_wtn(double wt, char c) const;
public:
/** Construct a TfIdfWeight
*
* @param normalizations A three character string indicating the
* normalizations to be used for the tf(wdf), idf
* and document weight. (default: "ntn")
*
* The @a normalizations string works like so:
*
* @li The first character specifies the normalization for the wdf. The
* following normalizations are currently supported:
*
* @li 'n': None. wdfn=wdf
* @li 'b': Boolean wdfn=1 if term in document else wdfn=0
* @li 's': Square wdfn=wdf*wdf
* @li 'l': Logarithmic wdfn=1+log<sub>e</sub>(wdf)
*
* The Max-wdf and Augmented Max wdf normalizations haven't yet been
* implemented.
*
* @li The second character indicates the normalization for the idf. The
* following normalizations are currently supported:
*
* @li 'n': None idfn=1
* @li 't': TfIdf idfn=log(N/Termfreq) where N is the number of
* documents in collection and Termfreq is the number of documents
* which are indexed by the term t.
* @li 'p': Prob idfn=log((N-Termfreq)/Termfreq)
*
* @li The third and the final character indicates the normalization for
* the document weight. The following normalizations are currently
* supported:
*
* @li 'n': None wtn=tfn*idfn
*
* Implementing support for more normalizations of each type would require
* extending the backend to track more statistics.
*/
explicit TfIdfWeight(const std::string &normalizations);
TfIdfWeight()
: normalizations("ntn")
{
need_stat(TERMFREQ);
need_stat(WDF);
need_stat(WDF_MAX);
need_stat(COLLECTION_SIZE);
}
std::string name() const;
std::string serialise() const;
TfIdfWeight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterm) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/// Xapian::Weight subclass implementing the BM25 probabilistic formula.
class XAPIAN_VISIBILITY_DEFAULT BM25Weight : public Weight {
/// Factor to multiply the document length by.
mutable Xapian::doclength len_factor;
/// Factor combining all the document independent factors.
mutable double termweight;
/// The BM25 parameters.
double param_k1, param_k2, param_k3, param_b;
/// The minimum normalised document length value.
Xapian::doclength param_min_normlen;
BM25Weight * clone() const;
void init(double factor);
public:
/** Construct a BM25Weight.
*
* @param k1 A non-negative parameter controlling how influential
* within-document-frequency (wdf) is. k1=0 means that
* wdf doesn't affect the weights. The larger k1 is, the more
* wdf influences the weights. (default 1)
*
* @param k2 A non-negative parameter which controls the strength of a
* correction factor which depends upon query length and
* normalised document length. k2=0 disable this factor; larger
* k2 makes it stronger. (default 0)
*
* @param k3 A non-negative parameter controlling how influential
* within-query-frequency (wqf) is. k3=0 means that wqf
* doesn't affect the weights. The larger k3 is, the more
* wqf influences the weights. (default 1)
*
* @param b A parameter between 0 and 1, controlling how strong the
* document length normalisation of wdf is. 0 means no
* normalisation; 1 means full normalisation. (default 0.5)
*
* @param min_normlen A parameter specifying a minimum value for
* normalised document length. Normalised document length
* values less than this will be clamped to this value, helping
* to prevent very short documents getting large weights.
* (default 0.5)
*/
BM25Weight(double k1, double k2, double k3, double b, double min_normlen)
: param_k1(k1), param_k2(k2), param_k3(k3), param_b(b),
param_min_normlen(min_normlen)
{
if (param_k1 < 0) param_k1 = 0;
if (param_k2 < 0) param_k2 = 0;
if (param_k3 < 0) param_k3 = 0;
if (param_b < 0) {
param_b = 0;
} else if (param_b > 1) {
param_b = 1;
}
need_stat(COLLECTION_SIZE);
need_stat(RSET_SIZE);
need_stat(TERMFREQ);
need_stat(RELTERMFREQ);
need_stat(WDF);
need_stat(WDF_MAX);
if (param_k2 != 0 || (param_k1 != 0 && param_b != 0)) {
need_stat(DOC_LENGTH_MIN);
need_stat(AVERAGE_LENGTH);
}
if (param_k1 != 0 && param_b != 0) need_stat(DOC_LENGTH);
if (param_k2 != 0) need_stat(QUERY_LENGTH);
if (param_k3 != 0) need_stat(WQF);
}
BM25Weight()
: param_k1(1), param_k2(0), param_k3(1), param_b(0.5),
param_min_normlen(0.5)
{
need_stat(COLLECTION_SIZE);
need_stat(RSET_SIZE);
need_stat(TERMFREQ);
need_stat(RELTERMFREQ);
need_stat(WDF);
need_stat(WDF_MAX);
need_stat(DOC_LENGTH_MIN);
need_stat(AVERAGE_LENGTH);
need_stat(DOC_LENGTH);
need_stat(WQF);
}
std::string name() const;
std::string serialise() const;
BM25Weight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterm) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/** Xapian::Weight subclass implementing the traditional probabilistic formula.
*
* This class implements the "traditional" Probabilistic Weighting scheme, as
* described by the early papers on Probabilistic Retrieval. BM25 generally
* gives better results.
*
* TradWeight(k) is equivalent to BM25Weight(k, 0, 0, 1, 0), except that
* the latter returns weights (k+1) times larger.
*/
class XAPIAN_VISIBILITY_DEFAULT TradWeight : public Weight {
/// Factor to multiply the document length by.
mutable Xapian::doclength len_factor;
/// Factor combining all the document independent factors.
mutable double termweight;
/// The parameter in the formula.
double param_k;
TradWeight * clone() const;
void init(double factor);
public:
/** Construct a TradWeight.
*
* @param k A non-negative parameter controlling how influential
* within-document-frequency (wdf) and document length are.
* k=0 means that wdf and document length don't affect the
* weights. The larger k is, the more they do. (default 1)
*/
explicit TradWeight(double k = 1.0) : param_k(k) {
if (param_k < 0) param_k = 0;
if (param_k != 0.0) {
need_stat(AVERAGE_LENGTH);
need_stat(DOC_LENGTH);
}
need_stat(COLLECTION_SIZE);
need_stat(RSET_SIZE);
need_stat(TERMFREQ);
need_stat(RELTERMFREQ);
need_stat(DOC_LENGTH_MIN);
need_stat(WDF);
need_stat(WDF_MAX);
}
std::string name() const;
std::string serialise() const;
TradWeight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqueterms) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/** This class implements the InL2 weighting scheme.
*
* InL2 is a representative scheme of the Divergence from Randomness Framework
* by Gianni Amati.
*
* This weighting scheme is useful for tasks that require early precision.
*
* It uses the Inverse document frequency model (In), the Laplace method to
* find the aftereffect of sampling (L) and the second wdf normalization
* proposed by Amati to normalize the wdf in the document to the length of the
* document (H2).
*
* For more information about the DFR Framework and the InL2 scheme, please
* refer to: Gianni Amati and Cornelis Joost Van Rijsbergen Probabilistic
* models of information retrieval based on measuring the divergence from
* randomness ACM Transactions on Information Systems (TOIS) 20, (4), 2002,
* pp. 357-389.
*/
class XAPIAN_VISIBILITY_DEFAULT InL2Weight : public Weight {
/// The wdf normalization parameter in the formula.
double param_c;
/// The upper bound on the weight a term can give to a document.
double upper_bound;
/// The constant values which are used on every call to get_sumpart().
double wqf_product_idf;
double c_product_avlen;
InL2Weight * clone() const;
void init(double factor);
public:
/** Construct an InL2Weight.
*
* @param c A non-negative and non zero parameter controlling the extent
* of the normalization of the wdf to the document length. The
* default value of 1 is suitable for longer queries but it may
* need to be changed for shorter queries. For more information,
* please refer to Gianni Amati's PHD thesis.
*/
explicit InL2Weight(double c);
InL2Weight()
: param_c(1.0)
{
need_stat(AVERAGE_LENGTH);
need_stat(DOC_LENGTH);
need_stat(DOC_LENGTH_MIN);
need_stat(DOC_LENGTH_MAX);
need_stat(COLLECTION_SIZE);
need_stat(WDF);
need_stat(WDF_MAX);
need_stat(WQF);
need_stat(TERMFREQ);
}
std::string name() const;
std::string serialise() const;
InL2Weight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/** This class implements the IfB2 weighting scheme.
*
* IfB2 is a representative scheme of the Divergence from Randomness Framework
* by Gianni Amati.
*
* It uses the Inverse term frequency model (If), the Bernoulli method to find
* the aftereffect of sampling (B) and the second wdf normalization proposed
* by Amati to normalize the wdf in the document to the length of the document
* (H2).
*
* For more information about the DFR Framework and the IfB2 scheme, please
* refer to: Gianni Amati and Cornelis Joost Van Rijsbergen Probabilistic
* models of information retrieval based on measuring the divergence from
* randomness ACM Transactions on Information Systems (TOIS) 20, (4), 2002,
* pp. 357-389.
*/
class XAPIAN_VISIBILITY_DEFAULT IfB2Weight : public Weight {
/// The wdf normalization parameter in the formula.
double param_c;
/// The upper bound on the weight.
double upper_bound;
/// The constant values which are used for calculations in get_sumpart().
double wqf_product_idf;
double c_product_avlen;
double B_constant;
IfB2Weight * clone() const;
void init(double factor);
public:
/** Construct an IfB2Weight.
*
* @param c A non-negative and non zero parameter controlling the extent
* of the normalization of the wdf to the document length. The
* default value of 1 is suitable for longer queries but it may
* need to be changed for shorter queries. For more information,
* please refer to Gianni Amati's PHD thesis titled
* Probabilistic Models for Information Retrieval based on
* Divergence from Randomness.
*/
explicit IfB2Weight(double c);
IfB2Weight( ) : param_c(1.0) {
need_stat(AVERAGE_LENGTH);
need_stat(DOC_LENGTH);
need_stat(DOC_LENGTH_MIN);
need_stat(DOC_LENGTH_MAX);
need_stat(COLLECTION_SIZE);
need_stat(COLLECTION_FREQ);
need_stat(WDF);
need_stat(WDF_MAX);
need_stat(WQF);
need_stat(TERMFREQ);
}
std::string name() const;
std::string serialise() const;
IfB2Weight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterm) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/** This class implements the IneB2 weighting scheme.
*
* IneB2 is a representative scheme of the Divergence from Randomness
* Framework by Gianni Amati.
*
* It uses the Inverse expected document frequency model (Ine), the Bernoulli
* method to find the aftereffect of sampling (B) and the second wdf
* normalization proposed by Amati to normalize the wdf in the document to the
* length of the document (H2).
*
* For more information about the DFR Framework and the IneB2 scheme, please
* refer to: Gianni Amati and Cornelis Joost Van Rijsbergen Probabilistic
* models of information retrieval based on measuring the divergence from
* randomness ACM Transactions on Information Systems (TOIS) 20, (4), 2002,
* pp. 357-389.
*/
class XAPIAN_VISIBILITY_DEFAULT IneB2Weight : public Weight {
/// The wdf normalization parameter in the formula.
double param_c;
/// The upper bound of the weight.
double upper_bound;
/// Constant values used in get_sumpart().
double wqf_product_idf;
double c_product_avlen;
double B_constant;
IneB2Weight * clone() const;
void init(double factor);
public:
/** Construct an IneB2Weight.
*
* @param c A non-negative and non zero parameter controlling the extent
* of the normalization of the wdf to the document length. The
* default value of 1 is suitable for longer queries but it may
* need to be changed for shorter queries. For more information,
* please refer to Gianni Amati's PHD thesis.
*/
explicit IneB2Weight(double c);
IneB2Weight( ) : param_c(1.0) {
need_stat(AVERAGE_LENGTH);
need_stat(DOC_LENGTH);
need_stat(DOC_LENGTH_MIN);
need_stat(DOC_LENGTH_MAX);
need_stat(COLLECTION_SIZE);
need_stat(WDF);
need_stat(WDF_MAX);
need_stat(WQF);
need_stat(COLLECTION_FREQ);
need_stat(TERMFREQ);
}
std::string name() const;
std::string serialise() const;
IneB2Weight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/** This class implements the BB2 weighting scheme.
*
* BB2 is a representative scheme of the Divergence from Randomness Framework
* by Gianni Amati.
*
* It uses the Bose-Einstein probabilistic distribution (B) along with
* Stirling's power approximation, the Bernoulli method to find the
* aftereffect of sampling (B) and the second wdf normalization proposed by
* Amati to normalize the wdf in the document to the length of the document
* (H2).
*
* For more information about the DFR Framework and the BB2 scheme, please
* refer to : Gianni Amati and Cornelis Joost Van Rijsbergen Probabilistic
* models of information retrieval based on measuring the divergence from
* randomness ACM Transactions on Information Systems (TOIS) 20, (4), 2002,
* pp. 357-389.
*/
class XAPIAN_VISIBILITY_DEFAULT BB2Weight : public Weight {
/// The wdf normalization parameter in the formula.
double param_c;
/// The upper bound on the weight.
double upper_bound;
/// The constant values to be used in get_sumpart().
double c_product_avlen;
double B_constant;
double wt;
double stirling_constant_1;
double stirling_constant_2;
BB2Weight * clone() const;
void init(double factor);
public:
/** Construct a BB2Weight.
*
* @param c A non-negative and non zero parameter controlling the extent
* of the normalization of the wdf to the document length. A
* default value of 1 is suitable for longer queries but it may
* need to be changed for shorter queries. For more information,
* please refer to Gianni Amati's PHD thesis titled
* Probabilistic Models for Information Retrieval based on
* Divergence from Randomness.
*/
explicit BB2Weight(double c);
BB2Weight( ) : param_c(1.0) {
need_stat(AVERAGE_LENGTH);
need_stat(DOC_LENGTH);
need_stat(DOC_LENGTH_MIN);
need_stat(DOC_LENGTH_MAX);
need_stat(COLLECTION_SIZE);
need_stat(COLLECTION_FREQ);
need_stat(WDF);
need_stat(WDF_MAX);
need_stat(WQF);
need_stat(TERMFREQ);
}
std::string name() const;
std::string serialise() const;
BB2Weight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/** This class implements the DLH weighting scheme, which is a representative
* scheme of the Divergence from Randomness Framework by Gianni Amati.
*
* This is a parameter free weighting scheme and it should be used with query
* expansion to obtain better results. It uses the HyperGeometric Probabilistic
* model and Laplace's normalization to calculate the risk gain.
*
* For more information about the DFR Framework and the DLH scheme, please
* refer to :
* a.) Gianni Amati and Cornelis Joost Van Rijsbergen Probabilistic
* models of information retrieval based on measuring the divergence from
* randomness ACM Transactions on Information Systems (TOIS) 20, (4), 2002, pp.
* 357-389.
* b.) FUB, IASI-CNR and University of Tor Vergata at TREC 2007 Blog Track.
* G. Amati and E. Ambrosi and M. Bianchi and C. Gaibisso and G. Gambosi.
* Proceedings of the 16th Text REtrieval Conference (TREC-2007), 2008.
*/
class XAPIAN_VISIBILITY_DEFAULT DLHWeight : public Weight {
/// The lower bound on the weight.
double lower_bound;
/// The upper bound on the weight.
double upper_bound;
/// The constant value to be used in get_sumpart().
double log_constant;
double wqf_product_factor;
DLHWeight * clone() const;
void init(double factor);
public:
DLHWeight() {
need_stat(AVERAGE_LENGTH);
need_stat(DOC_LENGTH);
need_stat(COLLECTION_SIZE);
need_stat(COLLECTION_FREQ);
need_stat(WDF);
need_stat(WQF);
need_stat(WDF_MAX);
need_stat(DOC_LENGTH_MIN);
need_stat(DOC_LENGTH_MAX);
}
std::string name() const;
std::string serialise() const;
DLHWeight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/** This class implements the PL2 weighting scheme.
*
* PL2 is a representative scheme of the Divergence from Randomness Framework
* by Gianni Amati.
*
* This weighting scheme is useful for tasks that require early precision.
*
* It uses the Poisson approximation of the Binomial Probabilistic distribution
* (P) along with Stirling's approximation for the factorial value, the Laplace
* method to find the aftereffect of sampling (L) and the second wdf
* normalization proposed by Amati to normalize the wdf in the document to the
* length of the document (H2).
*
* For more information about the DFR Framework and the PL2 scheme, please
* refer to : Gianni Amati and Cornelis Joost Van Rijsbergen Probabilistic models
* of information retrieval based on measuring the divergence from randomness
* ACM Transactions on Information Systems (TOIS) 20, (4), 2002, pp. 357-389.
*/
class XAPIAN_VISIBILITY_DEFAULT PL2Weight : public Weight {
/// The wdf normalization parameter in the formula.
double param_c;
/// The lower bound of the weight.
double lower_bound;
/// The upper bound on the weight.
double upper_bound;
/// Constants for a given term in a given query.
double P1, P2;
/// Set by init() to (param_c * get_average_length())
double cl;
PL2Weight * clone() const;
void init(double factor);
public:
/** Construct a PL2Weight.
*
* @param c A non-negative and non zero parameter controlling the extent
* of the normalization of the wdf to the document length. The
* default value of 1 is suitable for longer queries but it may
* need to be changed for shorter queries. For more information,
* please refer to Gianni Amati's PHD thesis titled
* Probabilistic Models for Information Retrieval based on
* Divergence from Randomness.
*/
explicit PL2Weight(double c);
PL2Weight( ) : param_c(1.0) {
need_stat(AVERAGE_LENGTH);
need_stat(DOC_LENGTH);
need_stat(DOC_LENGTH_MIN);
need_stat(DOC_LENGTH_MAX);
need_stat(COLLECTION_SIZE);
need_stat(COLLECTION_FREQ);
need_stat(WDF);
need_stat(WDF_MAX);
need_stat(WQF);
}
std::string name() const;
std::string serialise() const;
PL2Weight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/** This class implements the DPH weighting scheme.
*
* DPH is a representative scheme of the Divergence from Randomness Framework
* by Gianni Amati.
*
* This is a parameter free weighting scheme and it should be used with query
* expansion to obtain better results. It uses the HyperGeometric Probabilistic
* model and Popper's normalization to calculate the risk gain.
*
* For more information about the DFR Framework and the DPH scheme, please
* refer to :
* a.) Gianni Amati and Cornelis Joost Van Rijsbergen
* Probabilistic models of information retrieval based on measuring the
* divergence from randomness ACM Transactions on Information Systems (TOIS) 20,
* (4), 2002, pp. 357-389.
* b.) FUB, IASI-CNR and University of Tor Vergata at TREC 2007 Blog Track.
* G. Amati and E. Ambrosi and M. Bianchi and C. Gaibisso and G. Gambosi.
* Proceedings of the 16th Text Retrieval Conference (TREC-2007), 2008.
*/
class XAPIAN_VISIBILITY_DEFAULT DPHWeight : public Weight {
/// The upper bound on the weight.
double upper_bound;
/// The lower bound on the weight.
double lower_bound;
/// The constant value used in get_sumpart() .
double log_constant;
double wqf_product_factor;
DPHWeight * clone() const;
void init(double factor);
public:
/** Construct a DPHWeight. */
DPHWeight() {
need_stat(AVERAGE_LENGTH);
need_stat(DOC_LENGTH);
need_stat(COLLECTION_SIZE);
need_stat(COLLECTION_FREQ);
need_stat(WDF);
need_stat(WQF);
need_stat(WDF_MAX);
need_stat(DOC_LENGTH_MIN);
need_stat(DOC_LENGTH_MAX);
}
std::string name() const;
std::string serialise() const;
DPHWeight * unserialise(const std::string & serialised) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen,
Xapian::termcount uniqterms) const;
double get_maxextra() const;
};
/** Xapian::Weight subclass implementing the Language Model formula.
*
* This class implements the "Language Model" Weighting scheme, as
* described by the early papers on LM by Bruce Croft.
*
* LM works by comparing the query to a Language Model of the document.
* The language model itself is parameter-free, though LMWeight takes
* parameters which specify the smoothing used.
*/
class XAPIAN_VISIBILITY_DEFAULT LMWeight : public Weight {
/** The type of smoothing to use. */
type_smoothing select_smoothing;
// Parameters for handling negative value of log, and for smoothing.
double param_log, param_smoothing1, param_smoothing2;
// Collection weight.
double weight_collection;
LMWeight * clone() const;
void init(double factor);
public:
/** Construct a LMWeight.
*
* @param param_log_ A non-negative parameter controlling how much
* to clamp negative values returned by the log.
* The log is calculated by multiplying the
* actual weight by param_log. If param_log is
* 0.0, then the document length upper bound will
* be used (default: document length upper bound)
*
* @param select_smoothing_ A parameter of type enum
* type_smoothing. This parameter
* controls which smoothing type to use.
* (default: TWO_STAGE_SMOOTHING)
*
* @param param_smoothing1_ A non-negative parameter for smoothing
* whose meaning depends on
* select_smoothing_. In
* JELINEK_MERCER_SMOOTHING, it plays the
* role of estimation and in
* DIRICHLET_SMOOTHING the role of query
* modelling. (default JELINEK_MERCER,
* ABSOLUTE, TWOSTAGE(0.7),
* DIRCHLET(2000))
*
* @param param_smoothing2_ A non-negative parameter which is used
* only with TWO_STAGE_SMOOTHING as
* parameter for Dirichlet's smoothing.
* (default: 2000)
*/
// Unigram LM Constructor to specifically mention all parameters for handling negative log value and smoothing.
explicit LMWeight(double param_log_ = 0.0,
type_smoothing select_smoothing_ = TWO_STAGE_SMOOTHING,
double param_smoothing1_ = 0.7,
double param_smoothing2_ = 2000.0)
: select_smoothing(select_smoothing_), param_log(param_log_), param_smoothing1(param_smoothing1_),
param_smoothing2(param_smoothing2_)
{
need_stat(AVERAGE_LENGTH);
need_stat(DOC_LENGTH);
need_stat(COLLECTION_SIZE);
need_stat(RSET_SIZE);
need_stat(TERMFREQ);
need_stat(RELTERMFREQ);
need_stat(DOC_LENGTH_MAX);
need_stat(WDF);
need_stat(WDF_MAX);
need_stat(COLLECTION_FREQ);
if (select_smoothing == ABSOLUTE_DISCOUNT_SMOOTHING)
need_stat(UNIQUE_TERMS);
}
std::string name() const;
std::string serialise() const;
LMWeight * unserialise(const std::string & s) const;
double get_sumpart(Xapian::termcount wdf,
Xapian::termcount doclen,
Xapian::termcount uniqterm) const;
double get_maxpart() const;
double get_sumextra(Xapian::termcount doclen, Xapian::termcount) const;
double get_maxextra() const;
};
}
#endif // XAPIAN_INCLUDED_WEIGHT_H
|