/usr/include/z3_api.h is in libz3-dev 4.4.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 | /*++
Copyright (c) 2015 Microsoft Corporation
--*/
#ifndef _Z3_API_H_
#define _Z3_API_H_
#ifdef CAMLIDL
#ifdef MLAPIV3
#define ML3only
#define CorML3
#else
#define ML4only
#define CorML4
#endif
#else
#define Conly
#define CorML3
#define CorML4
#endif
#ifdef CorML3
DEFINE_TYPE(Z3_symbol);
DEFINE_TYPE(Z3_literals);
DEFINE_TYPE(Z3_theory);
DEFINE_TYPE(Z3_config);
DEFINE_TYPE(Z3_context);
DEFINE_TYPE(Z3_sort);
#define Z3_sort_opt Z3_sort
DEFINE_TYPE(Z3_func_decl);
DEFINE_TYPE(Z3_ast);
#define Z3_ast_opt Z3_ast
DEFINE_TYPE(Z3_app);
DEFINE_TYPE(Z3_pattern);
DEFINE_TYPE(Z3_model);
DEFINE_TYPE(Z3_constructor);
DEFINE_TYPE(Z3_constructor_list);
#endif
#ifdef Conly
DEFINE_TYPE(Z3_params);
DEFINE_TYPE(Z3_param_descrs);
DEFINE_TYPE(Z3_goal);
DEFINE_TYPE(Z3_tactic);
DEFINE_TYPE(Z3_probe);
DEFINE_TYPE(Z3_stats);
DEFINE_TYPE(Z3_solver);
DEFINE_TYPE(Z3_ast_vector);
DEFINE_TYPE(Z3_ast_map);
DEFINE_TYPE(Z3_apply_result);
DEFINE_TYPE(Z3_func_interp);
#define Z3_func_interp_opt Z3_func_interp
DEFINE_TYPE(Z3_func_entry);
DEFINE_TYPE(Z3_fixedpoint);
DEFINE_TYPE(Z3_optimize);
DEFINE_TYPE(Z3_rcf_num);
DEFINE_VOID(Z3_theory_data);
#endif
#ifndef __int64
#define __int64 long long
#endif
#ifndef __uint64
#define __uint64 unsigned long long
#endif
/**
\defgroup capi C API
*/
/*@{*/
/**
@name Types
\conly Most of the types in the C API are opaque pointers.
\mlonly Most of the types in the API are abstract. \endmlonly
\conly - \c Z3_config: configuration object used to initialize logical contexts.
- \c Z3_context: manager of all other Z3 objects, global configuration options, etc.
- \c Z3_symbol: Lisp-like symbol used to name types, constants, and functions. A symbol can be created using string or integers.
- \c Z3_ast: abstract syntax tree node. That is, the data-structure used in Z3 to represent terms, formulas and types.
- \c Z3_sort: kind of AST used to represent types.
- \c Z3_func_decl: kind of AST used to represent function symbols.
- \c Z3_app: kind of AST used to represent function applications.
- \c Z3_pattern: kind of AST used to represent pattern and multi-patterns used to guide quantifier instantiation.
\conly - \c Z3_constructor: type constructor for a (recursive) datatype.
- \c Z3_params: parameter set used to configure many components such as: simplifiers, tactics, solvers, etc.
- \c Z3_model: model for the constraints asserted into the logical context.
- \c Z3_func_interp: interpretation of a function in a model.
- \c Z3_func_entry: representation of the value of a \c Z3_func_interp at a particular point.
- \c Z3_fixedpoint: context for the recursive predicate solver.
- \c Z3_optimize: context for solving optimization queries.
- \c Z3_ast_vector: vector of \c Z3_ast objects.
- \c Z3_ast_map: mapping from \c Z3_ast to \c Z3_ast objects.
- \c Z3_goal: set of formulas that can be solved and/or transformed using tactics and solvers.
- \c Z3_tactic: basic building block for creating custom solvers for specific problem domains.
- \c Z3_probe: function/predicate used to inspect a goal and collect information that may be used to decide which solver and/or preprocessing step will be used.
- \c Z3_apply_result: collection of subgoals resulting from applying of a tactic to a goal.
- \c Z3_solver: (incremental) solver, possibly specialized by a particular tactic or logic.
- \c Z3_stats: statistical data for a solver.
*/
#ifdef Conly
/**
\brief Z3 Boolean type. It is just an alias for \c int.
*/
typedef int Z3_bool;
#else
#define Z3_bool boolean
#endif
#ifdef Conly
/**
\brief Z3 string type. It is just an alias for <tt>const char *</tt>.
*/
typedef const char * Z3_string;
typedef Z3_string * Z3_string_ptr;
#else
typedef [string] const char * Z3_string;
#define Z3_string_ptr Z3_string *
#endif
#ifdef Conly
/**
\brief True value. It is just an alias for \c 1.
*/
#define Z3_TRUE 1
/**
\brief False value. It is just an alias for \c 0.
*/
#define Z3_FALSE 0
#endif
/**
\mlonly {!lbool} \endmlonly \conly \brief
Lifted Boolean type: \c false, \c undefined, \c true.
*/
typedef enum
{
Z3_L_FALSE = -1,
Z3_L_UNDEF,
Z3_L_TRUE
} Z3_lbool;
/**
\mlonly {!symbol_kind} \endmlonly \conly \brief
The different kinds of symbol.
In Z3, a symbol can be represented using integers and strings (See #Z3_get_symbol_kind).
\sa Z3_mk_int_symbol
\sa Z3_mk_string_symbol
*/
typedef enum
{
Z3_INT_SYMBOL,
Z3_STRING_SYMBOL
} Z3_symbol_kind;
/**
\mlonly {!parameter_kind} \endmlonly \conly \brief
The different kinds of parameters that can be associated with function symbols.
\sa Z3_get_decl_num_parameters
\sa Z3_get_decl_parameter_kind
- Z3_PARAMETER_INT is used for integer parameters.
- Z3_PARAMETER_DOUBLE is used for double parameters.
- Z3_PARAMETER_RATIONAL is used for parameters that are rational numbers.
- Z3_PARAMETER_SYMBOL is used for parameters that are symbols.
- Z3_PARAMETER_SORT is used for sort parameters.
- Z3_PARAMETER_AST is used for expression parameters.
- Z3_PARAMETER_FUNC_DECL is used for function declaration parameters.
*/
typedef enum
{
Z3_PARAMETER_INT,
Z3_PARAMETER_DOUBLE,
Z3_PARAMETER_RATIONAL,
Z3_PARAMETER_SYMBOL,
Z3_PARAMETER_SORT,
Z3_PARAMETER_AST,
Z3_PARAMETER_FUNC_DECL,
} Z3_parameter_kind;
/**
\mlonly {!sort_kind} \endmlonly \conly \brief
The different kinds of Z3 types (See #Z3_get_sort_kind).
*/
typedef enum
{
Z3_UNINTERPRETED_SORT,
Z3_BOOL_SORT,
Z3_INT_SORT,
Z3_REAL_SORT,
Z3_BV_SORT,
Z3_ARRAY_SORT,
Z3_DATATYPE_SORT,
Z3_RELATION_SORT,
Z3_FINITE_DOMAIN_SORT,
Z3_FLOATING_POINT_SORT,
Z3_ROUNDING_MODE_SORT,
Z3_UNKNOWN_SORT = 1000
} Z3_sort_kind;
/**
\mlonly {!ast_kind} \endmlonly \conly \brief
The different kinds of Z3 AST (abstract syntax trees). That is, terms, formulas and types.
- Z3_APP_AST: constant and applications
- Z3_NUMERAL_AST: numeral constants
- Z3_VAR_AST: bound variables
- Z3_QUANTIFIER_AST: quantifiers
- Z3_SORT_AST: sort
- Z3_FUNC_DECL_AST: function declaration
- Z3_UNKNOWN_AST: internal
*/
typedef enum
{
Z3_NUMERAL_AST,
Z3_APP_AST,
Z3_VAR_AST,
Z3_QUANTIFIER_AST,
Z3_SORT_AST,
Z3_FUNC_DECL_AST,
Z3_UNKNOWN_AST = 1000
} Z3_ast_kind;
/**
\mlonly {!decl_kind} \endmlonly \conly \brief
The different kinds of interpreted function kinds.
- Z3_OP_TRUE The constant true.
- Z3_OP_FALSE The constant false.
- Z3_OP_EQ The equality predicate.
- Z3_OP_DISTINCT The n-ary distinct predicate (every argument is mutually distinct).
- Z3_OP_ITE The ternary if-then-else term.
- Z3_OP_AND n-ary conjunction.
- Z3_OP_OR n-ary disjunction.
- Z3_OP_IFF equivalence (binary).
- Z3_OP_XOR Exclusive or.
- Z3_OP_NOT Negation.
- Z3_OP_IMPLIES Implication.
- Z3_OP_OEQ Binary equivalence modulo namings. This binary predicate is used in proof terms.
It captures equisatisfiability and equivalence modulo renamings.
- Z3_OP_INTERP Marks a sub-formula for interpolation.
- Z3_OP_ANUM Arithmetic numeral.
- Z3_OP_AGNUM Arithmetic algebraic numeral. Algebraic numbers are used to represent irrational numbers in Z3.
- Z3_OP_LE <=.
- Z3_OP_GE >=.
- Z3_OP_LT <.
- Z3_OP_GT >.
- Z3_OP_ADD Addition - Binary.
- Z3_OP_SUB Binary subtraction.
- Z3_OP_UMINUS Unary minus.
- Z3_OP_MUL Multiplication - Binary.
- Z3_OP_DIV Division - Binary.
- Z3_OP_IDIV Integer division - Binary.
- Z3_OP_REM Remainder - Binary.
- Z3_OP_MOD Modulus - Binary.
- Z3_OP_TO_REAL Coercion of integer to real - Unary.
- Z3_OP_TO_INT Coercion of real to integer - Unary.
- Z3_OP_IS_INT Check if real is also an integer - Unary.
- Z3_OP_POWER Power operator x^y.
- Z3_OP_STORE Array store. It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
Array store takes at least 3 arguments.
- Z3_OP_SELECT Array select.
- Z3_OP_CONST_ARRAY The constant array. For example, select(const(v),i) = v holds for every v and i. The function is unary.
- Z3_OP_ARRAY_DEFAULT Default value of arrays. For example default(const(v)) = v. The function is unary.
- Z3_OP_ARRAY_MAP Array map operator.
It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i.
- Z3_OP_SET_UNION Set union between two Booelan arrays (two arrays whose range type is Boolean). The function is binary.
- Z3_OP_SET_INTERSECT Set intersection between two Boolean arrays. The function is binary.
- Z3_OP_SET_DIFFERENCE Set difference between two Boolean arrays. The function is binary.
- Z3_OP_SET_COMPLEMENT Set complement of a Boolean array. The function is unary.
- Z3_OP_SET_SUBSET Subset predicate between two Boolean arrays. The relation is binary.
- Z3_OP_AS_ARRAY An array value that behaves as the function graph of the
function passed as parameter.
- Z3_OP_BNUM Bit-vector numeral.
- Z3_OP_BIT1 One bit bit-vector.
- Z3_OP_BIT0 Zero bit bit-vector.
- Z3_OP_BNEG Unary minus.
- Z3_OP_BADD Binary addition.
- Z3_OP_BSUB Binary subtraction.
- Z3_OP_BMUL Binary multiplication.
- Z3_OP_BSDIV Binary signed division.
- Z3_OP_BUDIV Binary unsigned division.
- Z3_OP_BSREM Binary signed remainder.
- Z3_OP_BUREM Binary unsigned remainder.
- Z3_OP_BSMOD Binary signed modulus.
- Z3_OP_BSDIV0 Unary function. bsdiv(x,0) is congruent to bsdiv0(x).
- Z3_OP_BUDIV0 Unary function. budiv(x,0) is congruent to budiv0(x).
- Z3_OP_BSREM0 Unary function. bsrem(x,0) is congruent to bsrem0(x).
- Z3_OP_BUREM0 Unary function. burem(x,0) is congruent to burem0(x).
- Z3_OP_BSMOD0 Unary function. bsmod(x,0) is congruent to bsmod0(x).
- Z3_OP_ULEQ Unsigned bit-vector <= - Binary relation.
- Z3_OP_SLEQ Signed bit-vector <= - Binary relation.
- Z3_OP_UGEQ Unsigned bit-vector >= - Binary relation.
- Z3_OP_SGEQ Signed bit-vector >= - Binary relation.
- Z3_OP_ULT Unsigned bit-vector < - Binary relation.
- Z3_OP_SLT Signed bit-vector < - Binary relation.
- Z3_OP_UGT Unsigned bit-vector > - Binary relation.
- Z3_OP_SGT Signed bit-vector > - Binary relation.
- Z3_OP_BAND Bit-wise and - Binary.
- Z3_OP_BOR Bit-wise or - Binary.
- Z3_OP_BNOT Bit-wise not - Unary.
- Z3_OP_BXOR Bit-wise xor - Binary.
- Z3_OP_BNAND Bit-wise nand - Binary.
- Z3_OP_BNOR Bit-wise nor - Binary.
- Z3_OP_BXNOR Bit-wise xnor - Binary.
- Z3_OP_CONCAT Bit-vector concatenation - Binary.
- Z3_OP_SIGN_EXT Bit-vector sign extension.
- Z3_OP_ZERO_EXT Bit-vector zero extension.
- Z3_OP_EXTRACT Bit-vector extraction.
- Z3_OP_REPEAT Repeat bit-vector n times.
- Z3_OP_BREDOR Bit-vector reduce or - Unary.
- Z3_OP_BREDAND Bit-vector reduce and - Unary.
- Z3_OP_BCOMP .
- Z3_OP_BSHL Shift left.
- Z3_OP_BLSHR Logical shift right.
- Z3_OP_BASHR Arithmetical shift right.
- Z3_OP_ROTATE_LEFT Left rotation.
- Z3_OP_ROTATE_RIGHT Right rotation.
- Z3_OP_EXT_ROTATE_LEFT (extended) Left rotation. Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.
- Z3_OP_EXT_ROTATE_RIGHT (extended) Right rotation. Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.
- Z3_OP_INT2BV Coerce integer to bit-vector. NB. This function
is not supported by the decision procedures. Only the most
rudimentary simplification rules are applied to this function.
- Z3_OP_BV2INT Coerce bit-vector to integer. NB. This function
is not supported by the decision procedures. Only the most
rudimentary simplification rules are applied to this function.
- Z3_OP_CARRY Compute the carry bit in a full-adder.
The meaning is given by the equivalence
(carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))
- Z3_OP_XOR3 Compute ternary XOR.
The meaning is given by the equivalence
(xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)
- Z3_OP_PR_UNDEF: Undef/Null proof object.
- Z3_OP_PR_TRUE: Proof for the expression 'true'.
- Z3_OP_PR_ASSERTED: Proof for a fact asserted by the user.
- Z3_OP_PR_GOAL: Proof for a fact (tagged as goal) asserted by the user.
- Z3_OP_PR_MODUS_PONENS: Given a proof for p and a proof for (implies p q), produces a proof for q.
\nicebox{
T1: p
T2: (implies p q)
[mp T1 T2]: q
}
The second antecedents may also be a proof for (iff p q).
- Z3_OP_PR_REFLEXIVITY: A proof for (R t t), where R is a reflexive relation. This proof object has no antecedents.
The only reflexive relations that are used are
equivalence modulo namings, equality and equivalence.
That is, R is either '~', '=' or 'iff'.
- Z3_OP_PR_SYMMETRY: Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t).
\nicebox{
T1: (R t s)
[symmetry T1]: (R s t)
}
T1 is the antecedent of this proof object.
- Z3_OP_PR_TRANSITIVITY: Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
for (R t u).
\nicebox{
T1: (R t s)
T2: (R s u)
[trans T1 T2]: (R t u)
}
- Z3_OP_PR_TRANSITIVITY_STAR: Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1.
It combines several symmetry and transitivity proofs.
Example:
\nicebox{
T1: (R a b)
T2: (R c b)
T3: (R c d)
[trans* T1 T2 T3]: (R a d)
}
R must be a symmetric and transitive relation.
Assuming that this proof object is a proof for (R s t), then
a proof checker must check if it is possible to prove (R s t)
using the antecedents, symmetry and transitivity. That is,
if there is a path from s to t, if we view every
antecedent (R a b) as an edge between a and b.
- Z3_OP_PR_MONOTONICITY: Monotonicity proof object.
\nicebox{
T1: (R t_1 s_1)
...
Tn: (R t_n s_n)
[monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
}
Remark: if t_i == s_i, then the antecedent Ti is suppressed.
That is, reflexivity proofs are supressed to save space.
- Z3_OP_PR_QUANT_INTRO: Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).
T1: (~ p q)
[quant-intro T1]: (~ (forall (x) p) (forall (x) q))
- Z3_OP_PR_DISTRIBUTIVITY: Distributivity proof object.
Given that f (= or) distributes over g (= and), produces a proof for
(= (f a (g c d))
(g (f a c) (f a d)))
If f and g are associative, this proof also justifies the following equality:
(= (f (g a b) (g c d))
(g (f a c) (f a d) (f b c) (f b d)))
where each f and g can have arbitrary number of arguments.
This proof object has no antecedents.
Remark. This rule is used by the CNF conversion pass and
instantiated by f = or, and g = and.
- Z3_OP_PR_AND_ELIM: Given a proof for (and l_1 ... l_n), produces a proof for l_i
\nicebox{
T1: (and l_1 ... l_n)
[and-elim T1]: l_i
}
- Z3_OP_PR_NOT_OR_ELIM: Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).
\nicebox{
T1: (not (or l_1 ... l_n))
[not-or-elim T1]: (not l_i)
}
- Z3_OP_PR_REWRITE: A proof for a local rewriting step (= t s).
The head function symbol of t is interpreted.
This proof object has no antecedents.
The conclusion of a rewrite rule is either an equality (= t s),
an equivalence (iff t s), or equi-satisfiability (~ t s).
Remark: if f is bool, then = is iff.
Examples:
\nicebox{
(= (+ x 0) x)
(= (+ x 1 2) (+ 3 x))
(iff (or x false) x)
}
- Z3_OP_PR_REWRITE_STAR: A proof for rewriting an expression t into an expression s.
This proof object is used if the parameter PROOF_MODE is 1.
This proof object can have n antecedents.
The antecedents are proofs for equalities used as substitution rules.
The object is also used in a few cases if the parameter PROOF_MODE is 2.
The cases are:
- When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
- When converting bit-vectors to Booleans (BIT2BOOL=true)
- When pulling ite expression up (PULL_CHEAP_ITE_TREES=true)
- Z3_OP_PR_PULL_QUANT: A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.
- Z3_OP_PR_PULL_QUANT_STAR: A proof for (iff P Q) where Q is in prenex normal form.
This proof object is only used if the parameter PROOF_MODE is 1.
This proof object has no antecedents.
- Z3_OP_PR_PUSH_QUANT: A proof for:
\nicebox{
(iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
(and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
...
(forall (x_1 ... x_m) p_n[x_1 ... x_m])))
}
This proof object has no antecedents.
- Z3_OP_PR_ELIM_UNUSED_VARS:
A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n])
(forall (x_1 ... x_n) p[x_1 ... x_n]))
It is used to justify the elimination of unused variables.
This proof object has no antecedents.
- Z3_OP_PR_DER: A proof for destructive equality resolution:
(iff (forall (x) (or (not (= x t)) P[x])) P[t])
if x does not occur in t.
This proof object has no antecedents.
Several variables can be eliminated simultaneously.
- Z3_OP_PR_QUANT_INST: A proof of (or (not (forall (x) (P x))) (P a))
- Z3_OP_PR_HYPOTHESIS: Mark a hypothesis in a natural deduction style proof.
- Z3_OP_PR_LEMMA:
\nicebox{
T1: false
[lemma T1]: (or (not l_1) ... (not l_n))
}
This proof object has one antecedent: a hypothetical proof for false.
It converts the proof in a proof for (or (not l_1) ... (not l_n)),
when T1 contains the open hypotheses: l_1, ..., l_n.
The hypotheses are closed after an application of a lemma.
Furthermore, there are no other open hypotheses in the subtree covered by
the lemma.
- Z3_OP_PR_UNIT_RESOLUTION:
\nicebox{
T1: (or l_1 ... l_n l_1' ... l_m')
T2: (not l_1)
...
T(n+1): (not l_n)
[unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')
}
- Z3_OP_PR_IFF_TRUE:
\nicebox{
T1: p
[iff-true T1]: (iff p true)
}
- Z3_OP_PR_IFF_FALSE:
\nicebox{
T1: (not p)
[iff-false T1]: (iff p false)
}
- Z3_OP_PR_COMMUTATIVITY:
[comm]: (= (f a b) (f b a))
f is a commutative operator.
This proof object has no antecedents.
Remark: if f is bool, then = is iff.
- Z3_OP_PR_DEF_AXIOM: Proof object used to justify Tseitin's like axioms:
\nicebox{
(or (not (and p q)) p)
(or (not (and p q)) q)
(or (not (and p q r)) p)
(or (not (and p q r)) q)
(or (not (and p q r)) r)
...
(or (and p q) (not p) (not q))
(or (not (or p q)) p q)
(or (or p q) (not p))
(or (or p q) (not q))
(or (not (iff p q)) (not p) q)
(or (not (iff p q)) p (not q))
(or (iff p q) (not p) (not q))
(or (iff p q) p q)
(or (not (ite a b c)) (not a) b)
(or (not (ite a b c)) a c)
(or (ite a b c) (not a) (not b))
(or (ite a b c) a (not c))
(or (not (not a)) (not a))
(or (not a) a)
}
This proof object has no antecedents.
Note: all axioms are propositional tautologies.
Note also that 'and' and 'or' can take multiple arguments.
You can recover the propositional tautologies by
unfolding the Boolean connectives in the axioms a small
bounded number of steps (=3).
- Z3_OP_PR_DEF_INTRO: Introduces a name for a formula/term.
Suppose e is an expression with free variables x, and def-intro
introduces the name n(x). The possible cases are:
When e is of Boolean type:
[def-intro]: (and (or n (not e)) (or (not n) e))
or:
[def-intro]: (or (not n) e)
when e only occurs positively.
When e is of the form (ite cond th el):
[def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))
Otherwise:
[def-intro]: (= n e)
- Z3_OP_PR_APPLY_DEF:
[apply-def T1]: F ~ n
F is 'equivalent' to n, given that T1 is a proof that
n is a name for F.
- Z3_OP_PR_IFF_OEQ:
T1: (iff p q)
[iff~ T1]: (~ p q)
- Z3_OP_PR_NNF_POS: Proof for a (positive) NNF step. Example:
\nicebox{
T1: (not s_1) ~ r_1
T2: (not s_2) ~ r_2
T3: s_1 ~ r_1'
T4: s_2 ~ r_2'
[nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2)
(and (or r_1 r_2') (or r_1' r_2)))
}
The negation normal form steps NNF_POS and NNF_NEG are used in the following cases:
(a) When creating the NNF of a positive force quantifier.
The quantifier is retained (unless the bound variables are eliminated).
Example
\nicebox{
T1: q ~ q_new
[nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))
}
(b) When recursively creating NNF over Boolean formulas, where the top-level
connective is changed during NNF conversion. The relevant Boolean connectives
for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
NNF_NEG furthermore handles the case where negation is pushed
over Boolean connectives 'and' and 'or'.
- Z3_OP_PR_NNF_NEG: Proof for a (negative) NNF step. Examples:
\nicebox{
T1: (not s_1) ~ r_1
...
Tn: (not s_n) ~ r_n
[nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n)
and
T1: (not s_1) ~ r_1
...
Tn: (not s_n) ~ r_n
[nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n)
and
T1: (not s_1) ~ r_1
T2: (not s_2) ~ r_2
T3: s_1 ~ r_1'
T4: s_2 ~ r_2'
[nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
(and (or r_1 r_2) (or r_1' r_2')))
}
- Z3_OP_PR_NNF_STAR: A proof for (~ P Q) where Q is in negation normal form.
This proof object is only used if the parameter PROOF_MODE is 1.
This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
- Z3_OP_PR_CNF_STAR: A proof for (~ P Q) where Q is in conjunctive normal form.
This proof object is only used if the parameter PROOF_MODE is 1.
This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
- Z3_OP_PR_SKOLEMIZE: Proof for:
\nicebox{
[sk]: (~ (not (forall x (p x y))) (not (p (sk y) y)))
[sk]: (~ (exists x (p x y)) (p (sk y) y))
}
This proof object has no antecedents.
- Z3_OP_PR_MODUS_PONENS_OEQ: Modus ponens style rule for equi-satisfiability.
\nicebox{
T1: p
T2: (~ p q)
[mp~ T1 T2]: q
}
- Z3_OP_PR_TH_LEMMA: Generic proof for theory lemmas.
The theory lemma function comes with one or more parameters.
The first parameter indicates the name of the theory.
For the theory of arithmetic, additional parameters provide hints for
checking the theory lemma.
The hints for arithmetic are:
- farkas - followed by rational coefficients. Multiply the coefficients to the
inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.
- triangle-eq - Indicates a lemma related to the equivalence:
\nicebox{
(iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
}
- gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.
- Z3_OP_PR_HYPER_RESOLVE: Hyper-resolution rule.
The premises of the rules is a sequence of clauses.
The first clause argument is the main clause of the rule.
with a literal from the first (main) clause.
Premises of the rules are of the form
\nicebox{
(or l0 l1 l2 .. ln)
}
or
\nicebox{
(=> (and l1 l2 .. ln) l0)
}
or in the most general (ground) form:
\nicebox{
(=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln))
}
In other words we use the following (Prolog style) convention for Horn
implications:
The head of a Horn implication is position 0,
the first conjunct in the body of an implication is position 1
the second conjunct in the body of an implication is position 2
For general implications where the head is a disjunction, the
first n positions correspond to the n disjuncts in the head.
The next m positions correspond to the m conjuncts in the body.
The premises can be universally quantified so that the most
general non-ground form is:
\nicebox{
(forall (vars) (=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln)))
}
The hyper-resolution rule takes a sequence of parameters.
The parameters are substitutions of bound variables separated by pairs
of literal positions from the main clause and side clause.
- Z3_OP_RA_STORE: Insert a record into a relation.
The function takes \c n+1 arguments, where the first argument is the relation and the remaining \c n elements
correspond to the \c n columns of the relation.
- Z3_OP_RA_EMPTY: Creates the empty relation.
- Z3_OP_RA_IS_EMPTY: Tests if the relation is empty.
- Z3_OP_RA_JOIN: Create the relational join.
- Z3_OP_RA_UNION: Create the union or convex hull of two relations.
The function takes two arguments.
- Z3_OP_RA_WIDEN: Widen two relations.
The function takes two arguments.
- Z3_OP_RA_PROJECT: Project the columns (provided as numbers in the parameters).
The function takes one argument.
- Z3_OP_RA_FILTER: Filter (restrict) a relation with respect to a predicate.
The first argument is a relation.
The second argument is a predicate with free de-Brujin indices
corresponding to the columns of the relation.
So the first column in the relation has index 0.
- Z3_OP_RA_NEGATION_FILTER: Intersect the first relation with respect to negation
of the second relation (the function takes two arguments).
Logically, the specification can be described by a function
target = filter_by_negation(pos, neg, columns)
where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that
target are elements in x in pos, such that there is no y in neg that agrees with
x on the columns c1, d1, .., cN, dN.
- Z3_OP_RA_RENAME: rename columns in the relation.
The function takes one argument.
The parameters contain the renaming as a cycle.
- Z3_OP_RA_COMPLEMENT: Complement the relation.
- Z3_OP_RA_SELECT: Check if a record is an element of the relation.
The function takes \c n+1 arguments, where the first argument is a relation,
and the remaining \c n arguments correspond to a record.
- Z3_OP_RA_CLONE: Create a fresh copy (clone) of a relation.
The function is logically the identity, but
in the context of a register machine allows
for \mlonly [OP_RA_UNION] \endmlonly \conly #Z3_OP_RA_UNION
to perform destructive updates to the first argument.
- Z3_OP_FD_LT: A less than predicate over the finite domain Z3_FINITE_DOMAIN_SORT.
- Z3_OP_LABEL: A label (used by the Boogie Verification condition generator).
The label has two parameters, a string and a Boolean polarity.
It takes one argument, a formula.
- Z3_OP_LABEL_LIT: A label literal (used by the Boogie Verification condition generator).
A label literal has a set of string parameters. It takes no arguments.
- Z3_OP_DT_CONSTRUCTOR: datatype constructor.
- Z3_OP_DT_RECOGNISER: datatype recognizer.
- Z3_OP_DT_ACCESSOR: datatype accessor.
- Z3_OP_DT_UPDATE_FIELD: datatype field update.
- Z3_OP_PB_AT_MOST: Cardinality constraint.
E.g., x + y + z <= 2
- Z3_OP_PB_LE: Generalized Pseudo-Boolean cardinality constraint.
Example 2*x + 3*y <= 4
- Z3_OP_PB_GE: Generalized Pseudo-Boolean cardinality constraint.
Example 2*x + 3*y + 2*z >= 4
- Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN: Floating-point rounding mode RNE
- Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY: Floating-point rounding mode RNA
- Z3_OP_FPA_RM_TOWARD_POSITIVE: Floating-point rounding mode RTP
- Z3_OP_FPA_RM_TOWARD_NEGATIVE: Floating-point rounding mode RTN
- Z3_OP_FPA_RM_TOWARD_ZERO: Floating-point rounding mode RTZ
- Z3_OP_FPA_NUM: Floating-point value
- Z3_OP_FPA_PLUS_INF: Floating-point +oo
- Z3_OP_FPA_MINUS_INF: Floating-point -oo
- Z3_OP_FPA_NAN: Floating-point NaN
- Z3_OP_FPA_PLUS_ZERO: Floating-point +zero
- Z3_OP_FPA_MINUS_ZERO: Floating-point -zero
- Z3_OP_FPA_ADD: Floating-point addition
- Z3_OP_FPA_SUB: Floating-point subtraction
- Z3_OP_FPA_NEG: Floating-point negation
- Z3_OP_FPA_MUL: Floating-point multiplication
- Z3_OP_FPA_DIV: Floating-point division
- Z3_OP_FPA_REM: Floating-point remainder
- Z3_OP_FPA_ABS: Floating-point absolute value
- Z3_OP_FPA_MIN: Floating-point minimum
- Z3_OP_FPA_MAX: Floating-point maximum
- Z3_OP_FPA_FMA: Floating-point fused multiply-add
- Z3_OP_FPA_SQRT: Floating-point square root
- Z3_OP_FPA_ROUND_TO_INTEGRAL: Floating-point round to integral
- Z3_OP_FPA_EQ: Floating-point equality
- Z3_OP_FPA_LT: Floating-point less than
- Z3_OP_FPA_GT: Floating-point greater than
- Z3_OP_FPA_LE: Floating-point less than or equal
- Z3_OP_FPA_GE: Floating-point greater than or equal
- Z3_OP_FPA_IS_NAN: Floating-point isNaN
- Z3_OP_FPA_IS_INF: Floating-point isInfinite
- Z3_OP_FPA_IS_ZERO: Floating-point isZero
- Z3_OP_FPA_IS_NORMAL: Floating-point isNormal
- Z3_OP_FPA_IS_SUBNORMAL: Floating-point isSubnormal
- Z3_OP_FPA_IS_NEGATIVE: Floating-point isNegative
- Z3_OP_FPA_IS_POSITIVE: Floating-point isPositive
- Z3_OP_FPA_FP: Floating-point constructor from 3 bit-vectors
- Z3_OP_FPA_TO_FP: Floating-point conversion (various)
- Z3_OP_FPA_TO_FP_UNSIGNED: Floating-point conversion from unsigend bit-vector
- Z3_OP_FPA_TO_UBV: Floating-point conversion to unsigned bit-vector
- Z3_OP_FPA_TO_SBV: Floating-point conversion to signed bit-vector
- Z3_OP_FPA_TO_REAL: Floating-point conversion to real number
- Z3_OP_FPA_TO_IEEE_BV: Floating-point conversion to IEEE-754 bit-vector
- Z3_OP_UNINTERPRETED: kind used for uninterpreted symbols.
*/
typedef enum {
// Basic
Z3_OP_TRUE = 0x100,
Z3_OP_FALSE,
Z3_OP_EQ,
Z3_OP_DISTINCT,
Z3_OP_ITE,
Z3_OP_AND,
Z3_OP_OR,
Z3_OP_IFF,
Z3_OP_XOR,
Z3_OP_NOT,
Z3_OP_IMPLIES,
Z3_OP_OEQ,
Z3_OP_INTERP,
// Arithmetic
Z3_OP_ANUM = 0x200,
Z3_OP_AGNUM,
Z3_OP_LE,
Z3_OP_GE,
Z3_OP_LT,
Z3_OP_GT,
Z3_OP_ADD,
Z3_OP_SUB,
Z3_OP_UMINUS,
Z3_OP_MUL,
Z3_OP_DIV,
Z3_OP_IDIV,
Z3_OP_REM,
Z3_OP_MOD,
Z3_OP_TO_REAL,
Z3_OP_TO_INT,
Z3_OP_IS_INT,
Z3_OP_POWER,
// Arrays & Sets
Z3_OP_STORE = 0x300,
Z3_OP_SELECT,
Z3_OP_CONST_ARRAY,
Z3_OP_ARRAY_MAP,
Z3_OP_ARRAY_DEFAULT,
Z3_OP_SET_UNION,
Z3_OP_SET_INTERSECT,
Z3_OP_SET_DIFFERENCE,
Z3_OP_SET_COMPLEMENT,
Z3_OP_SET_SUBSET,
Z3_OP_AS_ARRAY,
// Bit-vectors
Z3_OP_BNUM = 0x400,
Z3_OP_BIT1,
Z3_OP_BIT0,
Z3_OP_BNEG,
Z3_OP_BADD,
Z3_OP_BSUB,
Z3_OP_BMUL,
Z3_OP_BSDIV,
Z3_OP_BUDIV,
Z3_OP_BSREM,
Z3_OP_BUREM,
Z3_OP_BSMOD,
// special functions to record the division by 0 cases
// these are internal functions
Z3_OP_BSDIV0,
Z3_OP_BUDIV0,
Z3_OP_BSREM0,
Z3_OP_BUREM0,
Z3_OP_BSMOD0,
Z3_OP_ULEQ,
Z3_OP_SLEQ,
Z3_OP_UGEQ,
Z3_OP_SGEQ,
Z3_OP_ULT,
Z3_OP_SLT,
Z3_OP_UGT,
Z3_OP_SGT,
Z3_OP_BAND,
Z3_OP_BOR,
Z3_OP_BNOT,
Z3_OP_BXOR,
Z3_OP_BNAND,
Z3_OP_BNOR,
Z3_OP_BXNOR,
Z3_OP_CONCAT,
Z3_OP_SIGN_EXT,
Z3_OP_ZERO_EXT,
Z3_OP_EXTRACT,
Z3_OP_REPEAT,
Z3_OP_BREDOR,
Z3_OP_BREDAND,
Z3_OP_BCOMP,
Z3_OP_BSHL,
Z3_OP_BLSHR,
Z3_OP_BASHR,
Z3_OP_ROTATE_LEFT,
Z3_OP_ROTATE_RIGHT,
Z3_OP_EXT_ROTATE_LEFT,
Z3_OP_EXT_ROTATE_RIGHT,
Z3_OP_INT2BV,
Z3_OP_BV2INT,
Z3_OP_CARRY,
Z3_OP_XOR3,
// Proofs
Z3_OP_PR_UNDEF = 0x500,
Z3_OP_PR_TRUE,
Z3_OP_PR_ASSERTED,
Z3_OP_PR_GOAL,
Z3_OP_PR_MODUS_PONENS,
Z3_OP_PR_REFLEXIVITY,
Z3_OP_PR_SYMMETRY,
Z3_OP_PR_TRANSITIVITY,
Z3_OP_PR_TRANSITIVITY_STAR,
Z3_OP_PR_MONOTONICITY,
Z3_OP_PR_QUANT_INTRO,
Z3_OP_PR_DISTRIBUTIVITY,
Z3_OP_PR_AND_ELIM,
Z3_OP_PR_NOT_OR_ELIM,
Z3_OP_PR_REWRITE,
Z3_OP_PR_REWRITE_STAR,
Z3_OP_PR_PULL_QUANT,
Z3_OP_PR_PULL_QUANT_STAR,
Z3_OP_PR_PUSH_QUANT,
Z3_OP_PR_ELIM_UNUSED_VARS,
Z3_OP_PR_DER,
Z3_OP_PR_QUANT_INST,
Z3_OP_PR_HYPOTHESIS,
Z3_OP_PR_LEMMA,
Z3_OP_PR_UNIT_RESOLUTION,
Z3_OP_PR_IFF_TRUE,
Z3_OP_PR_IFF_FALSE,
Z3_OP_PR_COMMUTATIVITY,
Z3_OP_PR_DEF_AXIOM,
Z3_OP_PR_DEF_INTRO,
Z3_OP_PR_APPLY_DEF,
Z3_OP_PR_IFF_OEQ,
Z3_OP_PR_NNF_POS,
Z3_OP_PR_NNF_NEG,
Z3_OP_PR_NNF_STAR,
Z3_OP_PR_CNF_STAR,
Z3_OP_PR_SKOLEMIZE,
Z3_OP_PR_MODUS_PONENS_OEQ,
Z3_OP_PR_TH_LEMMA,
Z3_OP_PR_HYPER_RESOLVE,
// Sequences
Z3_OP_RA_STORE = 0x600,
Z3_OP_RA_EMPTY,
Z3_OP_RA_IS_EMPTY,
Z3_OP_RA_JOIN,
Z3_OP_RA_UNION,
Z3_OP_RA_WIDEN,
Z3_OP_RA_PROJECT,
Z3_OP_RA_FILTER,
Z3_OP_RA_NEGATION_FILTER,
Z3_OP_RA_RENAME,
Z3_OP_RA_COMPLEMENT,
Z3_OP_RA_SELECT,
Z3_OP_RA_CLONE,
Z3_OP_FD_LT,
// Auxiliary
Z3_OP_LABEL = 0x700,
Z3_OP_LABEL_LIT,
// Datatypes
Z3_OP_DT_CONSTRUCTOR=0x800,
Z3_OP_DT_RECOGNISER,
Z3_OP_DT_ACCESSOR,
Z3_OP_DT_UPDATE_FIELD,
// Pseudo Booleans
Z3_OP_PB_AT_MOST=0x900,
Z3_OP_PB_LE,
Z3_OP_PB_GE,
// Floating-Point Arithmetic
Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN,
Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY,
Z3_OP_FPA_RM_TOWARD_POSITIVE,
Z3_OP_FPA_RM_TOWARD_NEGATIVE,
Z3_OP_FPA_RM_TOWARD_ZERO,
Z3_OP_FPA_NUM,
Z3_OP_FPA_PLUS_INF,
Z3_OP_FPA_MINUS_INF,
Z3_OP_FPA_NAN,
Z3_OP_FPA_PLUS_ZERO,
Z3_OP_FPA_MINUS_ZERO,
Z3_OP_FPA_ADD,
Z3_OP_FPA_SUB,
Z3_OP_FPA_NEG,
Z3_OP_FPA_MUL,
Z3_OP_FPA_DIV,
Z3_OP_FPA_REM,
Z3_OP_FPA_ABS,
Z3_OP_FPA_MIN,
Z3_OP_FPA_MAX,
Z3_OP_FPA_FMA,
Z3_OP_FPA_SQRT,
Z3_OP_FPA_ROUND_TO_INTEGRAL,
Z3_OP_FPA_EQ,
Z3_OP_FPA_LT,
Z3_OP_FPA_GT,
Z3_OP_FPA_LE,
Z3_OP_FPA_GE,
Z3_OP_FPA_IS_NAN,
Z3_OP_FPA_IS_INF,
Z3_OP_FPA_IS_ZERO,
Z3_OP_FPA_IS_NORMAL,
Z3_OP_FPA_IS_SUBNORMAL,
Z3_OP_FPA_IS_NEGATIVE,
Z3_OP_FPA_IS_POSITIVE,
Z3_OP_FPA_FP,
Z3_OP_FPA_TO_FP,
Z3_OP_FPA_TO_FP_UNSIGNED,
Z3_OP_FPA_TO_UBV,
Z3_OP_FPA_TO_SBV,
Z3_OP_FPA_TO_REAL,
Z3_OP_FPA_TO_IEEE_BV,
Z3_OP_UNINTERPRETED
} Z3_decl_kind;
/**
\mlonly {!param_kind} \endmlonly \conly \brief
The different kinds of parameters that can be associated with parameter sets.
(see #Z3_mk_params).
- Z3_PK_UINT integer parameters.
- Z3_PK_BOOL boolean parameters.
- Z3_PK_DOUBLE double parameters.
- Z3_PK_SYMBOL symbol parameters.
- Z3_PK_STRING string parameters.
- Z3_PK_OTHER all internal parameter kinds which are not exposed in the API.
- Z3_PK_INVALID invalid parameter.
*/
typedef enum {
Z3_PK_UINT,
Z3_PK_BOOL,
Z3_PK_DOUBLE,
Z3_PK_SYMBOL,
Z3_PK_STRING,
Z3_PK_OTHER,
Z3_PK_INVALID
} Z3_param_kind;
#ifdef CorML3
/**
\mlonly {!search_failure} \endmlonly \conly \brief
The different kinds of search failure types.
- Z3_NO_FAILURE: The last search was successful
- Z3_UNKNOWN: Undocumented failure reason
- Z3_TIMEOUT: Timeout
- Z3_MEMOUT_WATERMAK: Search hit a memory high-watermak limit
- Z3_CANCELED: External cancel flag was set
- Z3_NUM_CONFLICTS: Maximum number of conflicts was reached
- Z3_THEORY: Theory is incomplete
- Z3_QUANTIFIERS: Logical context contains universal quantifiers
*/
typedef enum {
Z3_NO_FAILURE,
Z3_UNKNOWN,
Z3_TIMEOUT,
Z3_MEMOUT_WATERMARK,
Z3_CANCELED,
Z3_NUM_CONFLICTS,
Z3_THEORY,
Z3_QUANTIFIERS
} Z3_search_failure;
#endif
/**
\mlonly {!ast_print_mode} \endmlonly \conly \brief
Z3 pretty printing modes (See #Z3_set_ast_print_mode).
- Z3_PRINT_SMTLIB_FULL: Print AST nodes in SMTLIB verbose format.
- Z3_PRINT_LOW_LEVEL: Print AST nodes using a low-level format.
- Z3_PRINT_SMTLIB_COMPLIANT: Print AST nodes in SMTLIB 1.x compliant format.
- Z3_PRINT_SMTLIB2_COMPLIANT: Print AST nodes in SMTLIB 2.x compliant format.
*/
typedef enum {
Z3_PRINT_SMTLIB_FULL,
Z3_PRINT_LOW_LEVEL,
Z3_PRINT_SMTLIB_COMPLIANT,
Z3_PRINT_SMTLIB2_COMPLIANT
} Z3_ast_print_mode;
#ifdef CorML4
/**
\mlonly {!error_code} \endmlonly \conly \brief
Z3 error codes \conly (See #Z3_get_error_code).
- Z3_OK: No error.
- Z3_SORT_ERROR: User tried to build an invalid (type incorrect) AST.
- Z3_IOB: Index out of bounds.
- Z3_INVALID_ARG: Invalid argument was provided.
- Z3_PARSER_ERROR: An error occurred when parsing a string or file.
- Z3_NO_PARSER: Parser output is not available, that is, user didn't invoke #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.
- Z3_INVALID_PATTERN: Invalid pattern was used to build a quantifier.
- Z3_MEMOUT_FAIL: A memory allocation failure was encountered.
- Z3_FILE_ACCESS_ERRROR: A file could not be accessed.
- Z3_INVALID_USAGE: API call is invalid in the current state.
- Z3_INTERNAL_FATAL: An error internal to Z3 occurred.
- Z3_DEC_REF_ERROR: Trying to decrement the reference counter of an AST that was deleted or the reference counter was not initialized \mlonly.\endmlonly \conly with #Z3_inc_ref.
- Z3_EXCEPTION: Internal Z3 exception. Additional details can be retrieved using #Z3_get_error_msg.
*/
typedef enum
{
Z3_OK,
Z3_SORT_ERROR,
Z3_IOB,
Z3_INVALID_ARG,
Z3_PARSER_ERROR,
Z3_NO_PARSER,
Z3_INVALID_PATTERN,
Z3_MEMOUT_FAIL,
Z3_FILE_ACCESS_ERROR,
Z3_INTERNAL_FATAL,
Z3_INVALID_USAGE,
Z3_DEC_REF_ERROR,
Z3_EXCEPTION
} Z3_error_code;
#endif
/**
Definitions for update_api.py
def_Type('CONFIG', 'Z3_config', 'Config')
def_Type('CONTEXT', 'Z3_context', 'ContextObj')
def_Type('AST', 'Z3_ast', 'Ast')
def_Type('APP', 'Z3_app', 'Ast')
def_Type('SORT', 'Z3_sort', 'Sort')
def_Type('FUNC_DECL', 'Z3_func_decl', 'FuncDecl')
def_Type('PATTERN', 'Z3_pattern', 'Pattern')
def_Type('MODEL', 'Z3_model', 'Model')
def_Type('LITERALS', 'Z3_literals', 'Literals')
def_Type('CONSTRUCTOR', 'Z3_constructor', 'Constructor')
def_Type('CONSTRUCTOR_LIST', 'Z3_constructor_list', 'ConstructorList')
def_Type('THEORY', 'Z3_theory', 'ctypes.c_void_p')
def_Type('THEORY_DATA', 'Z3_theory_data', 'ctypes.c_void_p')
def_Type('SOLVER', 'Z3_solver', 'SolverObj')
def_Type('GOAL', 'Z3_goal', 'GoalObj')
def_Type('TACTIC', 'Z3_tactic', 'TacticObj')
def_Type('PARAMS', 'Z3_params', 'Params')
def_Type('PROBE', 'Z3_probe', 'ProbeObj')
def_Type('STATS', 'Z3_stats', 'StatsObj')
def_Type('AST_VECTOR', 'Z3_ast_vector', 'AstVectorObj')
def_Type('AST_MAP', 'Z3_ast_map', 'AstMapObj')
def_Type('APPLY_RESULT', 'Z3_apply_result', 'ApplyResultObj')
def_Type('FUNC_INTERP', 'Z3_func_interp', 'FuncInterpObj')
def_Type('FUNC_ENTRY', 'Z3_func_entry', 'FuncEntryObj')
def_Type('FIXEDPOINT', 'Z3_fixedpoint', 'FixedpointObj')
def_Type('OPTIMIZE', 'Z3_optimize', 'OptimizeObj')
def_Type('PARAM_DESCRS', 'Z3_param_descrs', 'ParamDescrs')
def_Type('RCF_NUM', 'Z3_rcf_num', 'RCFNumObj')
*/
#ifdef Conly
/**
\brief Z3 custom error handler (See #Z3_set_error_handler).
*/
typedef void Z3_error_handler(Z3_context c, Z3_error_code e);
#endif
#ifdef ML4only
#include <error_handling.idl>
#endif
#ifdef CorML4
/**
\mlonly {!goal_prec} \endmlonly \conly \brief
A Goal is essentially a set of formulas. Z3 provide APIs for building strategies/tactics for solving and transforming Goals. Some of these transformations apply under/over approximations.
- Z3_GOAL_PRECISE: Approximations/Relaxations were not applied on the goal (sat and unsat answers were preserved).
- Z3_GOAL_UNDER: Goal is the product of a under-approximation (sat answers are preserved).
- Z3_GOAL_OVER: Goal is the product of an over-approximation (unsat answers are preserved).
- Z3_GOAL_UNDER_OVER: Goal is garbage (it is the product of over- and under-approximations, sat and unsat answers are not preserved).
*/
typedef enum
{
Z3_GOAL_PRECISE,
Z3_GOAL_UNDER,
Z3_GOAL_OVER,
Z3_GOAL_UNDER_OVER
} Z3_goal_prec;
#endif
/*@}*/
#ifndef CAMLIDL
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
#else
[pointer_default(ref)] interface Z3 {
#endif // CAMLIDL
#ifdef CorML3
/**
@name Configuration
*/
/*@{*/
/**
\brief Set a global (or module) parameter.
This setting is shared by all Z3 contexts.
When a Z3 module is initialized it will use the value of these parameters
when Z3_params objects are not provided.
The name of parameter can be composed of characters [a-z][A-Z], digits [0-9], '-' and '_'.
The character '.' is a delimiter (more later).
The parameter names are case-insensitive. The character '-' should be viewed as an "alias" for '_'.
Thus, the following parameter names are considered equivalent: "pp.decimal-precision" and "PP.DECIMAL_PRECISION".
This function can be used to set parameters for a specific Z3 module.
This can be done by using <module-name>.<parameter-name>.
For example:
Z3_global_param_set('pp.decimal', 'true')
will set the parameter "decimal" in the module "pp" to true.
def_API('Z3_global_param_set', VOID, (_in(STRING), _in(STRING)))
*/
void Z3_API Z3_global_param_set(__in Z3_string param_id, __in Z3_string param_value);
/**
\brief Restore the value of all global (and module) parameters.
This command will not affect already created objects (such as tactics and solvers).
\sa Z3_global_param_set
def_API('Z3_global_param_reset_all', VOID, ())
*/
void Z3_API Z3_global_param_reset_all(void);
/**
\brief Get a global (or module) parameter.
Returns \mlonly \c None \endmlonly \conly \c Z3_FALSE
if the parameter value does not exist.
\sa Z3_global_param_set
\remark This function cannot be invoked simultaneously from different threads without synchronization.
The result string stored in param_value is stored in shared location.
def_API('Z3_global_param_get', BOOL, (_in(STRING), _out(STRING)))
*/
Z3_bool_opt Z3_API Z3_global_param_get(__in Z3_string param_id, __out_opt Z3_string_ptr param_value);
/*@}*/
/**
@name Create configuration
*/
/*@{*/
/**
\brief Create a configuration object for the Z3 context object.
Configurations are created in order to assign parameters prior to creating
contexts for Z3 interaction. For example, if the users wishes to use proof
generation, then call:
\ccode{Z3_set_param_value(cfg\, "proof"\, "true")}
\mlonly \remark Consider using {!mk_context_x} instead of using
explicit configuration objects. The function {!mk_context_x}
receives an array of string pairs. This array represents the
configuration options. \endmlonly
\remark In previous versions of Z3, the \c Z3_config was used to store
global and module configurations. Now, we should use \c Z3_global_param_set.
The following parameters can be set:
- proof (Boolean) Enable proof generation
- debug_ref_count (Boolean) Enable debug support for Z3_ast reference counting
- trace (Boolean) Tracing support for VCC
- trace_file_name (String) Trace out file for VCC traces
- timeout (unsigned) default timeout (in milliseconds) used for solvers
- well_sorted_check type checker
- auto_config use heuristics to automatically select solver and configure it
- model model generation for solvers, this parameter can be overwritten when creating a solver
- model_validate validate models produced by solvers
- unsat_core unsat-core generation for solvers, this parameter can be overwritten when creating a solver
\sa Z3_set_param_value
\sa Z3_del_config
def_API('Z3_mk_config', CONFIG, ())
*/
Z3_config Z3_API Z3_mk_config(void);
/**
\brief Delete the given configuration object.
\sa Z3_mk_config
def_API('Z3_del_config', VOID, (_in(CONFIG),))
*/
void Z3_API Z3_del_config(__in Z3_config c);
/**
\brief Set a configuration parameter.
The following parameters can be set for
\sa Z3_mk_config
def_API('Z3_set_param_value', VOID, (_in(CONFIG), _in(STRING), _in(STRING)))
*/
void Z3_API Z3_set_param_value(__in Z3_config c, __in Z3_string param_id, __in Z3_string param_value);
/*@}*/
#endif
/**
@name Create context
*/
/*@{*/
/**
\brief Create a context using the given configuration.
After a context is created, the configuration cannot be changed,
although some parameters can be changed using #Z3_update_param_value.
All main interaction with Z3 happens in the context of a \c Z3_context.
In contrast to #Z3_mk_context_rc, the life time of Z3_ast objects
are determined by the scope level of #Z3_push and #Z3_pop.
In other words, a Z3_ast object remains valid until there is a
call to Z3_pop that takes the current scope below the level where
the object was created.
Note that all other reference counted objects, including Z3_model,
Z3_solver, Z3_func_interp have to be managed by the caller.
Their reference counts are not handled by the context.
\conly \sa Z3_del_context
\conly \deprecated Use #Z3_mk_context_rc
def_API('Z3_mk_context', CONTEXT, (_in(CONFIG),))
*/
#ifdef CorML3
Z3_context Z3_API Z3_mk_context(__in Z3_config c);
#endif
#ifdef ML4only
#include <mlx_mk_context_x.idl>
#endif
#ifdef Conly
/**
\brief Create a context using the given configuration.
This function is similar to #Z3_mk_context. However,
in the context returned by this function, the user
is responsible for managing Z3_ast reference counters.
Managing reference counters is a burden and error-prone,
but allows the user to use the memory more efficiently.
The user must invoke #Z3_inc_ref for any Z3_ast returned
by Z3, and #Z3_dec_ref whenever the Z3_ast is not needed
anymore. This idiom is similar to the one used in
BDD (binary decision diagrams) packages such as CUDD.
Remark: Z3_sort, Z3_func_decl, Z3_app, Z3_pattern are
Z3_ast's.
After a context is created, the configuration cannot be changed.
All main interaction with Z3 happens in the context of a \c Z3_context.
def_API('Z3_mk_context_rc', CONTEXT, (_in(CONFIG),))
*/
Z3_context Z3_API Z3_mk_context_rc(__in Z3_config c);
#endif
#ifdef CorML3
/**
\brief Delete the given logical context.
\sa Z3_mk_context
def_API('Z3_del_context', VOID, (_in(CONTEXT),))
*/
void Z3_API Z3_del_context(__in Z3_context c);
#endif
#ifdef Conly
/**
\brief Increment the reference counter of the given AST.
The context \c c should have been created using #Z3_mk_context_rc.
This function is a NOOP if \c c was created using #Z3_mk_context.
def_API('Z3_inc_ref', VOID, (_in(CONTEXT), _in(AST)))
*/
void Z3_API Z3_inc_ref(__in Z3_context c, __in Z3_ast a);
/**
\brief Decrement the reference counter of the given AST.
The context \c c should have been created using #Z3_mk_context_rc.
This function is a NOOP if \c c was created using #Z3_mk_context.
def_API('Z3_dec_ref', VOID, (_in(CONTEXT), _in(AST)))
*/
void Z3_API Z3_dec_ref(__in Z3_context c, __in Z3_ast a);
#endif
/**
\brief Set a value of a context parameter.
\sa Z3_global_param_set
def_API('Z3_update_param_value', VOID, (_in(CONTEXT), _in(STRING), _in(STRING)))
*/
void Z3_API Z3_update_param_value(__in Z3_context c, __in Z3_string param_id, __in Z3_string param_value);
#ifdef CorML4
/**
\brief Interrupt the execution of a Z3 procedure.
This procedure can be used to interrupt: solvers, simplifiers and tactics.
def_API('Z3_interrupt', VOID, (_in(CONTEXT),))
*/
void Z3_API Z3_interrupt(__in Z3_context c);
#endif
/*@}*/
#ifdef CorML4
/**
@name Parameters
*/
/*@{*/
/**
\brief Create a Z3 (empty) parameter set.
Starting at Z3 4.0, parameter sets are used to configure many components such as:
simplifiers, tactics, solvers, etc.
\conly \remark Reference counting must be used to manage parameter sets, even when the Z3_context was
\conly created using #Z3_mk_context instead of #Z3_mk_context_rc.
def_API('Z3_mk_params', PARAMS, (_in(CONTEXT),))
*/
Z3_params Z3_API Z3_mk_params(__in Z3_context c);
#ifdef Conly
/**
\brief Increment the reference counter of the given parameter set.
def_API('Z3_params_inc_ref', VOID, (_in(CONTEXT), _in(PARAMS)))
*/
void Z3_API Z3_params_inc_ref(__in Z3_context c, __in Z3_params p);
/**
\brief Decrement the reference counter of the given parameter set.
def_API('Z3_params_dec_ref', VOID, (_in(CONTEXT), _in(PARAMS)))
*/
void Z3_API Z3_params_dec_ref(__in Z3_context c, __in Z3_params p);
#endif
/**
\brief Add a Boolean parameter \c k with value \c v to the parameter set \c p.
def_API('Z3_params_set_bool', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(BOOL)))
*/
void Z3_API Z3_params_set_bool(__in Z3_context c, __in Z3_params p, __in Z3_symbol k, __in Z3_bool v);
/**
\brief Add a unsigned parameter \c k with value \c v to the parameter set \c p.
def_API('Z3_params_set_uint', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(UINT)))
*/
void Z3_API Z3_params_set_uint(__in Z3_context c, __in Z3_params p, __in Z3_symbol k, __in unsigned v);
/**
\brief Add a double parameter \c k with value \c v to the parameter set \c p.
def_API('Z3_params_set_double', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(DOUBLE)))
*/
void Z3_API Z3_params_set_double(__in Z3_context c, __in Z3_params p, __in Z3_symbol k, __in double v);
/**
\brief Add a symbol parameter \c k with value \c v to the parameter set \c p.
def_API('Z3_params_set_symbol', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(SYMBOL)))
*/
void Z3_API Z3_params_set_symbol(__in Z3_context c, __in Z3_params p, __in Z3_symbol k, __in Z3_symbol v);
/**
\brief Convert a parameter set into a string. This function is mainly used for printing the
contents of a parameter set.
def_API('Z3_params_to_string', STRING, (_in(CONTEXT), _in(PARAMS)))
*/
Z3_string Z3_API Z3_params_to_string(__in Z3_context c, __in Z3_params p);
/**
\brief Validate the parameter set \c p against the parameter description set \c d.
The procedure invokes the error handler if \c p is invalid.
def_API('Z3_params_validate', VOID, (_in(CONTEXT), _in(PARAMS), _in(PARAM_DESCRS)))
*/
void Z3_API Z3_params_validate(__in Z3_context c, __in Z3_params p, __in Z3_param_descrs d);
#endif
/*@}*/
#ifdef CorML4
/**
@name Parameter Descriptions
*/
/*@{*/
#ifdef Conly
/**
\brief Increment the reference counter of the given parameter description set.
def_API('Z3_param_descrs_inc_ref', VOID, (_in(CONTEXT), _in(PARAM_DESCRS)))
*/
void Z3_API Z3_param_descrs_inc_ref(__in Z3_context c, __in Z3_param_descrs p);
/**
\brief Decrement the reference counter of the given parameter description set.
def_API('Z3_param_descrs_dec_ref', VOID, (_in(CONTEXT), _in(PARAM_DESCRS)))
*/
void Z3_API Z3_param_descrs_dec_ref(__in Z3_context c, __in Z3_param_descrs p);
#endif
/**
\brief Return the kind associated with the given parameter name \c n.
def_API('Z3_param_descrs_get_kind', UINT, (_in(CONTEXT), _in(PARAM_DESCRS), _in(SYMBOL)))
*/
Z3_param_kind Z3_API Z3_param_descrs_get_kind(__in Z3_context c, __in Z3_param_descrs p, __in Z3_symbol n);
/**
\brief Return the number of parameters in the given parameter description set.
def_API('Z3_param_descrs_size', UINT, (_in(CONTEXT), _in(PARAM_DESCRS)))
*/
unsigned Z3_API Z3_param_descrs_size(__in Z3_context c, __in Z3_param_descrs p);
/**
\brief Return the number of parameters in the given parameter description set.
\pre i < Z3_param_descrs_size(c, p)
def_API('Z3_param_descrs_get_name', SYMBOL, (_in(CONTEXT), _in(PARAM_DESCRS), _in(UINT)))
*/
Z3_symbol Z3_API Z3_param_descrs_get_name(__in Z3_context c, __in Z3_param_descrs p, __in unsigned i);
/**
\brief Convert a parameter description set into a string. This function is mainly used for printing the
contents of a parameter description set.
def_API('Z3_param_descrs_to_string', STRING, (_in(CONTEXT), _in(PARAM_DESCRS)))
*/
Z3_string Z3_API Z3_param_descrs_to_string(__in Z3_context c, __in Z3_param_descrs p);
/*@}*/
#endif
/**
@name Symbols
*/
/*@{*/
#ifdef ML4only
#include <mlx_mk_symbol.idl>
#endif
/**
\mlonly {4 {L Redundant low-level API}} \endmlonly
*/
/**
\brief Create a Z3 symbol using an integer.
Symbols are used to name several term and type constructors.
NB. Not all integers can be passed to this function.
The legal range of unsigned integers is 0 to 2^30-1.
\sa Z3_mk_string_symbol
def_API('Z3_mk_int_symbol', SYMBOL, (_in(CONTEXT), _in(INT)))
*/
Z3_symbol Z3_API Z3_mk_int_symbol(__in Z3_context c, __in int i);
/**
\brief Create a Z3 symbol using a C string.
Symbols are used to name several term and type constructors.
\sa Z3_mk_int_symbol
def_API('Z3_mk_string_symbol', SYMBOL, (_in(CONTEXT), _in(STRING)))
*/
Z3_symbol Z3_API Z3_mk_string_symbol(__in Z3_context c, __in Z3_string s);
/*@}*/
/**
@name Sorts
*/
/*@{*/
#ifdef ML4only
#include <mlx_mk_sort.idl>
#endif
/**
\mlonly {4 {L Redundant low-level API}} \endmlonly
*/
/**
\brief Create a free (uninterpreted) type using the given name (symbol).
Two free types are considered the same iff the have the same name.
def_API('Z3_mk_uninterpreted_sort', SORT, (_in(CONTEXT), _in(SYMBOL)))
*/
Z3_sort Z3_API Z3_mk_uninterpreted_sort(__in Z3_context c, __in Z3_symbol s);
/**
\brief Create the Boolean type.
This type is used to create propositional variables and predicates.
def_API('Z3_mk_bool_sort', SORT, (_in(CONTEXT), ))
*/
Z3_sort Z3_API Z3_mk_bool_sort(__in Z3_context c);
/**
\brief Create the integer type.
This type is not the int type found in programming languages.
A machine integer can be represented using bit-vectors. The function
#Z3_mk_bv_sort creates a bit-vector type.
\sa Z3_mk_bv_sort
def_API('Z3_mk_int_sort', SORT, (_in(CONTEXT), ))
*/
Z3_sort Z3_API Z3_mk_int_sort(__in Z3_context c);
/**
\brief Create the real type.
Note that this type is not a floating point number.
def_API('Z3_mk_real_sort', SORT, (_in(CONTEXT), ))
*/
Z3_sort Z3_API Z3_mk_real_sort(__in Z3_context c);
/**
\brief Create a bit-vector type of the given size.
This type can also be seen as a machine integer.
\remark The size of the bitvector type must be greater than zero.
def_API('Z3_mk_bv_sort', SORT, (_in(CONTEXT), _in(UINT)))
*/
Z3_sort Z3_API Z3_mk_bv_sort(__in Z3_context c, __in unsigned sz);
/**
\brief Create a named finite domain sort.
To create constants that belong to the finite domain,
use the APIs for creating numerals and pass a numeric
constant together with the sort returned by this call.
The numeric constant should be between 0 and the less
than the size of the domain.
\sa Z3_get_finite_domain_sort_size
def_API('Z3_mk_finite_domain_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT64)))
*/
Z3_sort Z3_API Z3_mk_finite_domain_sort(__in Z3_context c, __in Z3_symbol name, __in unsigned __int64 size);
/**
\brief Create an array type.
We usually represent the array type as: <tt>[domain -> range]</tt>.
Arrays are usually used to model the heap/memory in software verification.
\sa Z3_mk_select
\sa Z3_mk_store
def_API('Z3_mk_array_sort', SORT, (_in(CONTEXT), _in(SORT), _in(SORT)))
*/
Z3_sort Z3_API Z3_mk_array_sort(__in Z3_context c, __in Z3_sort domain, __in Z3_sort range);
/**
\brief Create a tuple type.
\mlonly [mk_tuple_sort c name field_names field_sorts] creates a tuple with a constructor named [name],
a [n] fields, where [n] is the size of the arrays [field_names] and [field_sorts].
\endmlonly
\conly A tuple with \c n fields has a constructor and \c n projections.
\conly This function will also declare the constructor and projection functions.
\param c logical context
\param mk_tuple_name name of the constructor function associated with the tuple type.
\param num_fields number of fields in the tuple type.
\param field_names name of the projection functions.
\param field_sorts type of the tuple fields.
\param mk_tuple_decl output parameter that will contain the constructor declaration.
\param proj_decl output parameter that will contain the projection function declarations. This field must be a buffer of size \c num_fields allocated by the user.
def_API('Z3_mk_tuple_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _out(FUNC_DECL), _out_array(2, FUNC_DECL)))
*/
Z3_sort Z3_API Z3_mk_tuple_sort(__in Z3_context c,
__in Z3_symbol mk_tuple_name,
__in unsigned num_fields,
__in_ecount(num_fields) Z3_symbol const field_names[],
__in_ecount(num_fields) Z3_sort const field_sorts[],
__out Z3_func_decl * mk_tuple_decl,
__out_ecount(num_fields) Z3_func_decl proj_decl[]);
/**
\brief Create a enumeration sort.
\mlonly [mk_enumeration_sort c enums] creates an enumeration sort with enumeration names [enums],
it also returns [n] predicates, where [n] is the number of [enums] corresponding
to testing whether an element is one of the enumerants.
\endmlonly
\conly An enumeration sort with \c n elements.
\conly This function will also declare the functions corresponding to the enumerations.
\param c logical context
\param name name of the enumeration sort.
\param n number of elemenets in enumeration sort.
\param enum_names names of the enumerated elements.
\param enum_consts constants corresponding to the enumerated elements.
\param enum_testers predicates testing if terms of the enumeration sort correspond to an enumeration.
For example, if this function is called with three symbols A, B, C and the name S, then
\c s is a sort whose name is S, and the function returns three terms corresponding to A, B, C in
\c enum_consts. The array \c enum_testers has three predicates of type <tt>(s -> Bool)</tt>.
The first predicate (corresponding to A) is true when applied to A, and false otherwise.
Similarly for the other predicates.
def_API('Z3_mk_enumeration_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SYMBOL), _out_array(2, FUNC_DECL), _out_array(2, FUNC_DECL)))
*/
Z3_sort Z3_API Z3_mk_enumeration_sort(__in Z3_context c,
__in Z3_symbol name,
__in unsigned n,
__in_ecount(n) Z3_symbol const enum_names[],
__out_ecount(n) Z3_func_decl enum_consts[],
__out_ecount(n) Z3_func_decl enum_testers[]);
/**
\brief Create a list sort
\mlonly [mk_list_sort c name elem_sort] creates a list sort of [name], over elements of sort [elem_sort].
\endmlonly
\conly A list sort over \c elem_sort
\conly This function declares the corresponding constructors and testers for lists.
\param c logical context
\param name name of the list sort.
\param elem_sort sort of list elements.
\param nil_decl declaration for the empty list.
\param is_nil_decl test for the empty list.
\param cons_decl declaration for a cons cell.
\param is_cons_decl cons cell test.
\param head_decl list head.
\param tail_decl list tail.
def_API('Z3_mk_list_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(SORT), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL)))
*/
Z3_sort Z3_API Z3_mk_list_sort(__in Z3_context c,
__in Z3_symbol name,
__in Z3_sort elem_sort,
__out Z3_func_decl* nil_decl,
__out Z3_func_decl* is_nil_decl,
__out Z3_func_decl* cons_decl,
__out Z3_func_decl* is_cons_decl,
__out Z3_func_decl* head_decl,
__out Z3_func_decl* tail_decl
);
BEGIN_MLAPI_EXCLUDE
/**
\brief Create a constructor.
\param c logical context.
\param name constructor name.
\param recognizer name of recognizer function.
\param num_fields number of fields in constructor.
\param field_names names of the constructor fields.
\param sorts field sorts, \mlonly [None] \endmlonly \conly 0
if the field sort refers to a recursive sort.
\param sort_refs reference to datatype sort that is an argument to the constructor; if the corresponding
sort reference is \mlonly [None], \endmlonly \conly 0,
then the value in sort_refs should be an index referring to
one of the recursive datatypes that is declared.
def_API('Z3_mk_constructor', CONSTRUCTOR, (_in(CONTEXT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(3, SYMBOL), _in_array(3, SORT), _in_array(3, UINT)))
*/
Z3_constructor Z3_API Z3_mk_constructor(__in Z3_context c,
__in Z3_symbol name,
__in Z3_symbol recognizer,
__in unsigned num_fields,
__in_ecount(num_fields) Z3_symbol const field_names[],
__in_ecount(num_fields) Z3_sort_opt const sorts[],
__in_ecount(num_fields) unsigned sort_refs[]
);
/**
\brief Reclaim memory allocated to constructor.
\param c logical context.
\param constr constructor.
def_API('Z3_del_constructor', VOID, (_in(CONTEXT), _in(CONSTRUCTOR)))
*/
void Z3_API Z3_del_constructor(__in Z3_context c, __in Z3_constructor constr);
/**
\brief Create datatype, such as lists, trees, records, enumerations or unions of records.
The datatype may be recursive. Return the datatype sort.
\param c logical context.
\param name name of datatype.
\param num_constructors number of constructors passed in.
\param constructors array of constructor containers.
def_API('Z3_mk_datatype', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _inout_array(2, CONSTRUCTOR)))
*/
Z3_sort Z3_API Z3_mk_datatype(__in Z3_context c,
__in Z3_symbol name,
__in unsigned num_constructors,
__inout_ecount(num_constructors) Z3_constructor constructors[]);
/**
\brief Create list of constructors.
\param c logical context.
\param num_constructors number of constructors in list.
\param constructors list of constructors.
def_API('Z3_mk_constructor_list', CONSTRUCTOR_LIST, (_in(CONTEXT), _in(UINT), _in_array(1, CONSTRUCTOR)))
*/
Z3_constructor_list Z3_API Z3_mk_constructor_list(__in Z3_context c,
__in unsigned num_constructors,
__in_ecount(num_constructors) Z3_constructor const constructors[]);
/**
\brief Reclaim memory allocated for constructor list.
Each constructor inside the constructor list must be independently reclaimed using #Z3_del_constructor.
\param c logical context.
\param clist constructor list container.
def_API('Z3_del_constructor_list', VOID, (_in(CONTEXT), _in(CONSTRUCTOR_LIST)))
*/
void Z3_API Z3_del_constructor_list(__in Z3_context c, __in Z3_constructor_list clist);
/**
\brief Create mutually recursive datatypes.
\param c logical context.
\param num_sorts number of datatype sorts.
\param sort_names names of datatype sorts.
\param sorts array of datatype sorts.
\param constructor_lists list of constructors, one list per sort.
def_API('Z3_mk_datatypes', VOID, (_in(CONTEXT), _in(UINT), _in_array(1, SYMBOL), _out_array(1, SORT), _inout_array(1, CONSTRUCTOR_LIST)))
*/
void Z3_API Z3_mk_datatypes(__in Z3_context c,
__in unsigned num_sorts,
__in_ecount(num_sorts) Z3_symbol const sort_names[],
__out_ecount(num_sorts) Z3_sort sorts[],
__inout_ecount(num_sorts) Z3_constructor_list constructor_lists[]);
/**
\brief Query constructor for declared functions.
\param c logical context.
\param constr constructor container. The container must have been passed in to a #Z3_mk_datatype call.
\param num_fields number of accessor fields in the constructor.
\param constructor constructor function declaration.
\param tester constructor test function declaration.
\param accessors array of accessor function declarations.
def_API('Z3_query_constructor', VOID, (_in(CONTEXT), _in(CONSTRUCTOR), _in(UINT), _out(FUNC_DECL), _out(FUNC_DECL), _out_array(2, FUNC_DECL)))
*/
void Z3_API Z3_query_constructor(__in Z3_context c,
__in Z3_constructor constr,
__in unsigned num_fields,
__out Z3_func_decl* constructor,
__out Z3_func_decl* tester,
__out_ecount(num_fields) Z3_func_decl accessors[]);
END_MLAPI_EXCLUDE
/*@}*/
/**
@name Constants and Applications
*/
/*@{*/
/**
\brief Declare a constant or function.
\mlonly [mk_func_decl c n d r] creates a function with name [n], domain [d], and range [r].
The arity of the function is the size of the array [d]. \endmlonly
\param c logical context.
\param s name of the constant or function.
\param domain_size number of arguments. It is 0 when declaring a constant.
\param domain array containing the sort of each argument. The array must contain domain_size elements. It is 0 when declaring a constant.
\param range sort of the constant or the return sort of the function.
After declaring a constant or function, the function
#Z3_mk_app can be used to create a constant or function
application.
\sa Z3_mk_app
def_API('Z3_mk_func_decl', FUNC_DECL, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SORT), _in(SORT)))
*/
Z3_func_decl Z3_API Z3_mk_func_decl(__in Z3_context c, __in Z3_symbol s,
__in unsigned domain_size, __in_ecount(domain_size) Z3_sort const domain[],
__in Z3_sort range);
/**
\brief Create a constant or function application.
\sa Z3_mk_func_decl
def_API('Z3_mk_app', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT), _in_array(2, AST)))
*/
Z3_ast Z3_API Z3_mk_app(
__in Z3_context c,
__in Z3_func_decl d,
__in unsigned num_args,
__in_ecount(num_args) Z3_ast const args[]);
/**
\brief Declare and create a constant.
\conly This function is a shorthand for:
\conly \code
\conly Z3_func_decl d = Z3_mk_func_decl(c, s, 0, 0, ty);
\conly Z3_ast n = Z3_mk_app(c, d, 0, 0);
\conly \endcode
\mlonly [mk_const c s t] is a shorthand for [mk_app c (mk_func_decl c s [||] t) [||]] \endmlonly
\sa Z3_mk_func_decl
\sa Z3_mk_app
def_API('Z3_mk_const', AST, (_in(CONTEXT), _in(SYMBOL), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_const(__in Z3_context c, __in Z3_symbol s, __in Z3_sort ty);
/**
\brief Declare a fresh constant or function.
Z3 will generate an unique name for this function declaration.
\conly If prefix is different from \c NULL, then the name generate by Z3 will start with \c prefix.
\conly \remark If \c prefix is \c NULL, then it is assumed to be the empty string.
\sa Z3_mk_func_decl
def_API('Z3_mk_fresh_func_decl', FUNC_DECL, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SORT), _in(SORT)))
*/
Z3_func_decl Z3_API Z3_mk_fresh_func_decl(__in Z3_context c, __in Z3_string prefix,
__in unsigned domain_size, __in_ecount(domain_size) Z3_sort const domain[],
__in Z3_sort range);
/**
\brief Declare and create a fresh constant.
\conly This function is a shorthand for:
\conly \code Z3_func_decl d = Z3_mk_fresh_func_decl(c, prefix, 0, 0, ty); Z3_ast n = Z3_mk_app(c, d, 0, 0); \endcode
\mlonly [mk_fresh_const c p t] is a shorthand for [mk_app c (mk_fresh_func_decl c p [||] t) [||]]. \endmlonly
\conly \remark If \c prefix is \c NULL, then it is assumed to be the empty string.
\sa Z3_mk_func_decl
\sa Z3_mk_app
def_API('Z3_mk_fresh_const', AST, (_in(CONTEXT), _in(STRING), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_fresh_const(__in Z3_context c, __in Z3_string prefix, __in Z3_sort ty);
/*@}*/
/**
@name Propositional Logic and Equality
*/
/*@{*/
/**
\brief Create an AST node representing \c true.
def_API('Z3_mk_true', AST, (_in(CONTEXT), ))
*/
Z3_ast Z3_API Z3_mk_true(__in Z3_context c);
/**
\brief Create an AST node representing \c false.
def_API('Z3_mk_false', AST, (_in(CONTEXT), ))
*/
Z3_ast Z3_API Z3_mk_false(__in Z3_context c);
/**
\brief \mlh mk_eq c l r \endmlh
Create an AST node representing <tt>l = r</tt>.
The nodes \c l and \c r must have the same type.
def_API('Z3_mk_eq', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_eq(__in Z3_context c, __in Z3_ast l, __in Z3_ast r);
/**
\conly \brief Create an AST node representing <tt>distinct(args[0], ..., args[num_args-1])</tt>.
\mlonly \brief \[ [mk_distinct c [| t_1; ...; t_n |]] \] Create an AST
node represeting a distinct construct. It is used for declaring
the arguments t_i pairwise distinct. \endmlonly
The \c distinct construct is used for declaring the arguments pairwise distinct.
That is, <tt>Forall 0 <= i < j < num_args. not args[i] = args[j]</tt>.
All arguments must have the same sort.
\remark The number of arguments of a distinct construct must be greater than one.
def_API('Z3_mk_distinct', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
*/
Z3_ast Z3_API Z3_mk_distinct(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
/**
\brief \mlh mk_not c a \endmlh
Create an AST node representing <tt>not(a)</tt>.
The node \c a must have Boolean sort.
def_API('Z3_mk_not', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_not(__in Z3_context c, __in Z3_ast a);
/**
\brief \mlh mk_ite c t1 t2 t2 \endmlh
Create an AST node representing an if-then-else: <tt>ite(t1, t2,
t3)</tt>.
The node \c t1 must have Boolean sort, \c t2 and \c t3 must have the same sort.
The sort of the new node is equal to the sort of \c t2 and \c t3.
def_API('Z3_mk_ite', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_ite(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2, __in Z3_ast t3);
/**
\brief \mlh mk_iff c t1 t2 \endmlh
Create an AST node representing <tt>t1 iff t2</tt>.
The nodes \c t1 and \c t2 must have Boolean sort.
def_API('Z3_mk_iff', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_iff(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_implies c t1 t2 \endmlh
Create an AST node representing <tt>t1 implies t2</tt>.
The nodes \c t1 and \c t2 must have Boolean sort.
def_API('Z3_mk_implies', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_implies(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_xor c t1 t2 \endmlh
Create an AST node representing <tt>t1 xor t2</tt>.
The nodes \c t1 and \c t2 must have Boolean sort.
def_API('Z3_mk_xor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_xor(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\conly \brief Create an AST node representing <tt>args[0] and ... and args[num_args-1]</tt>.
\mlonly \brief \[ [mk_and c [| t_1; ...; t_n |]] \] Create the conjunction: {e t_1 and ... and t_n}. \endmlonly
\conly The array \c args must have \c num_args elements.
All arguments must have Boolean sort.
\remark The number of arguments must be greater than zero.
def_API('Z3_mk_and', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
*/
Z3_ast Z3_API Z3_mk_and(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
/**
\conly \brief Create an AST node representing <tt>args[0] or ... or args[num_args-1]</tt>.
\mlonly \brief \[ [mk_or c [| t_1; ...; t_n |]] \] Create the disjunction: {e t_1 or ... or t_n}. \endmlonly
\conly The array \c args must have \c num_args elements.
All arguments must have Boolean sort.
\remark The number of arguments must be greater than zero.
def_API('Z3_mk_or', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
*/
Z3_ast Z3_API Z3_mk_or(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
/*@}*/
/**
@name Arithmetic: Integers and Reals
*/
/*@{*/
/**
\conly \brief Create an AST node representing <tt>args[0] + ... + args[num_args-1]</tt>.
\mlonly \brief \[ [mk_add c [| t_1; ...; t_n |]] \] Create the term: {e t_1 + ... + t_n}. \endmlonly
\conly The array \c args must have \c num_args elements.
All arguments must have int or real sort.
\remark The number of arguments must be greater than zero.
def_API('Z3_mk_add', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
*/
Z3_ast Z3_API Z3_mk_add(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
/**
\conly \brief Create an AST node representing <tt>args[0] * ... * args[num_args-1]</tt>.
\mlonly \brief \[ [mk_mul c [| t_1; ...; t_n |]] \] Create the term: {e t_1 * ... * t_n}. \endmlonly
\conly The array \c args must have \c num_args elements.
All arguments must have int or real sort.
\remark Z3 has limited support for non-linear arithmetic.
\remark The number of arguments must be greater than zero.
def_API('Z3_mk_mul', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
*/
Z3_ast Z3_API Z3_mk_mul(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
/**
\conly \brief Create an AST node representing <tt>args[0] - ... - args[num_args - 1]</tt>.
\mlonly \brief \[ [mk_sub c [| t_1; ...; t_n |]] \] Create the term: {e t_1 - ... - t_n}. \endmlonly
\conly The array \c args must have \c num_args elements.
All arguments must have int or real sort.
\remark The number of arguments must be greater than zero.
def_API('Z3_mk_sub', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
*/
Z3_ast Z3_API Z3_mk_sub(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
/**
\conly \brief Create an AST node representing <tt>-arg</tt>.
\mlonly \brief \[ [mk_unary_minus c arg] \] Create the term: {e - arg}. \endmlonly
The arguments must have int or real type.
def_API('Z3_mk_unary_minus', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_unary_minus(__in Z3_context c, __in Z3_ast arg);
/**
\conly \brief Create an AST node representing <tt>arg1 div arg2</tt>.
\mlonly \brief \[ [mk_div c t_1 t_2] \] Create the term: {e t_1 div t_2}. \endmlonly
The arguments must either both have int type or both have real type.
If the arguments have int type, then the result type is an int type, otherwise the
the result type is real.
def_API('Z3_mk_div', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_div(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);
/**
\conly \brief Create an AST node representing <tt>arg1 mod arg2</tt>.
\mlonly \brief \[ [mk_mod c t_1 t_2] \] Create the term: {e t_1 mod t_2}. \endmlonly
The arguments must have int type.
def_API('Z3_mk_mod', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_mod(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);
/**
\conly \brief Create an AST node representing <tt>arg1 rem arg2</tt>.
\mlonly \brief \[ [mk_rem c t_1 t_2] \] Create the term: {e t_1 rem t_2}. \endmlonly
The arguments must have int type.
def_API('Z3_mk_rem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_rem(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);
/**
\conly \brief Create an AST node representing <tt>arg1^arg2</tt>.
The arguments must have int or real type.
def_API('Z3_mk_power', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_power(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);
/**
\brief \mlh mk_lt c t1 t2 \endmlh
Create less than.
The nodes \c t1 and \c t2 must have the same sort, and must be int or real.
def_API('Z3_mk_lt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_lt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_le c t1 t2 \endmlh
Create less than or equal to.
The nodes \c t1 and \c t2 must have the same sort, and must be int or real.
def_API('Z3_mk_le', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_le(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_gt c t1 t2 \endmlh
Create greater than.
The nodes \c t1 and \c t2 must have the same sort, and must be int or real.
def_API('Z3_mk_gt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_gt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_ge c t1 t2 \endmlh
Create greater than or equal to.
The nodes \c t1 and \c t2 must have the same sort, and must be int or real.
def_API('Z3_mk_ge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_ge(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_int2real c t1 \endmlh
Coerce an integer to a real.
There is also a converse operation exposed.
It follows the semantics prescribed by the SMT-LIB standard.
You can take the floor of a real by
creating an auxiliary integer constant \c k and
and asserting <tt> mk_int2real(k) <= t1 < mk_int2real(k)+1</tt>.
The node \c t1 must have sort integer.
\sa Z3_mk_real2int
\sa Z3_mk_is_int
def_API('Z3_mk_int2real', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_int2real(__in Z3_context c, __in Z3_ast t1);
/**
\brief \mlh mk_real2int c t1 \endmlh
Coerce a real to an integer.
The semantics of this function follows the SMT-LIB standard
for the function to_int
\sa Z3_mk_int2real
\sa Z3_mk_is_int
def_API('Z3_mk_real2int', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_real2int(__in Z3_context c, __in Z3_ast t1);
/**
\brief \mlh mk_is_int c t1 \endmlh
Check if a real number is an integer.
\sa Z3_mk_int2real
\sa Z3_mk_real2int
def_API('Z3_mk_is_int', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_is_int(__in Z3_context c, __in Z3_ast t1);
/*@}*/
/**
@name Bit-vectors
*/
/*@{*/
/**
\brief \mlh mk_bvnot c t1 \endmlh
Bitwise negation.
The node \c t1 must have a bit-vector sort.
def_API('Z3_mk_bvnot', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvnot(__in Z3_context c, __in Z3_ast t1);
/**
\brief \mlh mk_bvredand c t1 \endmlh
Take conjunction of bits in vector, return vector of length 1.
The node \c t1 must have a bit-vector sort.
def_API('Z3_mk_bvredand', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvredand(__in Z3_context c, __in Z3_ast t1);
/**
\brief \mlh mk_bvredor c t1 \endmlh
Take disjunction of bits in vector, return vector of length 1.
The node \c t1 must have a bit-vector sort.
def_API('Z3_mk_bvredor', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvredor(__in Z3_context c, __in Z3_ast t1);
/**
\brief \mlh mk_bvand c t1 t2 \endmlh
Bitwise and.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvand', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvand(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvor c t1 t2 \endmlh
Bitwise or.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvor(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvxor c t1 t2 \endmlh
Bitwise exclusive-or.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvxor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvxor(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvnand c t1 t2 \endmlh
Bitwise nand.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvnand', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvnand(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvnor c t1 t2 \endmlh
Bitwise nor.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvnor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvnor(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvxnor c t1 t2 \endmlh
Bitwise xnor.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvxnor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvxnor(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvneg c t1 \endmlh
Standard two's complement unary minus.
The node \c t1 must have bit-vector sort.
def_API('Z3_mk_bvneg', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvneg(__in Z3_context c, __in Z3_ast t1);
/**
\brief \mlh mk_bvadd c t1 t2 \endmlh
Standard two's complement addition.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvadd', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvadd(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvsub c t1 t2 \endmlh
Standard two's complement subtraction.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvsub', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvsub(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvmul c t1 t2 \endmlh
Standard two's complement multiplication.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvmul', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvmul(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvudiv c t1 t2 \endmlh
Unsigned division.
It is defined as the \c floor of <tt>t1/t2</tt> if \c t2 is
different from zero. If <tt>t2</tt> is zero, then the result
is undefined.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvudiv', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvudiv(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvsdiv c t1 t2 \endmlh
Two's complement signed division.
It is defined in the following way:
- The \c floor of <tt>t1/t2</tt> if \c t2 is different from zero, and <tt>t1*t2 >= 0</tt>.
- The \c ceiling of <tt>t1/t2</tt> if \c t2 is different from zero, and <tt>t1*t2 < 0</tt>.
If <tt>t2</tt> is zero, then the result is undefined.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvsdiv', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvsdiv(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvurem c t1 t2 \endmlh
Unsigned remainder.
It is defined as <tt>t1 - (t1 /u t2) * t2</tt>, where <tt>/u</tt> represents unsigned division.
If <tt>t2</tt> is zero, then the result is undefined.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvurem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvurem(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvsrem c t1 t2 \endmlh
Two's complement signed remainder (sign follows dividend).
It is defined as <tt>t1 - (t1 /s t2) * t2</tt>, where <tt>/s</tt> represents signed division.
The most significant bit (sign) of the result is equal to the most significant bit of \c t1.
If <tt>t2</tt> is zero, then the result is undefined.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
\sa Z3_mk_bvsmod
def_API('Z3_mk_bvsrem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvsrem(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvsmod c t1 t2 \endmlh
Two's complement signed remainder (sign follows divisor).
If <tt>t2</tt> is zero, then the result is undefined.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
\sa Z3_mk_bvsrem
def_API('Z3_mk_bvsmod', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvsmod(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvult c t1 t2 \endmlh
Unsigned less than.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvult', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvult(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvslt c t1 t2 \endmlh
Two's complement signed less than.
It abbreviates:
\code
(or (and (= (extract[|m-1|:|m-1|] t1) bit1)
(= (extract[|m-1|:|m-1|] t2) bit0))
(and (= (extract[|m-1|:|m-1|] t1) (extract[|m-1|:|m-1|] t2))
(bvult t1 t2)))
\endcode
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvslt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvslt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvule c t1 t2 \endmlh
Unsigned less than or equal to.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvule', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvule(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvsle c t1 t2 \endmlh
Two's complement signed less than or equal to.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvsle', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvsle(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvuge c t1 t2 \endmlh
Unsigned greater than or equal to.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvuge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvuge(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvsge c t1 t2 \endmlh
Two's complement signed greater than or equal to.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvsge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvsge(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvugt c t1 t2 \endmlh
Unsigned greater than.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvugt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvugt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvsgt c t1 t2 \endmlh
Two's complement signed greater than.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvsgt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvsgt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_concat c t1 t2 \endmlh
Concatenate the given bit-vectors.
The nodes \c t1 and \c t2 must have (possibly different) bit-vector sorts
The result is a bit-vector of size <tt>n1+n2</tt>, where \c n1 (\c n2) is the size
of \c t1 (\c t2).
def_API('Z3_mk_concat', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_concat(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_extract c high low t1 \endmlh
Extract the bits \c high down to \c low from a bitvector of
size \c m to yield a new bitvector of size \c n, where <tt>n =
high - low + 1</tt>.
The node \c t1 must have a bit-vector sort.
def_API('Z3_mk_extract', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_extract(__in Z3_context c, __in unsigned high, __in unsigned low, __in Z3_ast t1);
/**
\brief \mlh mk_sign_ext c i t1 \endmlh
Sign-extend of the given bit-vector to the (signed) equivalent bitvector of
size <tt>m+i</tt>, where \c m is the size of the given
bit-vector.
The node \c t1 must have a bit-vector sort.
def_API('Z3_mk_sign_ext', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_sign_ext(__in Z3_context c, __in unsigned i, __in Z3_ast t1);
/**
\brief \mlh mk_zero_ext c i t1 \endmlh
Extend the given bit-vector with zeros to the (unsigned) equivalent
bitvector of size <tt>m+i</tt>, where \c m is the size of the
given bit-vector.
The node \c t1 must have a bit-vector sort.
def_API('Z3_mk_zero_ext', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_zero_ext(__in Z3_context c, __in unsigned i, __in Z3_ast t1);
/**
\brief \mlh mk_repeat c i t1 \endmlh
Repeat the given bit-vector up length <tt>i</tt>.
The node \c t1 must have a bit-vector sort.
def_API('Z3_mk_repeat', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_repeat(__in Z3_context c, __in unsigned i, __in Z3_ast t1);
/**
\brief \mlh mk_bvshl c t1 t2 \endmlh
Shift left.
It is equivalent to multiplication by <tt>2^x</tt> where \c x is the value of the
third argument.
NB. The semantics of shift operations varies between environments. This
definition does not necessarily capture directly the semantics of the
programming language or assembly architecture you are modeling.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvshl', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvshl(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvlshr c t1 t2 \endmlh
Logical shift right.
It is equivalent to unsigned division by <tt>2^x</tt> where \c x is the
value of the third argument.
NB. The semantics of shift operations varies between environments. This
definition does not necessarily capture directly the semantics of the
programming language or assembly architecture you are modeling.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvlshr', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvlshr(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvashr c t1 t2 \endmlh
Arithmetic shift right.
It is like logical shift right except that the most significant
bits of the result always copy the most significant bit of the
second argument.
The semantics of shift operations varies between environments. This
definition does not necessarily capture directly the semantics of the
programming language or assembly architecture you are modeling.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvashr', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvashr(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_rotate_left c i t1 \endmlh
Rotate bits of \c t1 to the left \c i times.
The node \c t1 must have a bit-vector sort.
def_API('Z3_mk_rotate_left', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_rotate_left(__in Z3_context c, __in unsigned i, __in Z3_ast t1);
/**
\brief \mlh mk_rotate_right c i t1 \endmlh
Rotate bits of \c t1 to the right \c i times.
The node \c t1 must have a bit-vector sort.
def_API('Z3_mk_rotate_right', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_rotate_right(__in Z3_context c, __in unsigned i, __in Z3_ast t1);
/**
\brief \mlh mk_ext_rotate_left c t1 t2 \endmlh
Rotate bits of \c t1 to the left \c t2 times.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_ext_rotate_left', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_ext_rotate_left(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_ext_rotate_right c t1 t2 \endmlh
Rotate bits of \c t1 to the right \c t2 times.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_ext_rotate_right', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_ext_rotate_right(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_int2bv c n t1 \endmlh
Create an \c n bit bit-vector from the integer argument \c t1.
NB. This function is essentially treated as uninterpreted.
So you cannot expect Z3 to precisely reflect the semantics of this function
when solving constraints with this function.
The node \c t1 must have integer sort.
def_API('Z3_mk_int2bv', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_int2bv(__in Z3_context c, __in unsigned n, __in Z3_ast t1);
/**
\brief \mlh mk_bv2int c t1 is_signed \endmlh
Create an integer from the bit-vector argument \c t1.
If \c is_signed is false, then the bit-vector \c t1 is treated as unsigned.
So the result is non-negative
and in the range <tt>[0..2^N-1]</tt>, where N are the number of bits in \c t1.
If \c is_signed is true, \c t1 is treated as a signed bit-vector.
This function is essentially treated as uninterpreted.
So you cannot expect Z3 to precisely reflect the semantics of this function
when solving constraints with this function.
The node \c t1 must have a bit-vector sort.
def_API('Z3_mk_bv2int', AST, (_in(CONTEXT), _in(AST), _in(BOOL)))
*/
Z3_ast Z3_API Z3_mk_bv2int(__in Z3_context c,__in Z3_ast t1, Z3_bool is_signed);
/**
\brief \mlh mk_bvadd_no_overflow c t1 t2 is_signed \endmlh
Create a predicate that checks that the bit-wise addition
of \c t1 and \c t2 does not overflow.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvadd_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
*/
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2, Z3_bool is_signed);
/**
\brief \mlh mk_bvadd_no_underflow c t1 t2 \endmlh
Create a predicate that checks that the bit-wise signed addition
of \c t1 and \c t2 does not underflow.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvadd_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvsub_no_overflow c t1 t2 \endmlh
Create a predicate that checks that the bit-wise signed subtraction
of \c t1 and \c t2 does not overflow.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvsub_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvsub_no_underflow c t1 t2 is_signed \endmlh
Create a predicate that checks that the bit-wise subtraction
of \c t1 and \c t2 does not underflow.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvsub_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
*/
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2, Z3_bool is_signed);
/**
\brief \mlh mk_bvsdiv_no_overflow c t1 t2 \endmlh
Create a predicate that checks that the bit-wise signed division
of \c t1 and \c t2 does not overflow.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvsdiv_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/**
\brief \mlh mk_bvneg_no_overflow c t1 \endmlh
Check that bit-wise negation does not overflow when
\c t1 is interpreted as a signed bit-vector.
The node \c t1 must have bit-vector sort.
def_API('Z3_mk_bvneg_no_overflow', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(__in Z3_context c, __in Z3_ast t1);
/**
\brief \mlh mk_bvmul_no_overflow c t1 t2 is_signed \endmlh
Create a predicate that checks that the bit-wise multiplication
of \c t1 and \c t2 does not overflow.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvmul_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
*/
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2, Z3_bool is_signed);
/**
\brief \mlh mk_bvmul_no_underflow c t1 t2 \endmlh
Create a predicate that checks that the bit-wise signed multiplication
of \c t1 and \c t2 does not underflow.
The nodes \c t1 and \c t2 must have the same bit-vector sort.
def_API('Z3_mk_bvmul_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
/*@}*/
/**
@name Arrays
*/
/*@{*/
/**
\brief \mlh mk_select c a i \endmlh
Array read.
The argument \c a is the array and \c i is the index of the array that gets read.
The node \c a must have an array sort <tt>[domain -> range]</tt>,
and \c i must have the sort \c domain.
The sort of the result is \c range.
\sa Z3_mk_array_sort
\sa Z3_mk_store
def_API('Z3_mk_select', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_select(__in Z3_context c, __in Z3_ast a, __in Z3_ast i);
/**
\brief \mlh mk_store c a i v \endmlh
Array update.
The node \c a must have an array sort <tt>[domain -> range]</tt>, \c i must have sort \c domain,
\c v must have sort range. The sort of the result is <tt>[domain -> range]</tt>.
The semantics of this function is given by the theory of arrays described in the SMT-LIB
standard. See http://smtlib.org for more details.
The result of this function is an array that is equal to \c a (with respect to \c select)
on all indices except for \c i, where it maps to \c v (and the \c select of \c a with
respect to \c i may be a different value).
\sa Z3_mk_array_sort
\sa Z3_mk_select
def_API('Z3_mk_store', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_store(__in Z3_context c, __in Z3_ast a, __in Z3_ast i, __in Z3_ast v);
/**
\brief Create the constant array.
The resulting term is an array, such that a \c select on an arbitrary index
produces the value \c v.
\param c logical context.
\param domain domain sort for the array.
\param v value that the array maps to.
def_API('Z3_mk_const_array', AST, (_in(CONTEXT), _in(SORT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_const_array(__in Z3_context c, __in Z3_sort domain, __in Z3_ast v);
/**
\brief \mlh mk_map f n args \endmlh
map f on the the argument arrays.
The \c n nodes \c args must be of array sorts <tt>[domain_i -> range_i]</tt>.
The function declaration \c f must have type <tt> range_1 .. range_n -> range</tt>.
\c v must have sort range. The sort of the result is <tt>[domain_i -> range]</tt>.
\sa Z3_mk_array_sort
\sa Z3_mk_store
\sa Z3_mk_select
def_API('Z3_mk_map', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT), _in_array(2, AST)))
*/
Z3_ast Z3_API Z3_mk_map(__in Z3_context c, __in Z3_func_decl f, unsigned n, __in Z3_ast const* args);
/**
\brief Access the array default value.
Produces the default range value, for arrays that can be represented as
finite maps with a default range value.
\param c logical context.
\param array array value whose default range value is accessed.
def_API('Z3_mk_array_default', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_array_default(__in Z3_context c, __in Z3_ast array);
/*@}*/
/**
@name Sets
*/
/*@{*/
/**
\brief Create Set type.
def_API('Z3_mk_set_sort', SORT, (_in(CONTEXT), _in(SORT)))
*/
Z3_sort Z3_API Z3_mk_set_sort(__in Z3_context c, __in Z3_sort ty);
/**
\brief Create the empty set.
def_API('Z3_mk_empty_set', AST, (_in(CONTEXT), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_empty_set(__in Z3_context c, __in Z3_sort domain);
/**
\brief Create the full set.
def_API('Z3_mk_full_set', AST, (_in(CONTEXT), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_full_set(__in Z3_context c, __in Z3_sort domain);
/**
\brief Add an element to a set.
The first argument must be a set, the second an element.
def_API('Z3_mk_set_add', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_set_add(__in Z3_context c, __in Z3_ast set, __in Z3_ast elem);
/**
\brief Remove an element to a set.
The first argument must be a set, the second an element.
def_API('Z3_mk_set_del', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_set_del(__in Z3_context c, __in Z3_ast set, __in Z3_ast elem);
/**
\brief Take the union of a list of sets.
def_API('Z3_mk_set_union', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
*/
Z3_ast Z3_API Z3_mk_set_union(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
/**
\brief Take the intersection of a list of sets.
def_API('Z3_mk_set_intersect', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
*/
Z3_ast Z3_API Z3_mk_set_intersect(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
/**
\brief Take the set difference between two sets.
def_API('Z3_mk_set_difference', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_set_difference(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);
/**
\brief Take the complement of a set.
def_API('Z3_mk_set_complement', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_set_complement(__in Z3_context c, __in Z3_ast arg);
/**
\brief Check for set membership.
The first argument should be an element type of the set.
def_API('Z3_mk_set_member', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_set_member(__in Z3_context c, __in Z3_ast elem, __in Z3_ast set);
/**
\brief Check for subsetness of sets.
def_API('Z3_mk_set_subset', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_set_subset(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);
/*@}*/
/**
@name Numerals
*/
/*@{*/
#ifdef ML4only
#include <mlx_mk_numeral.idl>
#endif
/**
\mlonly {4 {L Redundant low-level API}} \endmlonly
*/
/**
\brief Create a numeral of a given sort.
\param c logical context.
\param numeral A string representing the numeral value in decimal notation. If the given sort is a real, then the numeral can be a rational, that is, a string of the form <tt>[num]* / [num]*</tt>.
\param ty The sort of the numeral. In the current implementation, the given sort can be an int, real, finite-domain, or bit-vectors of arbitrary size.
\sa Z3_mk_int
\conly \sa Z3_mk_unsigned_int
def_API('Z3_mk_numeral', AST, (_in(CONTEXT), _in(STRING), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_numeral(__in Z3_context c, __in Z3_string numeral, __in Z3_sort ty);
/**
\brief Create a real from a fraction.
\param c logical context.
\param num numerator of rational.
\param den denomerator of rational.
\pre den != 0
\sa Z3_mk_numeral
\sa Z3_mk_int
\conly \sa Z3_mk_unsigned_int
def_API('Z3_mk_real', AST, (_in(CONTEXT), _in(INT), _in(INT)))
*/
Z3_ast Z3_API Z3_mk_real(__in Z3_context c, __in int num, __in int den);
/**
\brief Create a numeral of an int, bit-vector, or finite-domain sort.
This function can be use to create numerals that fit in a machine integer.
It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.
\sa Z3_mk_numeral
def_API('Z3_mk_int', AST, (_in(CONTEXT), _in(INT), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_int(__in Z3_context c, __in int v, __in Z3_sort ty);
#ifdef Conly
/**
\brief Create a numeral of a int, bit-vector, or finite-domain sort.
This function can be use to create numerals that fit in a machine unsinged integer.
It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.
\sa Z3_mk_numeral
def_API('Z3_mk_unsigned_int', AST, (_in(CONTEXT), _in(UINT), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_unsigned_int(__in Z3_context c, __in unsigned v, __in Z3_sort ty);
#endif
/**
\brief Create a numeral of a int, bit-vector, or finite-domain sort.
This function can be use to create numerals that fit in a machine __int64 integer.
It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.
\sa Z3_mk_numeral
def_API('Z3_mk_int64', AST, (_in(CONTEXT), _in(INT64), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_int64(__in Z3_context c, __in __int64 v, __in Z3_sort ty);
#ifdef Conly
/**
\brief Create a numeral of a int, bit-vector, or finite-domain sort.
This function can be use to create numerals that fit in a machine unsigned __int64 integer.
It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.
\sa Z3_mk_numeral
def_API('Z3_mk_unsigned_int64', AST, (_in(CONTEXT), _in(UINT64), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_unsigned_int64(__in Z3_context c, __in unsigned __int64 v, __in Z3_sort ty);
#endif
/*@}*/
/**
@name Quantifiers
*/
/*@{*/
/**
\brief Create a pattern for quantifier instantiation.
Z3 uses pattern matching to instantiate quantifiers. If a
pattern is not provided for a quantifier, then Z3 will
automatically compute a set of patterns for it. However, for
optimal performance, the user should provide the patterns.
Patterns comprise a list of terms. The list should be
non-empty. If the list comprises of more than one term, it is
a called a multi-pattern.
In general, one can pass in a list of (multi-)patterns in the
quantifier constructor.
\sa Z3_mk_forall
\sa Z3_mk_exists
def_API('Z3_mk_pattern', PATTERN, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
*/
Z3_pattern Z3_API Z3_mk_pattern(
__in Z3_context c,
__in unsigned num_patterns, __in_ecount(num_patterns) Z3_ast const terms[]);
/**
\brief Create a bound variable.
Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain
the meaning of de-Bruijn indices by indicating the compilation process from
non-de-Bruijn formulas to de-Bruijn format.
\verbatim
abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
abs1(x, x, n) = b_n
abs1(y, x, n) = y
abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
\endverbatim
The last line is significant: the index of a bound variable is different depending
on the scope in which it appears. The deeper x appears, the higher is its
index.
\param c logical context
\param index de-Bruijn index
\param ty sort of the bound variable
\sa Z3_mk_forall
\sa Z3_mk_exists
def_API('Z3_mk_bound', AST, (_in(CONTEXT), _in(UINT), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_bound(__in Z3_context c, __in unsigned index, __in Z3_sort ty);
/**
\brief Create a forall formula. It takes an expression \c body that contains bound variables
of the same sorts as the sorts listed in the array \c sorts. The bound variables are de-Bruijn indices created
using #Z3_mk_bound. The array \c decl_names contains the names that the quantified formula uses for the
bound variables. Z3 applies the convention that the last element in the \c decl_names and \c sorts array
refers to the variable with index 0, the second to last element of \c decl_names and \c sorts refers
to the variable with index 1, etc.
\mlonly [mk_forall c w p t n b] creates a forall formula, where
[w] is the weight, [p] is an array of patterns, [t] is an array
with the sorts of the bound variables, [n] is an array with the
'names' of the bound variables, and [b] is the body of the
quantifier. Quantifiers are associated with weights indicating
the importance of using the quantifier during
instantiation. \endmlonly
\param c logical context.
\param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
\param num_patterns number of patterns.
\param patterns array containing the patterns created using #Z3_mk_pattern.
\param num_decls number of variables to be bound.
\param sorts the sorts of the bound variables.
\param decl_names names of the bound variables
\param body the body of the quantifier.
\sa Z3_mk_pattern
\sa Z3_mk_bound
\sa Z3_mk_exists
def_API('Z3_mk_forall', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, PATTERN), _in(UINT), _in_array(4, SORT), _in_array(4, SYMBOL), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_forall(__in Z3_context c, __in unsigned weight,
__in unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[],
__in unsigned num_decls, __in_ecount(num_decls) Z3_sort const sorts[],
__in_ecount(num_decls) Z3_symbol const decl_names[],
__in Z3_ast body);
/**
\brief Create an exists formula. Similar to #Z3_mk_forall.
\sa Z3_mk_pattern
\sa Z3_mk_bound
\sa Z3_mk_forall
\sa Z3_mk_quantifier
def_API('Z3_mk_exists', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, PATTERN), _in(UINT), _in_array(4, SORT), _in_array(4, SYMBOL), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_exists(__in Z3_context c, __in unsigned weight,
__in unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[],
__in unsigned num_decls, __in_ecount(num_decls) Z3_sort const sorts[],
__in_ecount(num_decls) Z3_symbol const decl_names[],
__in Z3_ast body);
/**
\brief Create a quantifier - universal or existential, with pattern hints.
See the documentation for #Z3_mk_forall for an explanation of the parameters.
\param c logical context.
\param is_forall flag to indicate if this is a universal or existential quantifier.
\param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
\param num_patterns number of patterns.
\param patterns array containing the patterns created using #Z3_mk_pattern.
\param num_decls number of variables to be bound.
\param sorts array of sorts of the bound variables.
\param decl_names names of the bound variables.
\param body the body of the quantifier.
\sa Z3_mk_pattern
\sa Z3_mk_bound
\sa Z3_mk_forall
\sa Z3_mk_exists
def_API('Z3_mk_quantifier', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(UINT), _in_array(3, PATTERN), _in(UINT), _in_array(5, SORT), _in_array(5, SYMBOL), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_quantifier(
__in Z3_context c,
__in Z3_bool is_forall,
__in unsigned weight,
__in unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[],
__in unsigned num_decls, __in_ecount(num_decls) Z3_sort const sorts[],
__in_ecount(num_decls) Z3_symbol const decl_names[],
__in Z3_ast body);
/**
\brief Create a quantifier - universal or existential, with pattern hints, no patterns, and attributes
\param c logical context.
\param is_forall flag to indicate if this is a universal or existential quantifier.
\param quantifier_id identifier to identify quantifier
\param skolem_id identifier to identify skolem constants introduced by quantifier.
\param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
\param num_patterns number of patterns.
\param patterns array containing the patterns created using #Z3_mk_pattern.
\param num_no_patterns number of no_patterns.
\param no_patterns array containing subexpressions to be excluded from inferred patterns.
\param num_decls number of variables to be bound.
\param sorts array of sorts of the bound variables.
\param decl_names names of the bound variables.
\param body the body of the quantifier.
\sa Z3_mk_pattern
\sa Z3_mk_bound
\sa Z3_mk_forall
\sa Z3_mk_exists
def_API('Z3_mk_quantifier_ex', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(5, PATTERN), _in(UINT), _in_array(7, AST), _in(UINT), _in_array(9, SORT), _in_array(9, SYMBOL), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_quantifier_ex(
__in Z3_context c,
__in Z3_bool is_forall,
__in unsigned weight,
__in Z3_symbol quantifier_id,
__in Z3_symbol skolem_id,
__in unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[],
__in unsigned num_no_patterns, __in_ecount(num_no_patterns) Z3_ast const no_patterns[],
__in unsigned num_decls, __in_ecount(num_decls) Z3_sort const sorts[],
__in_ecount(num_decls) Z3_symbol const decl_names[],
__in Z3_ast body);
/**
\brief Create a universal quantifier using a list of constants that
will form the set of bound variables.
\param c logical context.
\param weight quantifiers are associated with weights indicating the importance of using
the quantifier during instantiation. By default, pass the weight 0.
\param num_bound number of constants to be abstracted into bound variables.
\param bound array of constants to be abstracted into bound variables.
\param num_patterns number of patterns.
\param patterns array containing the patterns created using #Z3_mk_pattern.
\param body the body of the quantifier.
\sa Z3_mk_pattern
\sa Z3_mk_exists_const
def_API('Z3_mk_forall_const', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, APP), _in(UINT), _in_array(4, PATTERN), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_forall_const(
__in Z3_context c,
unsigned weight,
unsigned num_bound,
__in_ecount(num_bound) Z3_app const bound[],
unsigned num_patterns,
__in_ecount(num_patterns) Z3_pattern const patterns[],
__in Z3_ast body
);
/**
\brief Similar to #Z3_mk_forall_const.
\brief Create an existential quantifier using a list of constants that
will form the set of bound variables.
\param c logical context.
\param weight quantifiers are associated with weights indicating the importance of using
the quantifier during instantiation. By default, pass the weight 0.
\param num_bound number of constants to be abstracted into bound variables.
\param bound array of constants to be abstracted into bound variables.
\param num_patterns number of patterns.
\param patterns array containing the patterns created using #Z3_mk_pattern.
\param body the body of the quantifier.
\sa Z3_mk_pattern
\sa Z3_mk_forall_const
def_API('Z3_mk_exists_const', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, APP), _in(UINT), _in_array(4, PATTERN), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_exists_const(
__in Z3_context c,
unsigned weight,
unsigned num_bound,
__in_ecount(num_bound) Z3_app const bound[],
unsigned num_patterns,
__in_ecount(num_patterns) Z3_pattern const patterns[],
__in Z3_ast body
);
/**
\brief Create a universal or existential
quantifier using a list of constants that
will form the set of bound variables.
def_API('Z3_mk_quantifier_const', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(UINT), _in_array(3, APP), _in(UINT), _in_array(5, PATTERN), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_quantifier_const(
__in Z3_context c,
Z3_bool is_forall,
unsigned weight,
unsigned num_bound, __in_ecount(num_bound) Z3_app const bound[],
unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[],
__in Z3_ast body
);
/**
\brief Create a universal or existential
quantifier using a list of constants that
will form the set of bound variables.
def_API('Z3_mk_quantifier_const_ex', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(5, APP), _in(UINT), _in_array(7, PATTERN), _in(UINT), _in_array(9, AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_quantifier_const_ex(
__in Z3_context c,
Z3_bool is_forall,
unsigned weight,
__in Z3_symbol quantifier_id,
__in Z3_symbol skolem_id,
unsigned num_bound, __in_ecount(num_bound) Z3_app const bound[],
unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[],
unsigned num_no_patterns, __in_ecount(num_no_patterns) Z3_ast const no_patterns[],
__in Z3_ast body
);
/*@}*/
/**
@name Accessors
*/
/*@{*/
/**
\mlonly {3 {L Symbols}} \endmlonly
*/
#ifdef ML4only
#include <mlx_symbol_refine.idl>
#endif
/**
\mlonly {4 {L Redundant low-level API}} \endmlonly
*/
/**
\brief Return \c Z3_INT_SYMBOL if the symbol was constructed
using #Z3_mk_int_symbol, and \c Z3_STRING_SYMBOL if the symbol
was constructed using #Z3_mk_string_symbol.
def_API('Z3_get_symbol_kind', UINT, (_in(CONTEXT), _in(SYMBOL)))
*/
Z3_symbol_kind Z3_API Z3_get_symbol_kind(__in Z3_context c, __in Z3_symbol s);
/**
\brief \mlh get_symbol_int c s \endmlh
Return the symbol int value.
\pre Z3_get_symbol_kind(s) == Z3_INT_SYMBOL
\sa Z3_mk_int_symbol
def_API('Z3_get_symbol_int', INT, (_in(CONTEXT), _in(SYMBOL)))
*/
int Z3_API Z3_get_symbol_int(__in Z3_context c, __in Z3_symbol s);
/**
\brief \mlh get_symbol_string c s \endmlh
Return the symbol name.
\pre Z3_get_symbol_string(s) == Z3_STRING_SYMBOL
\conly \warning The returned buffer is statically allocated by Z3. It will
\conly be automatically deallocated when #Z3_del_context is invoked.
\conly So, the buffer is invalidated in the next call to \c Z3_get_symbol_string.
\sa Z3_mk_string_symbol
def_API('Z3_get_symbol_string', STRING, (_in(CONTEXT), _in(SYMBOL)))
*/
Z3_string Z3_API Z3_get_symbol_string(__in Z3_context c, __in Z3_symbol s);
/**
\mlonly {3 {L Sorts}} \endmlonly
*/
#ifdef ML4only
#include <mlx_sort_refine.idl>
#endif
/**
\brief Return the sort name as a symbol.
def_API('Z3_get_sort_name', SYMBOL, (_in(CONTEXT), _in(SORT)))
*/
Z3_symbol Z3_API Z3_get_sort_name(__in Z3_context c, __in Z3_sort d);
/**
\brief Return a unique identifier for \c s.
\mlonly \remark Implicitly used by [Pervasives.( = )] and [Pervasives.compare]. \endmlonly
def_API('Z3_get_sort_id', UINT, (_in(CONTEXT), _in(SORT)))
*/
unsigned Z3_API Z3_get_sort_id(__in Z3_context c, Z3_sort s);
/**
\mlonly {4 {L Redundant low-level API}} \endmlonly
*/
/**
\brief Convert a \c Z3_sort into \c Z3_ast. \conly This is just type casting.
\mlonly \remark [sort_to_ast c s] can be replaced by [(s :> ast)]. \endmlonly
def_API('Z3_sort_to_ast', AST, (_in(CONTEXT), _in(SORT)))
*/
Z3_ast Z3_API Z3_sort_to_ast(__in Z3_context c, __in Z3_sort s);
/**
\brief compare sorts.
\mlonly \remark [Pervasives.( = )] or [Pervasives.compare] can also be used. \endmlonly
def_API('Z3_is_eq_sort', BOOL, (_in(CONTEXT), _in(SORT), _in(SORT)))
*/
Z3_bool Z3_API Z3_is_eq_sort(__in Z3_context c, __in Z3_sort s1, __in Z3_sort s2);
/**
\brief Return the sort kind (e.g., array, tuple, int, bool, etc).
\sa Z3_sort_kind
def_API('Z3_get_sort_kind', UINT, (_in(CONTEXT), _in(SORT)))
*/
Z3_sort_kind Z3_API Z3_get_sort_kind(__in Z3_context c, __in Z3_sort t);
/**
\brief \mlh get_bv_sort_size c t \endmlh
Return the size of the given bit-vector sort.
\pre Z3_get_sort_kind(c, t) == Z3_BV_SORT
\sa Z3_mk_bv_sort
\sa Z3_get_sort_kind
def_API('Z3_get_bv_sort_size', UINT, (_in(CONTEXT), _in(SORT)))
*/
unsigned Z3_API Z3_get_bv_sort_size(__in Z3_context c, __in Z3_sort t);
/**
\conly \brief Store the size of the sort in \c r. Return Z3_FALSE if the call failed.
\mlonly \brief Return the size of the sort in \c r. Return \c None if the call failed. \endmlonly
That is, Z3_get_sort_kind(s) == Z3_FINITE_DOMAIN_SORT
def_API('Z3_get_finite_domain_sort_size', BOOL, (_in(CONTEXT), _in(SORT), _out(UINT64)))
*/
Z3_bool_opt Z3_API Z3_get_finite_domain_sort_size(__in Z3_context c, __in Z3_sort s, __out_opt unsigned __int64* r);
/**
\brief \mlh get_array_sort_domain c t \endmlh
Return the domain of the given array sort.
\pre Z3_get_sort_kind(c, t) == Z3_ARRAY_SORT
\sa Z3_mk_array_sort
\sa Z3_get_sort_kind
def_API('Z3_get_array_sort_domain', SORT, (_in(CONTEXT), _in(SORT)))
*/
Z3_sort Z3_API Z3_get_array_sort_domain(__in Z3_context c, __in Z3_sort t);
/**
\brief \mlh get_array_sort_range c t \endmlh
Return the range of the given array sort.
\pre Z3_get_sort_kind(c, t) == Z3_ARRAY_SORT
\sa Z3_mk_array_sort
\sa Z3_get_sort_kind
def_API('Z3_get_array_sort_range', SORT, (_in(CONTEXT), _in(SORT)))
*/
Z3_sort Z3_API Z3_get_array_sort_range(__in Z3_context c, __in Z3_sort t);
/**
\brief \mlh get_tuple_sort_mk_decl c t \endmlh
Return the constructor declaration of the given tuple
sort.
\pre Z3_get_sort_kind(c, t) == Z3_DATATYPE_SORT
\sa Z3_mk_tuple_sort
\sa Z3_get_sort_kind
def_API('Z3_get_tuple_sort_mk_decl', FUNC_DECL, (_in(CONTEXT), _in(SORT)))
*/
Z3_func_decl Z3_API Z3_get_tuple_sort_mk_decl(__in Z3_context c, __in Z3_sort t);
/**
\brief \mlh get_tuple_sort_num_fields c t \endmlh
Return the number of fields of the given tuple sort.
\pre Z3_get_sort_kind(c, t) == Z3_DATATYPE_SORT
\sa Z3_mk_tuple_sort
\sa Z3_get_sort_kind
def_API('Z3_get_tuple_sort_num_fields', UINT, (_in(CONTEXT), _in(SORT)))
*/
unsigned Z3_API Z3_get_tuple_sort_num_fields(__in Z3_context c, __in Z3_sort t);
/**
\brief \mlh get_tuple_sort_field_decl c t i \endmlh
Return the i-th field declaration (i.e., projection function declaration)
of the given tuple sort.
\pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
\pre i < Z3_get_tuple_sort_num_fields(c, t)
\sa Z3_mk_tuple_sort
\sa Z3_get_sort_kind
def_API('Z3_get_tuple_sort_field_decl', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
*/
Z3_func_decl Z3_API Z3_get_tuple_sort_field_decl(__in Z3_context c, __in Z3_sort t, __in unsigned i);
/**
\brief Return number of constructors for datatype.
\pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
\sa Z3_get_datatype_sort_constructor
\sa Z3_get_datatype_sort_recognizer
\sa Z3_get_datatype_sort_constructor_accessor
def_API('Z3_get_datatype_sort_num_constructors', UINT, (_in(CONTEXT), _in(SORT)))
*/
unsigned Z3_API Z3_get_datatype_sort_num_constructors(
__in Z3_context c, __in Z3_sort t);
/**
\brief Return idx'th constructor.
\pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
\pre idx < Z3_get_datatype_sort_num_constructors(c, t)
\sa Z3_get_datatype_sort_num_constructors
\sa Z3_get_datatype_sort_recognizer
\sa Z3_get_datatype_sort_constructor_accessor
def_API('Z3_get_datatype_sort_constructor', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
*/
Z3_func_decl Z3_API Z3_get_datatype_sort_constructor(
__in Z3_context c, __in Z3_sort t, unsigned idx);
/**
\brief Return idx'th recognizer.
\pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
\pre idx < Z3_get_datatype_sort_num_constructors(c, t)
\sa Z3_get_datatype_sort_num_constructors
\sa Z3_get_datatype_sort_constructor
\sa Z3_get_datatype_sort_constructor_accessor
def_API('Z3_get_datatype_sort_recognizer', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
*/
Z3_func_decl Z3_API Z3_get_datatype_sort_recognizer(
__in Z3_context c, __in Z3_sort t, unsigned idx);
/**
\brief Return idx_a'th accessor for the idx_c'th constructor.
\pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
\pre idx_c < Z3_get_datatype_sort_num_constructors(c, t)
\pre idx_a < Z3_get_domain_size(c, Z3_get_datatype_sort_constructor(c, idx_c))
\sa Z3_get_datatype_sort_num_constructors
\sa Z3_get_datatype_sort_constructor
\sa Z3_get_datatype_sort_recognizer
def_API('Z3_get_datatype_sort_constructor_accessor', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT), _in(UINT)))
*/
Z3_func_decl Z3_API Z3_get_datatype_sort_constructor_accessor(
__in Z3_context c, __in Z3_sort t, unsigned idx_c, unsigned idx_a);
/**
\brief Update record field with a value.
This corresponds to the 'with' construct in OCaml.
It has the effect of updating a record field with a given value.
The remaining fields are left unchanged. It is the record
equivalent of an array store (see \sa Z3_mk_store).
If the datatype has more than one constructor, then the update function
behaves as identity if there is a miss-match between the accessor and
constructor. For example ((_ update-field car) nil 1) is nil,
while ((_ update-field car) (cons 2 nil) 1) is (cons 1 nil).
\pre Z3_get_sort_kind(Z3_get_sort(c, t)) == Z3_get_domain(c, field_access, 1) == Z3_DATATYPE_SORT
\pre Z3_get_sort(c, value) == Z3_get_range(c, field_access)
def_API('Z3_datatype_update_field', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_datatype_update_field(
__in Z3_context c, __in Z3_func_decl field_access,
__in Z3_ast t, __in Z3_ast value);
/**
\brief Return arity of relation.
\pre Z3_get_sort_kind(s) == Z3_RELATION_SORT
\sa Z3_get_relation_column
def_API('Z3_get_relation_arity', UINT, (_in(CONTEXT), _in(SORT)))
*/
unsigned Z3_API Z3_get_relation_arity(__in Z3_context c, __in Z3_sort s);
/**
\brief Return sort at i'th column of relation sort.
\pre Z3_get_sort_kind(c, s) == Z3_RELATION_SORT
\pre col < Z3_get_relation_arity(c, s)
\sa Z3_get_relation_arity
def_API('Z3_get_relation_column', SORT, (_in(CONTEXT), _in(SORT), _in(UINT)))
*/
Z3_sort Z3_API Z3_get_relation_column(__in Z3_context c, __in Z3_sort s, unsigned col);
/**
\brief Pseudo-Boolean relations.
Encode p1 + p2 + ... + pn <= k
def_API('Z3_mk_atmost', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in(UINT)))
*/
Z3_ast Z3_API Z3_mk_atmost(__in Z3_context c, __in unsigned num_args,
__in_ecount(num_args) Z3_ast const args[], __in unsigned k);
/**
\brief Pseudo-Boolean relations.
Encode k1*p1 + k2*p2 + ... + kn*pn <= k
def_API('Z3_mk_pble', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in_array(1,INT), _in(INT)))
*/
Z3_ast Z3_API Z3_mk_pble(__in Z3_context c, __in unsigned num_args,
__in_ecount(num_args) Z3_ast const args[], __in_ecount(num_args) int coeffs[],
__in int k);
/**
\mlonly {3 {L Function Declarations}} \endmlonly
*/
/**
\brief Convert a \c Z3_func_decl into \c Z3_ast. \conly This is just type casting.
\mlonly \remark [func_decl_to_ast c f] can be replaced by [(f :> ast)]. \endmlonly
def_API('Z3_func_decl_to_ast', AST, (_in(CONTEXT), _in(FUNC_DECL)))
*/
Z3_ast Z3_API Z3_func_decl_to_ast(__in Z3_context c, __in Z3_func_decl f);
/**
\brief compare terms.
\mlonly \remark [Pervasives.( = )] or [Pervasives.compare] can also be used. \endmlonly
def_API('Z3_is_eq_func_decl', BOOL, (_in(CONTEXT), _in(FUNC_DECL), _in(FUNC_DECL)))
*/
Z3_bool Z3_API Z3_is_eq_func_decl(__in Z3_context c, __in Z3_func_decl f1, Z3_func_decl f2);
/**
\brief Return a unique identifier for \c f.
\mlonly \remark Implicitly used by [Pervasives.( = )] and [Pervasives.compare]. \endmlonly
def_API('Z3_get_func_decl_id', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
*/
unsigned Z3_API Z3_get_func_decl_id(__in Z3_context c, Z3_func_decl f);
/**
\brief Return the constant declaration name as a symbol.
def_API('Z3_get_decl_name', SYMBOL, (_in(CONTEXT), _in(FUNC_DECL)))
*/
Z3_symbol Z3_API Z3_get_decl_name(__in Z3_context c, __in Z3_func_decl d);
/**
\brief Return declaration kind corresponding to declaration.
def_API('Z3_get_decl_kind', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
*/
Z3_decl_kind Z3_API Z3_get_decl_kind(__in Z3_context c, __in Z3_func_decl d);
/**
\brief Return the number of parameters of the given declaration.
\sa Z3_get_arity
def_API('Z3_get_domain_size', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
*/
unsigned Z3_API Z3_get_domain_size(__in Z3_context c, __in Z3_func_decl d);
/**
\brief Alias for \c Z3_get_domain_size.
\sa Z3_get_domain_size
def_API('Z3_get_arity', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
*/
unsigned Z3_API Z3_get_arity(__in Z3_context c, __in Z3_func_decl d);
/**
\brief \mlh get_domain c d i \endmlh
Return the sort of the i-th parameter of the given function declaration.
\pre i < Z3_get_domain_size(d)
\sa Z3_get_domain_size
def_API('Z3_get_domain', SORT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
*/
Z3_sort Z3_API Z3_get_domain(__in Z3_context c, __in Z3_func_decl d, __in unsigned i);
#ifdef ML4only
#include <mlx_get_domains.idl>
#endif
/**
\brief \mlh get_range c d \endmlh
Return the range of the given declaration.
If \c d is a constant (i.e., has zero arguments), then this
function returns the sort of the constant.
def_API('Z3_get_range', SORT, (_in(CONTEXT), _in(FUNC_DECL)))
*/
Z3_sort Z3_API Z3_get_range(__in Z3_context c, __in Z3_func_decl d);
/**
\brief Return the number of parameters associated with a declaration.
def_API('Z3_get_decl_num_parameters', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
*/
unsigned Z3_API Z3_get_decl_num_parameters(__in Z3_context c, __in Z3_func_decl d);
/**
\brief Return the parameter type associated with a declaration.
\param c the context
\param d the function declaration
\param idx is the index of the named parameter it should be between 0 and the number of parameters.
def_API('Z3_get_decl_parameter_kind', UINT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
*/
Z3_parameter_kind Z3_API Z3_get_decl_parameter_kind(__in Z3_context c, __in Z3_func_decl d, unsigned idx);
/**
\brief Return the integer value associated with an integer parameter.
\pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_INT
def_API('Z3_get_decl_int_parameter', INT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
*/
int Z3_API Z3_get_decl_int_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);
/**
\brief Return the double value associated with an double parameter.
\pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_DOUBLE
def_API('Z3_get_decl_double_parameter', DOUBLE, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
*/
double Z3_API Z3_get_decl_double_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);
/**
\brief Return the double value associated with an double parameter.
\pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_SYMBOL
def_API('Z3_get_decl_symbol_parameter', SYMBOL, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
*/
Z3_symbol Z3_API Z3_get_decl_symbol_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);
/**
\brief Return the sort value associated with a sort parameter.
\pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_SORT
def_API('Z3_get_decl_sort_parameter', SORT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
*/
Z3_sort Z3_API Z3_get_decl_sort_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);
/**
\brief Return the expresson value associated with an expression parameter.
\pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_AST
def_API('Z3_get_decl_ast_parameter', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_decl_ast_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);
/**
\brief Return the expresson value associated with an expression parameter.
\pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_FUNC_DECL
def_API('Z3_get_decl_func_decl_parameter', FUNC_DECL, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
*/
Z3_func_decl Z3_API Z3_get_decl_func_decl_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);
/**
\brief Return the rational value, as a string, associated with a rational parameter.
\pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_RATIONAL
def_API('Z3_get_decl_rational_parameter', STRING, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
*/
Z3_string Z3_API Z3_get_decl_rational_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);
/**
\mlonly {3 {L Applications}} \endmlonly
*/
/**
\brief Convert a \c Z3_app into \c Z3_ast. \conly This is just type casting.
\mlonly \remark [app_to_ast c a] can be replaced by [(a :> ast)]. \endmlonly
def_API('Z3_app_to_ast', AST, (_in(CONTEXT), _in(APP)))
*/
Z3_ast Z3_API Z3_app_to_ast(__in Z3_context c, __in Z3_app a);
/**
\brief Return the declaration of a constant or function application.
def_API('Z3_get_app_decl', FUNC_DECL, (_in(CONTEXT), _in(APP)))
*/
Z3_func_decl Z3_API Z3_get_app_decl(__in Z3_context c, __in Z3_app a);
/**
\brief \mlh get_app_num_args c a \endmlh
Return the number of argument of an application. If \c t
is an constant, then the number of arguments is 0.
def_API('Z3_get_app_num_args', UINT, (_in(CONTEXT), _in(APP)))
*/
unsigned Z3_API Z3_get_app_num_args(__in Z3_context c, __in Z3_app a);
/**
\brief \mlh get_app_arg c a i \endmlh
Return the i-th argument of the given application.
\pre i < Z3_get_num_args(c, a)
def_API('Z3_get_app_arg', AST, (_in(CONTEXT), _in(APP), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_app_arg(__in Z3_context c, __in Z3_app a, __in unsigned i);
#ifdef ML4only
#include <mlx_get_app_args.idl>
#endif
/**
\mlonly {3 {L Terms}} \endmlonly
*/
#ifdef ML4only
#include <mlx_term_refine.idl>
#endif
/**
\brief compare terms.
\mlonly \remark [Pervasives.( = )] or [Pervasives.compare] can also be used. \endmlonly
def_API('Z3_is_eq_ast', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_bool Z3_API Z3_is_eq_ast(__in Z3_context c, __in Z3_ast t1, Z3_ast t2);
/**
\brief Return a unique identifier for \c t.
The identifier is unique up to structural equality. Thus, two ast nodes
created by the same context and having the same children and same function symbols
have the same identifiers. Ast nodes created in the same context, but having
different children or different functions have different identifiers.
Variables and quantifiers are also assigned different identifiers according to
their structure.
\mlonly \remark Implicitly used by [Pervasives.compare] for values of type [ast], [app], [sort], [func_decl], and [pattern]. \endmlonly
def_API('Z3_get_ast_id', UINT, (_in(CONTEXT), _in(AST)))
*/
unsigned Z3_API Z3_get_ast_id(__in Z3_context c, Z3_ast t);
/**
\brief Return a hash code for the given AST.
The hash code is structural. You can use Z3_get_ast_id interchangably with
this function.
\mlonly \remark Implicitly used by [Hashtbl.hash] for values of type [ast], [app], [sort], [func_decl], and [pattern]. \endmlonly
def_API('Z3_get_ast_hash', UINT, (_in(CONTEXT), _in(AST)))
*/
unsigned Z3_API Z3_get_ast_hash(__in Z3_context c, __in Z3_ast a);
/**
\brief Return the sort of an AST node.
The AST node must be a constant, application, numeral, bound variable, or quantifier.
def_API('Z3_get_sort', SORT, (_in(CONTEXT), _in(AST)))
*/
Z3_sort Z3_API Z3_get_sort(__in Z3_context c, __in Z3_ast a);
/**
\brief Return true if the given expression \c t is well sorted.
def_API('Z3_is_well_sorted', BOOL, (_in(CONTEXT), _in(AST)))
*/
Z3_bool Z3_API Z3_is_well_sorted(__in Z3_context c, __in Z3_ast t);
/**
\brief Return Z3_L_TRUE if \c a is true, Z3_L_FALSE if it is false, and Z3_L_UNDEF otherwise.
def_API('Z3_get_bool_value', UINT, (_in(CONTEXT), _in(AST)))
*/
Z3_lbool Z3_API Z3_get_bool_value(__in Z3_context c, __in Z3_ast a);
/**
\brief Return the kind of the given AST.
def_API('Z3_get_ast_kind', UINT, (_in(CONTEXT), _in(AST)))
*/
Z3_ast_kind Z3_API Z3_get_ast_kind(__in Z3_context c, __in Z3_ast a);
/**
def_API('Z3_is_app', BOOL, (_in(CONTEXT), _in(AST)))
*/
Z3_bool Z3_API Z3_is_app(__in Z3_context c, __in Z3_ast a);
/**
def_API('Z3_is_numeral_ast', BOOL, (_in(CONTEXT), _in(AST)))
*/
Z3_bool Z3_API Z3_is_numeral_ast(__in Z3_context c, __in Z3_ast a);
/**
\brief Return true if the give AST is a real algebraic number.
def_API('Z3_is_algebraic_number', BOOL, (_in(CONTEXT), _in(AST)))
*/
Z3_bool Z3_API Z3_is_algebraic_number(__in Z3_context c, __in Z3_ast a);
/**
\brief Convert an \c ast into an \c APP_AST. \conly This is just type casting.
\pre \code Z3_get_ast_kind(c, a) == \c Z3_APP_AST \endcode
def_API('Z3_to_app', APP, (_in(CONTEXT), _in(AST)))
*/
Z3_app Z3_API Z3_to_app(__in Z3_context c, __in Z3_ast a);
/**
\brief Convert an AST into a FUNC_DECL_AST. This is just type casting.
\pre \code Z3_get_ast_kind(c, a) == Z3_FUNC_DECL_AST \endcode
def_API('Z3_to_func_decl', FUNC_DECL, (_in(CONTEXT), _in(AST)))
*/
Z3_func_decl Z3_API Z3_to_func_decl(__in Z3_context c, __in Z3_ast a);
/**
\mlonly {4 {L Numerals}} \endmlonly
*/
#ifdef ML4only
#include <mlx_numeral_refine.idl>
#endif
/**
\mlonly {5 {L Low-level API}} \endmlonly
*/
/**
\brief Return numeral value, as a string of a numeric constant term
\pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST
def_API('Z3_get_numeral_string', STRING, (_in(CONTEXT), _in(AST)))
*/
Z3_string Z3_API Z3_get_numeral_string(__in Z3_context c, __in Z3_ast a);
/**
\brief Return numeral as a string in decimal notation.
The result has at most \c precision decimal places.
\pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST || Z3_is_algebraic_number(c, a)
def_API('Z3_get_numeral_decimal_string', STRING, (_in(CONTEXT), _in(AST), _in(UINT)))
*/
Z3_string Z3_API Z3_get_numeral_decimal_string(__in Z3_context c, __in Z3_ast a, __in unsigned precision);
/**
\brief Return the numerator (as a numeral AST) of a numeral AST of sort Real.
\pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST
def_API('Z3_get_numerator', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_get_numerator(__in Z3_context c, __in Z3_ast a);
/**
\brief Return the denominator (as a numeral AST) of a numeral AST of sort Real.
\pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST
def_API('Z3_get_denominator', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_get_denominator(__in Z3_context c, __in Z3_ast a);
/**
\brief Return numeral value, as a pair of 64 bit numbers if the representation fits.
\param c logical context.
\param a term.
\param num numerator.
\param den denominator.
Return \c Z3_TRUE if the numeral value fits in 64 bit numerals, \c Z3_FALSE otherwise.
\pre Z3_get_ast_kind(a) == Z3_NUMERAL_AST
def_API('Z3_get_numeral_small', BOOL, (_in(CONTEXT), _in(AST), _out(INT64), _out(INT64)))
*/
Z3_bool Z3_API Z3_get_numeral_small(__in Z3_context c, __in Z3_ast a, __out __int64* num, __out __int64* den);
/**
\brief \mlh get_numeral_int c v \endmlh
Similar to #Z3_get_numeral_string, but only succeeds if
the value can fit in a machine int. Return Z3_TRUE if the call succeeded.
\pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
\sa Z3_get_numeral_string
def_API('Z3_get_numeral_int', BOOL, (_in(CONTEXT), _in(AST), _out(INT)))
*/
Z3_bool Z3_API Z3_get_numeral_int(__in Z3_context c, __in Z3_ast v, __out int* i);
#ifdef Conly
/**
\brief \mlh get_numeral_uint c v \endmlh
Similar to #Z3_get_numeral_string, but only succeeds if
the value can fit in a machine unsigned int. Return Z3_TRUE if the call succeeded.
\pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
\sa Z3_get_numeral_string
def_API('Z3_get_numeral_uint', BOOL, (_in(CONTEXT), _in(AST), _out(UINT)))
*/
Z3_bool Z3_API Z3_get_numeral_uint(__in Z3_context c, __in Z3_ast v, __out unsigned* u);
#endif
#ifdef Conly
/**
\brief \mlh get_numeral_uint64 c v \endmlh
Similar to #Z3_get_numeral_string, but only succeeds if
the value can fit in a machine unsigned __int64 int. Return Z3_TRUE if the call succeeded.
\pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
\sa Z3_get_numeral_string
def_API('Z3_get_numeral_uint64', BOOL, (_in(CONTEXT), _in(AST), _out(UINT64)))
*/
Z3_bool Z3_API Z3_get_numeral_uint64(__in Z3_context c, __in Z3_ast v, __out unsigned __int64* u);
#endif
/**
\brief \mlh get_numeral_int64 c v \endmlh
Similar to #Z3_get_numeral_string, but only succeeds if
the value can fit in a machine __int64 int. Return Z3_TRUE if the call succeeded.
\pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
\sa Z3_get_numeral_string
def_API('Z3_get_numeral_int64', BOOL, (_in(CONTEXT), _in(AST), _out(INT64)))
*/
Z3_bool Z3_API Z3_get_numeral_int64(__in Z3_context c, __in Z3_ast v, __out __int64* i);
/**
\brief \mlh get_numeral_rational_int64 c x y\endmlh
Similar to #Z3_get_numeral_string, but only succeeds if
the value can fit as a rational number as machine __int64 int. Return Z3_TRUE if the call succeeded.
\pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
\sa Z3_get_numeral_string
def_API('Z3_get_numeral_rational_int64', BOOL, (_in(CONTEXT), _in(AST), _out(INT64), _out(INT64)))
*/
Z3_bool Z3_API Z3_get_numeral_rational_int64(__in Z3_context c, __in Z3_ast v, __out __int64* num, __out __int64* den);
/**
\brief Return a lower bound for the given real algebraic number.
The interval isolating the number is smaller than 1/10^precision.
The result is a numeral AST of sort Real.
\pre Z3_is_algebraic_number(c, a)
def_API('Z3_get_algebraic_number_lower', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_algebraic_number_lower(__in Z3_context c, __in Z3_ast a, __in unsigned precision);
/**
\brief Return a upper bound for the given real algebraic number.
The interval isolating the number is smaller than 1/10^precision.
The result is a numeral AST of sort Real.
\pre Z3_is_algebraic_number(c, a)
def_API('Z3_get_algebraic_number_upper', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision);
/**
\mlonly {4 {L Patterns}} \endmlonly
*/
/**
\brief Convert a Z3_pattern into Z3_ast. \conly This is just type casting.
\mlonly \remark [pattern_to_ast c p] can be replaced by [(p :> ast)]. \endmlonly
def_API('Z3_pattern_to_ast', AST, (_in(CONTEXT), _in(PATTERN)))
*/
Z3_ast Z3_API Z3_pattern_to_ast(__in Z3_context c, __in Z3_pattern p);
#ifdef ML4only
#include <mlx_get_pattern_terms.idl>
#endif
/**
\brief Return number of terms in pattern.
def_API('Z3_get_pattern_num_terms', UINT, (_in(CONTEXT), _in(PATTERN)))
*/
unsigned Z3_API Z3_get_pattern_num_terms(__in Z3_context c, __in Z3_pattern p);
/**
\brief Return i'th ast in pattern.
def_API('Z3_get_pattern', AST, (_in(CONTEXT), _in(PATTERN), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_pattern(__in Z3_context c, __in Z3_pattern p, __in unsigned idx);
/**
\mlonly {4 {L Quantifiers}} \endmlonly
*/
/**
\brief Return index of de-Brujin bound variable.
\pre Z3_get_ast_kind(a) == Z3_VAR_AST
def_API('Z3_get_index_value', UINT, (_in(CONTEXT), _in(AST)))
*/
unsigned Z3_API Z3_get_index_value(__in Z3_context c, __in Z3_ast a);
/**
\brief Determine if quantifier is universal.
\pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
def_API('Z3_is_quantifier_forall', BOOL, (_in(CONTEXT), _in(AST)))
*/
Z3_bool Z3_API Z3_is_quantifier_forall(__in Z3_context c, __in Z3_ast a);
/**
\brief Obtain weight of quantifier.
\pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
def_API('Z3_get_quantifier_weight', UINT, (_in(CONTEXT), _in(AST)))
*/
unsigned Z3_API Z3_get_quantifier_weight(__in Z3_context c, __in Z3_ast a);
/**
\brief Return number of patterns used in quantifier.
\pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
def_API('Z3_get_quantifier_num_patterns', UINT, (_in(CONTEXT), _in(AST)))
*/
unsigned Z3_API Z3_get_quantifier_num_patterns(__in Z3_context c, __in Z3_ast a);
/**
\brief Return i'th pattern.
\pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
def_API('Z3_get_quantifier_pattern_ast', PATTERN, (_in(CONTEXT), _in(AST), _in(UINT)))
*/
Z3_pattern Z3_API Z3_get_quantifier_pattern_ast(__in Z3_context c, __in Z3_ast a, unsigned i);
/**
\brief Return number of no_patterns used in quantifier.
\pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
def_API('Z3_get_quantifier_num_no_patterns', UINT, (_in(CONTEXT), _in(AST)))
*/
unsigned Z3_API Z3_get_quantifier_num_no_patterns(__in Z3_context c, __in Z3_ast a);
/**
\brief Return i'th no_pattern.
\pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
def_API('Z3_get_quantifier_no_pattern_ast', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_quantifier_no_pattern_ast(__in Z3_context c, __in Z3_ast a, unsigned i);
/**
\brief Return number of bound variables of quantifier.
\pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
def_API('Z3_get_quantifier_num_bound', UINT, (_in(CONTEXT), _in(AST)))
*/
unsigned Z3_API Z3_get_quantifier_num_bound(__in Z3_context c, __in Z3_ast a);
/**
\brief Return symbol of the i'th bound variable.
\pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
def_API('Z3_get_quantifier_bound_name', SYMBOL, (_in(CONTEXT), _in(AST), _in(UINT)))
*/
Z3_symbol Z3_API Z3_get_quantifier_bound_name(__in Z3_context c, __in Z3_ast a, unsigned i);
/**
\brief Return sort of the i'th bound variable.
\pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
def_API('Z3_get_quantifier_bound_sort', SORT, (_in(CONTEXT), _in(AST), _in(UINT)))
*/
Z3_sort Z3_API Z3_get_quantifier_bound_sort(__in Z3_context c, __in Z3_ast a, unsigned i);
/**
\brief Return body of quantifier.
\pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
def_API('Z3_get_quantifier_body', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_get_quantifier_body(__in Z3_context c, __in Z3_ast a);
/**
\mlonly {3 {L Simplification}} \endmlonly
*/
/**
\brief Interface to simplifier.
Provides an interface to the AST simplifier used by Z3.
def_API('Z3_simplify', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_simplify(__in Z3_context c, __in Z3_ast a);
#ifdef CorML4
/**
\brief Interface to simplifier.
Provides an interface to the AST simplifier used by Z3.
This procedure is similar to #Z3_simplify, but the behavior of the simplifier
can be configured using the given parameter set.
def_API('Z3_simplify_ex', AST, (_in(CONTEXT), _in(AST), _in(PARAMS)))
*/
Z3_ast Z3_API Z3_simplify_ex(__in Z3_context c, __in Z3_ast a, __in Z3_params p);
/**
\brief Return a string describing all available parameters.
def_API('Z3_simplify_get_help', STRING, (_in(CONTEXT),))
*/
Z3_string Z3_API Z3_simplify_get_help(__in Z3_context c);
/**
\brief Return the parameter description set for the simplify procedure.
def_API('Z3_simplify_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT),))
*/
Z3_param_descrs Z3_API Z3_simplify_get_param_descrs(__in Z3_context c);
#endif
/*@}*/
/**
@name Modifiers
*/
/*@{*/
/**
\brief Update the arguments of term \c a using the arguments \c args.
The number of arguments \c num_args should coincide
with the number of arguments to \c a.
If \c a is a quantifier, then num_args has to be 1.
def_API('Z3_update_term', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
*/
Z3_ast Z3_API Z3_update_term(__in Z3_context c, __in Z3_ast a, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
/**
\brief Substitute every occurrence of <tt>from[i]</tt> in \c a with <tt>to[i]</tt>, for \c i smaller than \c num_exprs.
The result is the new AST. The arrays \c from and \c to must have size \c num_exprs.
For every \c i smaller than \c num_exprs, we must have that sort of <tt>from[i]</tt> must be equal to sort of <tt>to[i]</tt>.
def_API('Z3_substitute', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST), _in_array(2, AST)))
*/
Z3_ast Z3_API Z3_substitute(__in Z3_context c,
__in Z3_ast a,
__in unsigned num_exprs,
__in_ecount(num_exprs) Z3_ast const from[],
__in_ecount(num_exprs) Z3_ast const to[]);
/**
\brief Substitute the free variables in \c a with the expressions in \c to.
For every \c i smaller than \c num_exprs, the variable with de-Bruijn index \c i is replaced with term <tt>to[i]</tt>.
def_API('Z3_substitute_vars', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
*/
Z3_ast Z3_API Z3_substitute_vars(__in Z3_context c,
__in Z3_ast a,
__in unsigned num_exprs,
__in_ecount(num_exprs) Z3_ast const to[]);
#ifdef CorML4
/**
\brief Translate/Copy the AST \c a from context \c source to context \c target.
AST \c a must have been created using context \c source.
\pre source != target
def_API('Z3_translate', AST, (_in(CONTEXT), _in(AST), _in(CONTEXT)))
*/
Z3_ast Z3_API Z3_translate(__in Z3_context source, __in Z3_ast a, __in Z3_context target);
#endif
/*@}*/
#ifdef CorML4
/**
@name Models
*/
/*@{*/
#ifdef ML4only
#include <mlx_model.idl>
#endif
#ifdef Conly
/**
\brief Increment the reference counter of the given model.
def_API('Z3_model_inc_ref', VOID, (_in(CONTEXT), _in(MODEL)))
*/
void Z3_API Z3_model_inc_ref(__in Z3_context c, __in Z3_model m);
/**
\brief Decrement the reference counter of the given model.
def_API('Z3_model_dec_ref', VOID, (_in(CONTEXT), _in(MODEL)))
*/
void Z3_API Z3_model_dec_ref(__in Z3_context c, __in Z3_model m);
#endif
/**
\brief \mlh model_eval c m t \endmlh
Evaluate the AST node \c t in the given model.
\conly Return \c Z3_TRUE if succeeded, and store the result in \c v.
\mlonly Return \c None if the term was not successfully evaluated. \endmlonly
If \c model_completion is Z3_TRUE, then Z3 will assign an interpretation for any constant or function that does
not have an interpretation in \c m. These constants and functions were essentially don't cares.
The evaluation may fail for the following reasons:
- \c t contains a quantifier.
- the model \c m is partial, that is, it doesn't have a complete interpretation for uninterpreted functions.
That is, the option <tt>MODEL_PARTIAL=true</tt> was used.
- \c t is type incorrect.
def_API('Z3_model_eval', BOOL, (_in(CONTEXT), _in(MODEL), _in(AST), _in(BOOL), _out(AST)))
*/
Z3_bool_opt Z3_API Z3_model_eval(__in Z3_context c, __in Z3_model m, __in Z3_ast t, __in Z3_bool model_completion, __out_opt Z3_ast * v);
/**
\mlonly {4 {L Low-level API}} \endmlonly
*/
/**
\brief Return the interpretation (i.e., assignment) of constant \c a in the model \c m.
Return \mlonly [None], \endmlonly \conly \c NULL,
if the model does not assign an interpretation for \c a.
That should be interpreted as: the value of \c a does not matter.
\pre Z3_get_arity(c, a) == 0
def_API('Z3_model_get_const_interp', AST, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
*/
Z3_ast_opt Z3_API Z3_model_get_const_interp(__in Z3_context c, __in Z3_model m, __in Z3_func_decl a);
/**
\brief Test if there exists an interpretation (i.e., assignment) for \c a in the model \c m.
def_API('Z3_model_has_interp', BOOL, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
*/
Z3_bool Z3_API Z3_model_has_interp(__in Z3_context c, __in Z3_model m, __in Z3_func_decl a);
/**
\brief Return the interpretation of the function \c f in the model \c m.
Return \mlonly [None], \endmlonly \conly \c NULL,
if the model does not assign an interpretation for \c f.
That should be interpreted as: the \c f does not matter.
\pre Z3_get_arity(c, f) > 0
\conly \remark Reference counting must be used to manage Z3_func_interp objects, even when the Z3_context was
\conly created using #Z3_mk_context instead of #Z3_mk_context_rc.
def_API('Z3_model_get_func_interp', FUNC_INTERP, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
*/
Z3_func_interp_opt Z3_API Z3_model_get_func_interp(__in Z3_context c, __in Z3_model m, __in Z3_func_decl f);
/**
\brief Return the number of constants assigned by the given model.
\sa Z3_model_get_const_decl
def_API('Z3_model_get_num_consts', UINT, (_in(CONTEXT), _in(MODEL)))
*/
unsigned Z3_API Z3_model_get_num_consts(__in Z3_context c, __in Z3_model m);
/**
\brief \mlh model_get_const_decl c m i \endmlh
Return the i-th constant in the given model.
\pre i < Z3_model_get_num_consts(c, m)
\sa Z3_model_eval
def_API('Z3_model_get_const_decl', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
*/
Z3_func_decl Z3_API Z3_model_get_const_decl(__in Z3_context c, __in Z3_model m, __in unsigned i);
/**
\brief Return the number of function interpretations in the given model.
A function interpretation is represented as a finite map and an 'else' value.
Each entry in the finite map represents the value of a function given a set of arguments.
def_API('Z3_model_get_num_funcs', UINT, (_in(CONTEXT), _in(MODEL)))
*/
unsigned Z3_API Z3_model_get_num_funcs(__in Z3_context c, __in Z3_model m);
/**
\brief \mlh model_get_func_decl c m i \endmlh
Return the declaration of the i-th function in the given model.
\pre i < Z3_model_get_num_funcs(c, m)
\sa Z3_model_get_num_funcs
def_API('Z3_model_get_func_decl', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
*/
Z3_func_decl Z3_API Z3_model_get_func_decl(__in Z3_context c, __in Z3_model m, __in unsigned i);
/**
\brief Return the number of uninterpreted sorts that \c m assigs an interpretation to.
Z3 also provides an intepretation for uninterpreted sorts used in a formua.
The interpretation for a sort \c s is a finite set of distinct values. We say this finite set is
the "universe" of \c s.
\sa Z3_model_get_sort
\sa Z3_model_get_sort_universe
def_API('Z3_model_get_num_sorts', UINT, (_in(CONTEXT), _in(MODEL)))
*/
unsigned Z3_API Z3_model_get_num_sorts(__in Z3_context c, __in Z3_model m);
/**
\brief Return a uninterpreted sort that \c m assigns an interpretation.
\pre i < Z3_model_get_num_sorts(c, m)
\sa Z3_model_get_num_sorts
\sa Z3_model_get_sort_universe
def_API('Z3_model_get_sort', SORT, (_in(CONTEXT), _in(MODEL), _in(UINT)))
*/
Z3_sort Z3_API Z3_model_get_sort(__in Z3_context c, __in Z3_model m, __in unsigned i);
/**
\brief Return the finite set of distinct values that represent the interpretation for sort \c s.
\sa Z3_model_get_num_sorts
\sa Z3_model_get_sort
def_API('Z3_model_get_sort_universe', AST_VECTOR, (_in(CONTEXT), _in(MODEL), _in(SORT)))
*/
Z3_ast_vector Z3_API Z3_model_get_sort_universe(__in Z3_context c, __in Z3_model m, __in Z3_sort s);
/**
\brief The <tt>(_ as-array f)</tt> AST node is a construct for assigning interpretations for arrays in Z3.
It is the array such that forall indices \c i we have that <tt>(select (_ as-array f) i)</tt> is equal to <tt>(f i)</tt>.
This procedure returns Z3_TRUE if the \c a is an \c as-array AST node.
Z3 current solvers have minimal support for \c as_array nodes.
\sa Z3_get_as_array_func_decl
def_API('Z3_is_as_array', BOOL, (_in(CONTEXT), _in(AST)))
*/
Z3_bool Z3_API Z3_is_as_array(__in Z3_context c, __in Z3_ast a);
/**
\brief Return the function declaration \c f associated with a <tt>(_ as_array f)</tt> node.
\sa Z3_is_as_array
def_API('Z3_get_as_array_func_decl', FUNC_DECL, (_in(CONTEXT), _in(AST)))
*/
Z3_func_decl Z3_API Z3_get_as_array_func_decl(__in Z3_context c, __in Z3_ast a);
#ifdef Conly
/**
\brief Increment the reference counter of the given Z3_func_interp object.
def_API('Z3_func_interp_inc_ref', VOID, (_in(CONTEXT), _in(FUNC_INTERP)))
*/
void Z3_API Z3_func_interp_inc_ref(__in Z3_context c, __in Z3_func_interp f);
/**
\brief Decrement the reference counter of the given Z3_func_interp object.
def_API('Z3_func_interp_dec_ref', VOID, (_in(CONTEXT), _in(FUNC_INTERP)))
*/
void Z3_API Z3_func_interp_dec_ref(__in Z3_context c, __in Z3_func_interp f);
#endif
/**
\brief Return the number of entries in the given function interpretation.
A function interpretation is represented as a finite map and an 'else' value.
Each entry in the finite map represents the value of a function given a set of arguments.
This procedure return the number of element in the finite map of \c f.
def_API('Z3_func_interp_get_num_entries', UINT, (_in(CONTEXT), _in(FUNC_INTERP)))
*/
unsigned Z3_API Z3_func_interp_get_num_entries(__in Z3_context c, __in Z3_func_interp f);
/**
\brief Return a "point" of the given function intepretation. It represents the
value of \c f in a particular point.
\pre i < Z3_func_interp_get_num_entries(c, f)
\sa Z3_func_interp_get_num_entries
def_API('Z3_func_interp_get_entry', FUNC_ENTRY, (_in(CONTEXT), _in(FUNC_INTERP), _in(UINT)))
*/
Z3_func_entry Z3_API Z3_func_interp_get_entry(__in Z3_context c, __in Z3_func_interp f, unsigned i);
/**
\brief Return the 'else' value of the given function interpretation.
A function interpretation is represented as a finite map and an 'else' value.
This procedure returns the 'else' value.
def_API('Z3_func_interp_get_else', AST, (_in(CONTEXT), _in(FUNC_INTERP)))
*/
Z3_ast Z3_API Z3_func_interp_get_else(__in Z3_context c, __in Z3_func_interp f);
/**
\brief Return the arity (number of arguments) of the given function interpretation.
def_API('Z3_func_interp_get_arity', UINT, (_in(CONTEXT), _in(FUNC_INTERP)))
*/
unsigned Z3_API Z3_func_interp_get_arity(__in Z3_context c, __in Z3_func_interp f);
#ifdef Conly
/**
\brief Increment the reference counter of the given Z3_func_entry object.
def_API('Z3_func_entry_inc_ref', VOID, (_in(CONTEXT), _in(FUNC_ENTRY)))
*/
void Z3_API Z3_func_entry_inc_ref(__in Z3_context c, __in Z3_func_entry e);
/**
\brief Decrement the reference counter of the given Z3_func_entry object.
def_API('Z3_func_entry_dec_ref', VOID, (_in(CONTEXT), _in(FUNC_ENTRY)))
*/
void Z3_API Z3_func_entry_dec_ref(__in Z3_context c, __in Z3_func_entry e);
#endif
/**
\brief Return the value of this point.
A Z3_func_entry object represents an element in the finite map used to encode
a function interpretation.
\sa Z3_func_interp_get_entry
def_API('Z3_func_entry_get_value', AST, (_in(CONTEXT), _in(FUNC_ENTRY)))
*/
Z3_ast Z3_API Z3_func_entry_get_value(__in Z3_context c, __in Z3_func_entry e);
/**
\brief Return the number of arguments in a Z3_func_entry object.
\sa Z3_func_interp_get_entry
def_API('Z3_func_entry_get_num_args', UINT, (_in(CONTEXT), _in(FUNC_ENTRY)))
*/
unsigned Z3_API Z3_func_entry_get_num_args(__in Z3_context c, __in Z3_func_entry e);
/**
\brief Return an argument of a Z3_func_entry object.
\pre i < Z3_func_entry_get_num_args(c, e)
\sa Z3_func_interp_get_entry
def_API('Z3_func_entry_get_arg', AST, (_in(CONTEXT), _in(FUNC_ENTRY), _in(UINT)))
*/
Z3_ast Z3_API Z3_func_entry_get_arg(__in Z3_context c, __in Z3_func_entry e, __in unsigned i);
/*@}*/
#endif // CorML4
/**
@name Interaction logging.
*/
/*@{*/
/**
\brief Log interaction to a file.
extra_API('Z3_open_log', INT, (_in(STRING),))
*/
Z3_bool Z3_API Z3_open_log(__in Z3_string filename);
/**
\brief Append user-defined string to interaction log.
The interaction log is opened using Z3_open_log.
It contains the formulas that are checked using Z3.
You can use this command to append comments, for instance.
extra_API('Z3_append_log', VOID, (_in(STRING),))
*/
void Z3_API Z3_append_log(__in Z3_string string);
/**
\brief Close interaction log.
extra_API('Z3_close_log', VOID, ())
*/
void Z3_API Z3_close_log(void);
/**
\brief Enable/disable printing warning messages to the console.
Warnings are printed after passing \c true, warning messages are
suppressed after calling this method with \c false.
def_API('Z3_toggle_warning_messages', VOID, (_in(BOOL),))
*/
void Z3_API Z3_toggle_warning_messages(__in Z3_bool enabled);
/*@}*/
/**
@name String conversion
*/
/*@{*/
/**
\brief Select mode for the format used for pretty-printing AST nodes.
The default mode for pretty printing AST nodes is to produce
SMT-LIB style output where common subexpressions are printed
at each occurrence. The mode is called Z3_PRINT_SMTLIB_FULL.
To print shared common subexpressions only once,
use the Z3_PRINT_LOW_LEVEL mode.
To print in way that conforms to SMT-LIB standards and uses let
expressions to share common sub-expressions use Z3_PRINT_SMTLIB_COMPLIANT.
\sa Z3_ast_to_string
\sa Z3_pattern_to_string
\sa Z3_func_decl_to_string
def_API('Z3_set_ast_print_mode', VOID, (_in(CONTEXT), _in(PRINT_MODE)))
*/
void Z3_API Z3_set_ast_print_mode(__in Z3_context c, __in Z3_ast_print_mode mode);
/**
\brief Convert the given AST node into a string.
\conly \warning The result buffer is statically allocated by Z3. It will
\conly be automatically deallocated when #Z3_del_context is invoked.
\conly So, the buffer is invalidated in the next call to \c Z3_ast_to_string.
\sa Z3_pattern_to_string
\sa Z3_sort_to_string
def_API('Z3_ast_to_string', STRING, (_in(CONTEXT), _in(AST)))
*/
Z3_string Z3_API Z3_ast_to_string(__in Z3_context c, __in Z3_ast a);
/**
def_API('Z3_pattern_to_string', STRING, (_in(CONTEXT), _in(PATTERN)))
*/
Z3_string Z3_API Z3_pattern_to_string(__in Z3_context c, __in Z3_pattern p);
/**
def_API('Z3_sort_to_string', STRING, (_in(CONTEXT), _in(SORT)))
*/
Z3_string Z3_API Z3_sort_to_string(__in Z3_context c, __in Z3_sort s);
/**
def_API('Z3_func_decl_to_string', STRING, (_in(CONTEXT), _in(FUNC_DECL)))
*/
Z3_string Z3_API Z3_func_decl_to_string(__in Z3_context c, __in Z3_func_decl d);
/**
\brief Convert the given model into a string.
\conly \warning The result buffer is statically allocated by Z3. It will
\conly be automatically deallocated when #Z3_del_context is invoked.
\conly So, the buffer is invalidated in the next call to \c Z3_model_to_string.
def_API('Z3_model_to_string', STRING, (_in(CONTEXT), _in(MODEL)))
*/
Z3_string Z3_API Z3_model_to_string(__in Z3_context c, __in Z3_model m);
/**
\brief Convert the given benchmark into SMT-LIB formatted string.
\conly \warning The result buffer is statically allocated by Z3. It will
\conly be automatically deallocated when #Z3_del_context is invoked.
\conly So, the buffer is invalidated in the next call to \c Z3_benchmark_to_smtlib_string.
\param c - context.
\param name - name of benchmark. The argument is optional.
\param logic - the benchmark logic.
\param status - the status string (sat, unsat, or unknown)
\param attributes - other attributes, such as source, difficulty or category.
\param num_assumptions - number of assumptions.
\param assumptions - auxiliary assumptions.
\param formula - formula to be checked for consistency in conjunction with assumptions.
def_API('Z3_benchmark_to_smtlib_string', STRING, (_in(CONTEXT), _in(STRING), _in(STRING), _in(STRING), _in(STRING), _in(UINT), _in_array(5, AST), _in(AST)))
*/
Z3_string Z3_API Z3_benchmark_to_smtlib_string(__in Z3_context c,
__in Z3_string name,
__in Z3_string logic,
__in Z3_string status,
__in Z3_string attributes,
__in unsigned num_assumptions,
__in_ecount(num_assumptions) Z3_ast const assumptions[],
__in Z3_ast formula);
/*@}*/
/**
@name Parser interface
*/
/*@{*/
/**
\brief \mlh parse_smtlib2_string c str \endmlh
Parse the given string using the SMT-LIB2 parser.
It returns a formula comprising of the conjunction of assertions in the scope
(up to push/pop) at the end of the string.
def_API('Z3_parse_smtlib2_string', AST, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
*/
Z3_ast Z3_API Z3_parse_smtlib2_string(__in Z3_context c,
__in Z3_string str,
__in unsigned num_sorts,
__in_ecount(num_sorts) Z3_symbol const sort_names[],
__in_ecount(num_sorts) Z3_sort const sorts[],
__in unsigned num_decls,
__in_ecount(num_decls) Z3_symbol const decl_names[],
__in_ecount(num_decls) Z3_func_decl const decls[]);
/**
\brief Similar to #Z3_parse_smtlib2_string, but reads the benchmark from a file.
def_API('Z3_parse_smtlib2_file', AST, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
*/
Z3_ast Z3_API Z3_parse_smtlib2_file(__in Z3_context c,
__in Z3_string file_name,
__in unsigned num_sorts,
__in_ecount(num_sorts) Z3_symbol const sort_names[],
__in_ecount(num_sorts) Z3_sort const sorts[],
__in unsigned num_decls,
__in_ecount(num_decls) Z3_symbol const decl_names[],
__in_ecount(num_decls) Z3_func_decl const decls[]);
#ifdef ML4only
#include <mlx_parse_smtlib.idl>
#endif
/**
\mlonly {4 {L Low-level API}} \endmlonly
*/
/**
\brief \mlh parse_smtlib_string c str sort_names sorts decl_names decls \endmlh
Parse the given string using the SMT-LIB parser.
The symbol table of the parser can be initialized using the given sorts and declarations.
The symbols in the arrays \c sort_names and \c decl_names don't need to match the names
of the sorts and declarations in the arrays \c sorts and \c decls. This is an useful feature
since we can use arbitrary names to reference sorts and declarations defined using the C API.
The formulas, assumptions and declarations defined in \c str can be extracted using the functions:
#Z3_get_smtlib_num_formulas, #Z3_get_smtlib_formula, #Z3_get_smtlib_num_assumptions, #Z3_get_smtlib_assumption,
#Z3_get_smtlib_num_decls, and #Z3_get_smtlib_decl.
def_API('Z3_parse_smtlib_string', VOID, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
*/
void Z3_API Z3_parse_smtlib_string(__in Z3_context c,
__in Z3_string str,
__in unsigned num_sorts,
__in_ecount(num_sorts) Z3_symbol const sort_names[],
__in_ecount(num_sorts) Z3_sort const sorts[],
__in unsigned num_decls,
__in_ecount(num_decls) Z3_symbol const decl_names[],
__in_ecount(num_decls) Z3_func_decl const decls[]
);
/**
\brief Similar to #Z3_parse_smtlib_string, but reads the benchmark from a file.
def_API('Z3_parse_smtlib_file', VOID, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
*/
void Z3_API Z3_parse_smtlib_file(__in Z3_context c,
__in Z3_string file_name,
__in unsigned num_sorts,
__in_ecount(num_sorts) Z3_symbol const sort_names[],
__in_ecount(num_sorts) Z3_sort const sorts[],
__in unsigned num_decls,
__in_ecount(num_decls) Z3_symbol const decl_names[],
__in_ecount(num_decls) Z3_func_decl const decls[]
);
/**
\brief Return the number of SMTLIB formulas parsed by the last call to #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.
def_API('Z3_get_smtlib_num_formulas', UINT, (_in(CONTEXT), ))
*/
unsigned Z3_API Z3_get_smtlib_num_formulas(__in Z3_context c);
/**
\brief \mlh get_smtlib_formula c i \endmlh
Return the i-th formula parsed by the last call to #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.
\pre i < Z3_get_smtlib_num_formulas(c)
def_API('Z3_get_smtlib_formula', AST, (_in(CONTEXT), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_smtlib_formula(__in Z3_context c, __in unsigned i);
/**
\brief Return the number of SMTLIB assumptions parsed by #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.
def_API('Z3_get_smtlib_num_assumptions', UINT, (_in(CONTEXT), ))
*/
unsigned Z3_API Z3_get_smtlib_num_assumptions(__in Z3_context c);
/**
\brief \mlh get_smtlib_assumption c i \endmlh
Return the i-th assumption parsed by the last call to #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.
\pre i < Z3_get_smtlib_num_assumptions(c)
def_API('Z3_get_smtlib_assumption', AST, (_in(CONTEXT), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_smtlib_assumption(__in Z3_context c, __in unsigned i);
/**
\brief Return the number of declarations parsed by #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.
def_API('Z3_get_smtlib_num_decls', UINT, (_in(CONTEXT), ))
*/
unsigned Z3_API Z3_get_smtlib_num_decls(__in Z3_context c);
/**
\brief \mlh get_smtlib_decl c i \endmlh
Return the i-th declaration parsed by the last call to #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.
\pre i < Z3_get_smtlib_num_decls(c)
def_API('Z3_get_smtlib_decl', FUNC_DECL, (_in(CONTEXT), _in(UINT)))
*/
Z3_func_decl Z3_API Z3_get_smtlib_decl(__in Z3_context c, __in unsigned i);
/**
\brief Return the number of sorts parsed by #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.
def_API('Z3_get_smtlib_num_sorts', UINT, (_in(CONTEXT), ))
*/
unsigned Z3_API Z3_get_smtlib_num_sorts(__in Z3_context c);
/**
\brief \mlh get_smtlib_sort c i \endmlh
Return the i-th sort parsed by the last call to #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.
\pre i < Z3_get_smtlib_num_sorts(c)
def_API('Z3_get_smtlib_sort', SORT, (_in(CONTEXT), _in(UINT)))
*/
Z3_sort Z3_API Z3_get_smtlib_sort(__in Z3_context c, __in unsigned i);
BEGIN_MLAPI_EXCLUDE
/**
\brief \mlh get_smtlib_error c \endmlh
Retrieve that last error message information generated from parsing.
def_API('Z3_get_smtlib_error', STRING, (_in(CONTEXT), ))
*/
Z3_string Z3_API Z3_get_smtlib_error(__in Z3_context c);
END_MLAPI_EXCLUDE
/*@}*/
#ifdef CorML4
/**
@name Error Handling
*/
/*@{*/
#ifndef SAFE_ERRORS
/**
\brief Return the error code for the last API call.
A call to a Z3 function may return a non Z3_OK error code,
when it is not used correctly.
\sa Z3_set_error_handler
def_API('Z3_get_error_code', UINT, (_in(CONTEXT), ))
*/
Z3_error_code Z3_API Z3_get_error_code(__in Z3_context c);
/**
\brief Register a Z3 error handler.
A call to a Z3 function may return a non Z3_OK error code, when
it is not used correctly. An error handler can be registered
and will be called in this case. \conly To disable the use of the
error handler, simply register with \c h=NULL.
\warning Log files, created using #Z3_open_log, may be potentially incomplete/incorrect if error handlers are used.
\sa Z3_get_error_code
*/
void Z3_API Z3_set_error_handler(__in Z3_context c, __in Z3_error_handler h);
#endif
/**
\brief Set an error.
def_API('Z3_set_error', VOID, (_in(CONTEXT), _in(ERROR_CODE)))
*/
void Z3_API Z3_set_error(__in Z3_context c, __in Z3_error_code e);
#ifdef Conly
/**
\brief Return a string describing the given error code.
\deprecated Use #Z3_get_error_msg_ex instead.
def_API('Z3_get_error_msg', STRING, (_in(ERROR_CODE),))
*/
Z3_string Z3_API Z3_get_error_msg(__in Z3_error_code err);
#endif
BEGIN_MLAPI_EXCLUDE
/**
\brief Return a string describing the given error code.
def_API('Z3_get_error_msg_ex', STRING, (_in(CONTEXT), _in(ERROR_CODE)))
*/
Z3_string Z3_API Z3_get_error_msg_ex(__in Z3_context c, __in Z3_error_code err);
END_MLAPI_EXCLUDE
#ifdef ML4only
#include <mlx_get_error_msg.idl>
#endif
/*@}*/
#endif
/**
@name Miscellaneous
*/
/*@{*/
/**
\brief Return Z3 version number information.
def_API('Z3_get_version', VOID, (_out(UINT), _out(UINT), _out(UINT), _out(UINT)))
*/
void Z3_API Z3_get_version(__out unsigned * major, __out unsigned * minor, __out unsigned * build_number, __out unsigned * revision_number);
/**
\brief Enable tracing messages tagged as \c tag when Z3 is compiled in debug mode.
It is a NOOP otherwise
def_API('Z3_enable_trace', VOID, (_in(STRING),))
*/
void Z3_API Z3_enable_trace(__in Z3_string tag);
/**
\brief Disable tracing messages tagged as \c tag when Z3 is compiled in debug mode.
It is a NOOP otherwise
def_API('Z3_disable_trace', VOID, (_in(STRING),))
*/
void Z3_API Z3_disable_trace(__in Z3_string tag);
#ifdef CorML3
/**
\brief Reset all allocated resources.
Use this facility on out-of memory errors.
It allows discharging the previous state and resuming afresh.
Any pointers previously returned by the API
become invalid.
def_API('Z3_reset_memory', VOID, ())
*/
void Z3_API Z3_reset_memory(void);
#endif
#ifdef CorML3
/**
\brief Destroy all allocated resources.
Any pointers previously returned by the API become invalid.
Can be used for memory leak detection.
def_API('Z3_finalize_memory', VOID, ())
*/
void Z3_API Z3_finalize_memory(void);
#endif
/*@}*/
#ifdef CorML3
/**
@name External Theory Plugins
*/
/*@{*/
#ifdef Conly
//
// callbacks and void* don't work with CAMLIDL.
//
typedef Z3_bool Z3_reduce_eq_callback_fptr(__in Z3_theory t, __in Z3_ast a, __in Z3_ast b, __out Z3_ast * r);
typedef Z3_bool Z3_reduce_app_callback_fptr(__in Z3_theory, __in Z3_func_decl, __in unsigned, __in Z3_ast const [], __out Z3_ast *);
typedef Z3_bool Z3_reduce_distinct_callback_fptr(__in Z3_theory, __in unsigned, __in Z3_ast const [], __out Z3_ast *);
typedef void Z3_theory_callback_fptr(__in Z3_theory t);
typedef Z3_bool Z3_theory_final_check_callback_fptr(__in Z3_theory);
typedef void Z3_theory_ast_callback_fptr(__in Z3_theory, __in Z3_ast);
typedef void Z3_theory_ast_bool_callback_fptr(__in Z3_theory, __in Z3_ast, __in Z3_bool);
typedef void Z3_theory_ast_ast_callback_fptr(__in Z3_theory, __in Z3_ast, __in Z3_ast);
#endif
#ifdef Conly
/**
\brief Create a new user defined theory. The new theory will be identified by the name \c th_name.
A theory must be created before asserting any assertion to the given context.
\conly Return \c NULL in case of failure.
\conly \c data is a pointer to an external data-structure that may be used to store
\conly theory specific additional data.
*/
Z3_theory Z3_API Z3_mk_theory(__in Z3_context c, __in Z3_string th_name, __in Z3_theory_data data);
/**
\brief Return a pointer to the external data-structure supplied to the function #Z3_mk_theory.
\see Z3_mk_theory
*/
Z3_theory_data Z3_API Z3_theory_get_ext_data(__in Z3_theory t);
#endif
/**
\brief Create an interpreted theory sort.
*/
Z3_sort Z3_API Z3_theory_mk_sort(__in Z3_context c, __in Z3_theory t, __in Z3_symbol s);
/**
\brief Create an interpreted theory constant value. Values are assumed to be different from each other.
*/
Z3_ast Z3_API Z3_theory_mk_value(__in Z3_context c, __in Z3_theory t, __in Z3_symbol n, __in Z3_sort s);
/**
\brief Create an interpreted constant for the given theory.
*/
Z3_ast Z3_API Z3_theory_mk_constant(__in Z3_context c, __in Z3_theory t, __in Z3_symbol n, __in Z3_sort s);
/**
\brief Create an interpreted function declaration for the given theory.
*/
Z3_func_decl Z3_API Z3_theory_mk_func_decl(__in Z3_context c, __in Z3_theory t, __in Z3_symbol n,
__in unsigned domain_size, __in_ecount(domain_size) Z3_sort const domain[],
__in Z3_sort range);
/**
\brief Return the context where the given theory is installed.
*/
Z3_context Z3_API Z3_theory_get_context(__in Z3_theory t);
#ifdef Conly
/**
\brief Set a callback that is invoked when theory \c t is deleted.
This callback should be used to delete external data-structures associated with the given theory.
\conly The callback has the form <tt>f(t)</tt>, where
\conly - \c t is the given theory
\see Z3_mk_theory
\conly \see Z3_theory_get_ext_data
*/
void Z3_API Z3_set_delete_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);
/**
\brief Set a callback for simplifying operators of the given theory.
The callback \c f is invoked by Z3's simplifier.
\conly It is of the form <tt>f(t, d, n, args, r)</tt>, where:
\conly - \c t is the given theory
\conly - \c d is the declaration of the theory operator
\conly - \c n is the number of arguments in the array \c args
\conly - \c args are arguments for the theory operator
\conly - \c r should contain the result: an expression equivalent to <tt>d(args[0], ..., args[n-1])</tt>.
\conly If <tt>f(t, d, n, args, r)</tt> returns false, then \c r is ignored, and Z3 assumes that no simplification was performed.
*/
void Z3_API Z3_set_reduce_app_callback(__in Z3_theory t, __in Z3_reduce_app_callback_fptr f);
/**
\brief Set a callback for simplifying the atom <tt>s_1 = s_2</tt>, when the
sort of \c s_1 and \c s_2 is an interpreted sort of the given theory.
The callback \c f is invoked by Z3's simplifier.
\conly It has the form <tt>f(t, s_1, s_2, r)</tt>, where:
\conly - \c t is the given theory
\conly - \c s_1 is the left-hand-side
\conly - \c s_2 is the right-hand-side
\conly - \c r should contain the result: an expression equivalent to <tt>s_1 = s_2</tt>.
\conly If <tt>f(t, s_1, s_2, r)</tt> returns false, then \c r is ignored, and Z3 assumes that no simplification was performed.
*/
void Z3_API Z3_set_reduce_eq_callback(__in Z3_theory t, __in Z3_reduce_eq_callback_fptr f);
/**
\brief Set a callback for simplifying the atom <tt>distinct(s_1, ..., s_n)</tt>, when the
sort of \c s_1, ..., \c s_n is an interpreted sort of the given theory.
The callback \c f is invoked by Z3's simplifier.
\conly It has the form <tt>f(t, n, args, r)</tt>, where:
\conly - \c t is the given theory
\conly - \c n is the number of arguments in the array \c args
\conly - \c args are arguments for distinct.
\conly - \c r should contain the result: an expression equivalent to <tt>distinct(s_1, ..., s_n)</tt>.
\conly If <tt>f(t, n, args, r)</tt> returns false, then \c r is ignored, and Z3 assumes that no simplification was performed.
*/
void Z3_API Z3_set_reduce_distinct_callback(__in Z3_theory t, __in Z3_reduce_distinct_callback_fptr f);
/**
\brief Set a callback that is invoked when a theory application
is finally added into the logical context. Note that, not every
application contained in an asserted expression is actually
added into the logical context because it may be simplified
during a preprocessing step.
\conly The callback has the form <tt>f(t, n)</tt>, where
\conly - \c t is the given theory
\conly - \c n is a theory application, that is, an expression of the form <tt>g(...)</tt> where \c g is a theory operator.
\remark An expression \c n added to the logical context at search level \c n,
will remain in the logical context until this level is backtracked.
*/
void Z3_API Z3_set_new_app_callback(__in Z3_theory t, __in Z3_theory_ast_callback_fptr f);
/**
\brief Set a callback that is invoked when an expression of
sort \c s, where \c s is an interpreted sort of the theory \c
t, is finally added into the logical context. Note that, not
every expression contained in an asserted expression is
actually added into the logical context because it may be
simplified during a preprocessing step.
\conly The callback has the form <tt>f(t, n)</tt>, where
\conly - \c t is the given theory
\conly - \c n is an expression of sort \c s, where \c s is an interpreted sort of \c t.
\remark An expression \c n added to the logical context at search level \c n,
will remain in the logical context until this level is backtracked.
*/
void Z3_API Z3_set_new_elem_callback(__in Z3_theory t, __in Z3_theory_ast_callback_fptr f);
/**
\brief Set a callback that is invoked when Z3 starts searching for a
satisfying assignment.
\conly The callback has the form <tt>f(t)</tt>, where
\conly - \c t is the given theory
*/
void Z3_API Z3_set_init_search_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);
/**
\brief Set a callback that is invoked when Z3 creates a
case-split (aka backtracking point).
When a case-split is created we say the search level is increased.
\conly The callback has the form <tt>f(t)</tt>, where
\conly - \c t is the given theory
*/
void Z3_API Z3_set_push_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);
/**
\brief Set a callback that is invoked when Z3 backtracks a
case-split.
When a case-split is backtracked we say the search level is decreased.
\conly The callback has the form <tt>f(t)</tt>, where
\conly - \c t is the given theory
*/
void Z3_API Z3_set_pop_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);
/**
\brief Set a callback that is invoked when Z3 restarts the
search for a satisfying assignment.
\conly The callback has the form <tt>f(t)</tt>, where
\conly - \c t is the given theory
*/
void Z3_API Z3_set_restart_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);
/**
\brief Set a callback that is invoked when the logical context
is reset by the user. This callback is useful for reseting any
data-structure maintained by the user theory solver.
\conly The callback has the form <tt>f(t)</tt>, where
\conly - \c t is the given theory
*/
void Z3_API Z3_set_reset_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);
/**
\brief Set a callback that is invoked before Z3 starts building a model.
A theory may use this callback to perform expensive operations.
\conly The callback has the form <tt>f(t)</tt>, where
\conly - \c t is the given theory
If the theory returns \mlonly \c false, \endmlonly \conly \c Z3_false,
Z3 will assume that theory is giving up,
and it will assume that it was not possible to decide if the asserted constraints
are satisfiable or not.
*/
void Z3_API Z3_set_final_check_callback(__in Z3_theory t, __in Z3_theory_final_check_callback_fptr f);
/**
\brief Set a callback that is invoked when an equality <tt>s_1 = s_2</tt>
is found by the logical context.
\conly The callback has the form <tt>f(t, s_1, s_2)</tt>, where:
\conly - \c t is the given theory
\conly - \c s_1 is the left-hand-side
\conly - \c s_2 is the right-hand-side
*/
void Z3_API Z3_set_new_eq_callback(__in Z3_theory t, __in Z3_theory_ast_ast_callback_fptr f);
/**
\brief Set a callback that is invoked when a disequality <tt>s_1 != s_2</tt>
is found by the logical context.
\conly The callback has the form <tt>f(t, s_1, s_2)</tt>, where:
\conly - \c t is the given theory
\conly - \c s_1 is the left-hand-side
\conly - \c s_2 is the right-hand-side
*/
void Z3_API Z3_set_new_diseq_callback(__in Z3_theory t, __in Z3_theory_ast_ast_callback_fptr f);
/**
\brief Set a callback that is invoked when a theory predicate is assigned to true/false by Z3.
\conly The callback has the form <tt>f(t, p, v)</tt>, where:
\conly - \c t is the given theory
\conly - \c p is the assigned predicate.
\conly - \c v is the value (true/false) assigned to \c p.
*/
void Z3_API Z3_set_new_assignment_callback(__in Z3_theory t, __in Z3_theory_ast_bool_callback_fptr f);
/**
\brief Set a callback that is invoked when an expression is
marked as relevant during the search. This callback is only
invoked when relevancy propagation is enabled.
\conly The callback has the form <tt>f(t, n)</tt>, where:
\conly - \c t is the given theory
\conly - \c n is the relevant expression
*/
void Z3_API Z3_set_new_relevant_callback(__in Z3_theory t, __in Z3_theory_ast_callback_fptr f);
#endif
/**
\brief Assert a theory axiom/lemmas during the search.
An axiom added at search level \c n will remain in the logical context until
level \c n is backtracked.
The callbacks for push (#Z3_set_push_callback) and pop
(#Z3_set_pop_callback) can be used to track when the search
level is increased (i.e., new case-split) and decreased (i.e.,
case-split is backtracked).
Z3 tracks the theory axioms asserted. So, multiple assertions of the same axiom are
ignored.
*/
void Z3_API Z3_theory_assert_axiom(__in Z3_theory t, __in Z3_ast ax);
/**
\brief Inform to the logical context that \c lhs and \c rhs have the same interpretation
in the model being built by theory \c t. If lhs = rhs is inconsistent with other theories,
then the logical context will backtrack.
For more information, see the paper "Model-Based Theory Combination" in the Z3 website.
*/
void Z3_API Z3_theory_assume_eq(__in Z3_theory t, __in Z3_ast lhs, __in Z3_ast rhs);
/**
\brief Enable/disable the simplification of theory axioms asserted using #Z3_theory_assert_axiom.
By default, the simplification of theory specific operators is disabled.
That is, the reduce theory callbacks are not invoked for theory axioms.
The default behavior is useful when asserting axioms stating properties of theory operators.
*/
void Z3_API Z3_theory_enable_axiom_simplification(__in Z3_theory t, __in Z3_bool flag);
/**
\brief Return the root of the equivalence class containing \c n.
*/
Z3_ast Z3_API Z3_theory_get_eqc_root(__in Z3_theory t, __in Z3_ast n);
/**
\brief Return the next element in the equivalence class containing \c n.
The elements in an equivalence class are organized in a circular list.
You can traverse the list by calling this function multiple times
using the result from the previous call. This is illustrated in the
code snippet below.
\code
Z3_ast curr = n;
do
curr = Z3_theory_get_eqc_next(theory, curr);
while (curr != n);
\endcode
*/
Z3_ast Z3_API Z3_theory_get_eqc_next(__in Z3_theory t, __in Z3_ast n);
/**
\brief Return the number of parents of \c n that are operators of the given theory.
*/
unsigned Z3_API Z3_theory_get_num_parents(__in Z3_theory t, __in Z3_ast n);
/**
\brief Return the i-th parent of \c n.
See #Z3_theory_get_num_parents.
*/
Z3_ast Z3_API Z3_theory_get_parent(__in Z3_theory t, __in Z3_ast n, __in unsigned i);
/**
\brief Return \c Z3_TRUE if \c n is an interpreted theory value.
*/
Z3_bool Z3_API Z3_theory_is_value(__in Z3_theory t, __in Z3_ast n);
/**
\brief Return \c Z3_TRUE if \c d is an interpreted theory declaration.
*/
Z3_bool Z3_API Z3_theory_is_decl(__in Z3_theory t, __in Z3_func_decl d);
/**
\brief Return the number of expressions of the given theory in
the logical context. These are the expressions notified using the
callback #Z3_set_new_elem_callback.
*/
unsigned Z3_API Z3_theory_get_num_elems(__in Z3_theory t);
/**
\brief Return the i-th elem of the given theory in the logical context.
\see Z3_theory_get_num_elems
*/
Z3_ast Z3_API Z3_theory_get_elem(__in Z3_theory t, __in unsigned i);
/**
\brief Return the number of theory applications in the logical
context. These are the expressions notified using the callback
#Z3_set_new_app_callback.
*/
unsigned Z3_API Z3_theory_get_num_apps(__in Z3_theory t);
/**
\brief Return the i-th application of the given theory in the logical context.
\see Z3_theory_get_num_apps
*/
Z3_ast Z3_API Z3_theory_get_app(__in Z3_theory t, __in unsigned i);
/*@}*/
#endif
#ifdef CorML4
/**
@name Fixedpoint facilities
*/
/*@{*/
/**
\brief Create a new fixedpoint context.
\conly \remark User must use #Z3_fixedpoint_inc_ref and #Z3_fixedpoint_dec_ref to manage fixedpoint objects.
\conly Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.
def_API('Z3_mk_fixedpoint', FIXEDPOINT, (_in(CONTEXT), ))
*/
Z3_fixedpoint Z3_API Z3_mk_fixedpoint(__in Z3_context c);
#ifdef Conly
/**
\brief Increment the reference counter of the given fixedpoint context
def_API('Z3_fixedpoint_inc_ref', VOID, (_in(CONTEXT), _in(FIXEDPOINT)))
*/
void Z3_API Z3_fixedpoint_inc_ref(__in Z3_context c,__in Z3_fixedpoint d);
/**
\brief Decrement the reference counter of the given fixedpoint context.
def_API('Z3_fixedpoint_dec_ref', VOID, (_in(CONTEXT), _in(FIXEDPOINT)))
*/
void Z3_API Z3_fixedpoint_dec_ref(__in Z3_context c,__in Z3_fixedpoint d);
#endif
/**
\brief Add a universal Horn clause as a named rule.
The \c horn_rule should be of the form:
\code
horn_rule ::= (forall (bound-vars) horn_rule)
| (=> atoms horn_rule)
| atom
\endcode
def_API('Z3_fixedpoint_add_rule', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST), _in(SYMBOL)))
*/
void Z3_API Z3_fixedpoint_add_rule(__in Z3_context c,__in Z3_fixedpoint d, __in Z3_ast rule, __in Z3_symbol name);
/**
\brief Add a Database fact.
\param c - context
\param d - fixed point context
\param r - relation signature for the row.
\param num_args - number of columns for the given row.
\param args - array of the row elements.
The number of arguments \c num_args should be equal to the number
of sorts in the domain of \c r. Each sort in the domain should be an integral
(bit-vector, Boolean or or finite domain sort).
The call has the same effect as adding a rule where \c r is applied to the arguments.
def_API('Z3_fixedpoint_add_fact', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL), _in(UINT), _in_array(3, UINT)))
*/
void Z3_API Z3_fixedpoint_add_fact(__in Z3_context c,__in Z3_fixedpoint d,
__in Z3_func_decl r,
__in unsigned num_args, __in_ecount(num_args) unsigned args[]);
/**
\brief Assert a constraint to the fixedpoint context.
The constraints are used as background axioms when the fixedpoint engine uses the PDR mode.
They are ignored for standard Datalog mode.
def_API('Z3_fixedpoint_assert', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST)))
*/
void Z3_API Z3_fixedpoint_assert(__in Z3_context c,__in Z3_fixedpoint d, __in Z3_ast axiom);
/**
\brief Pose a query against the asserted rules.
\code
query ::= (exists (bound-vars) query)
| literals
\endcode
query returns
- Z3_L_FALSE if the query is unsatisfiable.
- Z3_L_TRUE if the query is satisfiable. Obtain the answer by calling #Z3_fixedpoint_get_answer.
- Z3_L_UNDEF if the query was interrupted, timed out or otherwise failed.
def_API('Z3_fixedpoint_query', INT, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST)))
*/
Z3_lbool Z3_API Z3_fixedpoint_query(__in Z3_context c,__in Z3_fixedpoint d, __in Z3_ast query);
/**
\brief Pose multiple queries against the asserted rules.
The queries are encoded as relations (function declarations).
query returns
- Z3_L_FALSE if the query is unsatisfiable.
- Z3_L_TRUE if the query is satisfiable. Obtain the answer by calling #Z3_fixedpoint_get_answer.
- Z3_L_UNDEF if the query was interrupted, timed out or otherwise failed.
def_API('Z3_fixedpoint_query_relations', INT, (_in(CONTEXT), _in(FIXEDPOINT), _in(UINT), _in_array(2, FUNC_DECL)))
*/
Z3_lbool Z3_API Z3_fixedpoint_query_relations(
__in Z3_context c,__in Z3_fixedpoint d,
__in unsigned num_relations, __in_ecount(num_relations) Z3_func_decl const relations[]);
/**
\brief Retrieve a formula that encodes satisfying answers to the query.
When used in Datalog mode, the returned answer is a disjunction of conjuncts.
Each conjunct encodes values of the bound variables of the query that are satisfied.
In PDR mode, the returned answer is a single conjunction.
When used in Datalog mode the previous call to Z3_fixedpoint_query must have returned Z3_L_TRUE.
When used with the PDR engine, the previous call must have been either Z3_L_TRUE or Z3_L_FALSE.
def_API('Z3_fixedpoint_get_answer', AST, (_in(CONTEXT), _in(FIXEDPOINT)))
*/
Z3_ast Z3_API Z3_fixedpoint_get_answer(__in Z3_context c,__in Z3_fixedpoint d);
/**
\brief Retrieve a string that describes the last status returned by #Z3_fixedpoint_query.
Use this method when #Z3_fixedpoint_query returns Z3_L_UNDEF.
def_API('Z3_fixedpoint_get_reason_unknown', STRING, (_in(CONTEXT), _in(FIXEDPOINT) ))
*/
Z3_string Z3_API Z3_fixedpoint_get_reason_unknown(__in Z3_context c,__in Z3_fixedpoint d);
/**
\brief Update a named rule.
A rule with the same name must have been previously created.
def_API('Z3_fixedpoint_update_rule', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST), _in(SYMBOL)))
*/
void Z3_API Z3_fixedpoint_update_rule(__in Z3_context c, __in Z3_fixedpoint d, __in Z3_ast a, __in Z3_symbol name);
/**
\brief Query the PDR engine for the maximal levels properties are known about predicate.
This call retrieves the maximal number of relevant unfoldings
of \c pred with respect to the current exploration state.
Note: this functionality is PDR specific.
def_API('Z3_fixedpoint_get_num_levels', UINT, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL)))
*/
unsigned Z3_API Z3_fixedpoint_get_num_levels(Z3_context c, Z3_fixedpoint d, Z3_func_decl pred);
/**
Retrieve the current cover of \c pred up to \c level unfoldings.
Return just the delta that is known at \c level. To
obtain the full set of properties of \c pred one should query
at \c level+1 , \c level+2 etc, and include \c level=-1.
Note: this functionality is PDR specific.
def_API('Z3_fixedpoint_get_cover_delta', AST, (_in(CONTEXT), _in(FIXEDPOINT), _in(INT), _in(FUNC_DECL)))
*/
Z3_ast Z3_API Z3_fixedpoint_get_cover_delta(Z3_context c, Z3_fixedpoint d, int level, Z3_func_decl pred);
/**
\brief Add property about the predicate \c pred.
Add a property of predicate \c pred at \c level.
It gets pushed forward when possible.
Note: level = -1 is treated as the fixedpoint. So passing -1 for the \c level
means that the property is true of the fixed-point unfolding with respect to \c pred.
Note: this functionality is PDR specific.
def_API('Z3_fixedpoint_add_cover', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(INT), _in(FUNC_DECL), _in(AST)))
*/
void Z3_API Z3_fixedpoint_add_cover(Z3_context c, Z3_fixedpoint d, int level, Z3_func_decl pred, Z3_ast property);
/**
\brief Retrieve statistics information from the last call to #Z3_fixedpoint_query.
def_API('Z3_fixedpoint_get_statistics', STATS, (_in(CONTEXT), _in(FIXEDPOINT)))
*/
Z3_stats Z3_API Z3_fixedpoint_get_statistics(__in Z3_context c,__in Z3_fixedpoint d);
/**
\brief Register relation as Fixedpoint defined.
Fixedpoint defined relations have least-fixedpoint semantics.
For example, the relation is empty if it does not occur
in a head or a fact.
def_API('Z3_fixedpoint_register_relation', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL)))
*/
void Z3_API Z3_fixedpoint_register_relation(__in Z3_context c,__in Z3_fixedpoint d, __in Z3_func_decl f);
/**
\brief Configure the predicate representation.
It sets the predicate to use a set of domains given by the list of symbols.
The domains given by the list of symbols must belong to a set
of built-in domains.
def_API('Z3_fixedpoint_set_predicate_representation', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL), _in(UINT), _in_array(3, SYMBOL)))
*/
void Z3_API Z3_fixedpoint_set_predicate_representation(
__in Z3_context c,
__in Z3_fixedpoint d,
__in Z3_func_decl f,
__in unsigned num_relations,
__in_ecount(num_relations) Z3_symbol const relation_kinds[]);
/**
\brief Retrieve set of rules from fixedpoint context.
def_API('Z3_fixedpoint_get_rules', AST_VECTOR, (_in(CONTEXT),_in(FIXEDPOINT)))
*/
Z3_ast_vector Z3_API Z3_fixedpoint_get_rules(
__in Z3_context c,
__in Z3_fixedpoint f);
/**
\brief Retrieve set of background assertions from fixedpoint context.
def_API('Z3_fixedpoint_get_assertions', AST_VECTOR, (_in(CONTEXT),_in(FIXEDPOINT)))
*/
Z3_ast_vector Z3_API Z3_fixedpoint_get_assertions(
__in Z3_context c,
__in Z3_fixedpoint f);
/**
\brief Set parameters on fixedpoint context.
def_API('Z3_fixedpoint_set_params', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(PARAMS)))
*/
void Z3_API Z3_fixedpoint_set_params(__in Z3_context c, __in Z3_fixedpoint f, __in Z3_params p);
/**
\brief Return a string describing all fixedpoint available parameters.
def_API('Z3_fixedpoint_get_help', STRING, (_in(CONTEXT), _in(FIXEDPOINT)))
*/
Z3_string Z3_API Z3_fixedpoint_get_help(__in Z3_context c, __in Z3_fixedpoint f);
/**
\brief Return the parameter description set for the given fixedpoint object.
def_API('Z3_fixedpoint_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(FIXEDPOINT)))
*/
Z3_param_descrs Z3_API Z3_fixedpoint_get_param_descrs(__in Z3_context c, __in Z3_fixedpoint f);
/**
\brief Print the current rules and background axioms as a string.
\param c - context.
\param f - fixedpoint context.
\param num_queries - number of additional queries to print.
\param queries - additional queries.
def_API('Z3_fixedpoint_to_string', STRING, (_in(CONTEXT), _in(FIXEDPOINT), _in(UINT), _in_array(2, AST)))
*/
Z3_string Z3_API Z3_fixedpoint_to_string(
__in Z3_context c,
__in Z3_fixedpoint f,
__in unsigned num_queries,
__in_ecount(num_queries) Z3_ast queries[]);
/**
\brief Parse an SMT-LIB2 string with fixedpoint rules.
Add the rules to the current fixedpoint context.
Return the set of queries in the string.
\param c - context.
\param f - fixedpoint context.
\param s - string containing SMT2 specification.
def_API('Z3_fixedpoint_from_string', AST_VECTOR, (_in(CONTEXT), _in(FIXEDPOINT), _in(STRING)))
*/
Z3_ast_vector Z3_API Z3_fixedpoint_from_string(
__in Z3_context c,
__in Z3_fixedpoint f,
__in Z3_string s);
/**
\brief Parse an SMT-LIB2 file with fixedpoint rules.
Add the rules to the current fixedpoint context.
Return the set of queries in the file.
\param c - context.
\param f - fixedpoint context.
\param s - string containing SMT2 specification.
def_API('Z3_fixedpoint_from_file', AST_VECTOR, (_in(CONTEXT), _in(FIXEDPOINT), _in(STRING)))
*/
Z3_ast_vector Z3_API Z3_fixedpoint_from_file(
__in Z3_context c,
__in Z3_fixedpoint f,
__in Z3_string s);
/**
\brief Create a backtracking point.
The fixedpoint solver contains a set of rules, added facts and assertions.
The set of rules, facts and assertions are restored upon calling #Z3_fixedpoint_pop.
\sa Z3_fixedpoint_pop
def_API('Z3_fixedpoint_push', VOID, (_in(CONTEXT), _in(FIXEDPOINT)))
*/
void Z3_API Z3_fixedpoint_push(Z3_context c,Z3_fixedpoint d);
/**
\brief Backtrack one backtracking point.
\sa Z3_fixedpoint_push
\pre The number of calls to pop cannot exceed calls to push.
def_API('Z3_fixedpoint_pop', VOID, (_in(CONTEXT), _in(FIXEDPOINT)))
*/
void Z3_API Z3_fixedpoint_pop(Z3_context c,Z3_fixedpoint d);
#ifdef Conly
/**
\brief The following utilities allows adding user-defined domains.
*/
typedef void Z3_fixedpoint_reduce_assign_callback_fptr(
__in void*, __in Z3_func_decl,
__in unsigned, __in Z3_ast const [],
__in unsigned, __in Z3_ast const []);
typedef void Z3_fixedpoint_reduce_app_callback_fptr(
__in void*, __in Z3_func_decl,
__in unsigned, __in Z3_ast const [],
__out Z3_ast*);
/**
\brief Initialize the context with a user-defined state.
*/
void Z3_API Z3_fixedpoint_init(__in Z3_context c,__in Z3_fixedpoint d, __in void* state);
/**
\brief Register a callback to destructive updates.
Registers are identified with terms encoded as fresh constants,
*/
void Z3_API Z3_fixedpoint_set_reduce_assign_callback(
__in Z3_context c,__in Z3_fixedpoint d, __in Z3_fixedpoint_reduce_assign_callback_fptr cb);
/**
\brief Register a callback for buildling terms based on
the relational operators.
*/
void Z3_API Z3_fixedpoint_set_reduce_app_callback(
__in Z3_context c,__in Z3_fixedpoint d, __in Z3_fixedpoint_reduce_app_callback_fptr cb);
#endif
#endif
#ifdef CorML4
/**
@name Optimize facilities
*/
/*@{*/
/**
\brief Create a new optimize context.
\conly \remark User must use #Z3_optimize_inc_ref and #Z3_optimize_dec_ref to manage optimize objects.
\conly Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.
def_API('Z3_mk_optimize', OPTIMIZE, (_in(CONTEXT), ))
*/
Z3_optimize Z3_API Z3_mk_optimize(__in Z3_context c);
#ifdef Conly
/**
\brief Increment the reference counter of the given optimize context
def_API('Z3_optimize_inc_ref', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
*/
void Z3_API Z3_optimize_inc_ref(__in Z3_context c,__in Z3_optimize d);
/**
\brief Decrement the reference counter of the given optimize context.
def_API('Z3_optimize_dec_ref', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
*/
void Z3_API Z3_optimize_dec_ref(__in Z3_context c,__in Z3_optimize d);
#endif
/**
\brief Assert hard constraint to the optimization context.
def_API('Z3_optimize_assert', VOID, (_in(CONTEXT), _in(OPTIMIZE), _in(AST)))
*/
void Z3_API Z3_optimize_assert(Z3_context c, Z3_optimize o, Z3_ast a);
/**
\brief Assert soft constraint to the optimization context.
\param c - context
\param o - optimization context
\param a - formula
\param weight - a positive weight, penalty for violating soft constraint
\param id - optional identifier to group soft constraints
def_API('Z3_optimize_assert_soft', UINT, (_in(CONTEXT), _in(OPTIMIZE), _in(AST), _in(STRING), _in(SYMBOL)))
*/
unsigned Z3_API Z3_optimize_assert_soft(Z3_context c, Z3_optimize o, Z3_ast a, Z3_string weight, Z3_symbol id);
/**
\brief Add a maximization constraint.
\param c - context
\param o - optimization context
\param a - arithmetical term
def_API('Z3_optimize_maximize', UINT, (_in(CONTEXT), _in(OPTIMIZE), _in(AST)))
*/
unsigned Z3_API Z3_optimize_maximize(Z3_context c, Z3_optimize o, Z3_ast t);
/**
\brief Add a minimization constraint.
\param c - context
\param o - optimization context
\param a - arithmetical term
def_API('Z3_optimize_minimize', UINT, (_in(CONTEXT), _in(OPTIMIZE), _in(AST)))
*/
unsigned Z3_API Z3_optimize_minimize(Z3_context c, Z3_optimize o, Z3_ast t);
/**
\brief Create a backtracking point.
The optimize solver contains a set of rules, added facts and assertions.
The set of rules, facts and assertions are restored upon calling #Z3_optimize_pop.
\sa Z3_optimize_pop
def_API('Z3_optimize_push', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
*/
void Z3_API Z3_optimize_push(Z3_context c,Z3_optimize d);
/**
\brief Backtrack one level.
\sa Z3_optimize_push
\pre The number of calls to pop cannot exceed calls to push.
def_API('Z3_optimize_pop', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
*/
void Z3_API Z3_optimize_pop(Z3_context c,Z3_optimize d);
/**
\brief Check consistency and produce optimal values.
\param c - context
\param o - optimization context
def_API('Z3_optimize_check', INT, (_in(CONTEXT), _in(OPTIMIZE)))
*/
Z3_lbool Z3_API Z3_optimize_check(Z3_context c, Z3_optimize o);
/**
\brief Retrieve the model for the last #Z3_optimize_check
The error handler is invoked if a model is not available because
the commands above were not invoked for the given optimization
solver, or if the result was \c Z3_L_FALSE.
def_API('Z3_optimize_get_model', MODEL, (_in(CONTEXT), _in(OPTIMIZE)))
*/
Z3_model Z3_API Z3_optimize_get_model(Z3_context c, Z3_optimize o);
/**
\brief Set parameters on optimization context.
\param c - context
\param o - optimization context
\param p - parameters
def_API('Z3_optimize_set_params', VOID, (_in(CONTEXT), _in(OPTIMIZE), _in(PARAMS)))
*/
void Z3_API Z3_optimize_set_params(Z3_context c, Z3_optimize o, Z3_params p);
/**
\brief Return the parameter description set for the given optimize object.
\param c - context
\param o - optimization context
def_API('Z3_optimize_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(OPTIMIZE)))
*/
Z3_param_descrs Z3_API Z3_optimize_get_param_descrs(Z3_context c, Z3_optimize o);
/**
\brief Retrieve lower bound value or approximation for the i'th optimization objective.
\param c - context
\param o - optimization context
\param idx - index of optimization objective
def_API('Z3_optimize_get_lower', AST, (_in(CONTEXT), _in(OPTIMIZE), _in(UINT)))
*/
Z3_ast Z3_API Z3_optimize_get_lower(Z3_context c, Z3_optimize o, unsigned idx);
/**
\brief Retrieve upper bound value or approximation for the i'th optimization objective.
\param c - context
\param o - optimization context
\param idx - index of optimization objective
def_API('Z3_optimize_get_upper', AST, (_in(CONTEXT), _in(OPTIMIZE), _in(UINT)))
*/
Z3_ast Z3_API Z3_optimize_get_upper(Z3_context c, Z3_optimize o, unsigned idx);
/**
\brief Print the current context as a string.
\param c - context.
\param o - optimization context.
def_API('Z3_optimize_to_string', STRING, (_in(CONTEXT), _in(OPTIMIZE)))
*/
Z3_string Z3_API Z3_optimize_to_string(
__in Z3_context c,
__in Z3_optimize o);
/**
\brief Return a string containing a description of parameters accepted by optimize.
def_API('Z3_optimize_get_help', STRING, (_in(CONTEXT), _in(OPTIMIZE)))
*/
Z3_string Z3_API Z3_optimize_get_help(__in Z3_context c, __in Z3_optimize t);
/**
\brief Retrieve statistics information from the last call to #Z3_optimize_check
def_API('Z3_optimize_get_statistics', STATS, (_in(CONTEXT), _in(OPTIMIZE)))
*/
Z3_stats Z3_API Z3_optimize_get_statistics(__in Z3_context c,__in Z3_optimize d);
#endif
#ifdef CorML4
/*@}*/
/**
@name AST vectors
*/
/*@{*/
/**
\brief Return an empty AST vector.
\conly \remark Reference counting must be used to manage AST vectors, even when the Z3_context was
\conly created using #Z3_mk_context instead of #Z3_mk_context_rc.
def_API('Z3_mk_ast_vector', AST_VECTOR, (_in(CONTEXT),))
*/
Z3_ast_vector Z3_API Z3_mk_ast_vector(__in Z3_context c);
#ifdef Conly
/**
\brief Increment the reference counter of the given AST vector.
def_API('Z3_ast_vector_inc_ref', VOID, (_in(CONTEXT), _in(AST_VECTOR)))
*/
void Z3_API Z3_ast_vector_inc_ref(__in Z3_context c, __in Z3_ast_vector v);
/**
\brief Decrement the reference counter of the given AST vector.
def_API('Z3_ast_vector_dec_ref', VOID, (_in(CONTEXT), _in(AST_VECTOR)))
*/
void Z3_API Z3_ast_vector_dec_ref(__in Z3_context c, __in Z3_ast_vector v);
#endif
/**
\brief Return the size of the given AST vector.
def_API('Z3_ast_vector_size', UINT, (_in(CONTEXT), _in(AST_VECTOR)))
*/
unsigned Z3_API Z3_ast_vector_size(__in Z3_context c, __in Z3_ast_vector v);
/**
\brief Return the AST at position \c i in the AST vector \c v.
\pre i < Z3_ast_vector_size(c, v)
def_API('Z3_ast_vector_get', AST, (_in(CONTEXT), _in(AST_VECTOR), _in(UINT)))
*/
Z3_ast Z3_API Z3_ast_vector_get(__in Z3_context c, __in Z3_ast_vector v, __in unsigned i);
/**
\brief Update position \c i of the AST vector \c v with the AST \c a.
\pre i < Z3_ast_vector_size(c, v)
def_API('Z3_ast_vector_set', VOID, (_in(CONTEXT), _in(AST_VECTOR), _in(UINT), _in(AST)))
*/
void Z3_API Z3_ast_vector_set(__in Z3_context c, __in Z3_ast_vector v, __in unsigned i, __in Z3_ast a);
/**
\brief Resize the AST vector \c v.
def_API('Z3_ast_vector_resize', VOID, (_in(CONTEXT), _in(AST_VECTOR), _in(UINT)))
*/
void Z3_API Z3_ast_vector_resize(__in Z3_context c, __in Z3_ast_vector v, __in unsigned n);
/**
\brief Add the AST \c a in the end of the AST vector \c v. The size of \c v is increased by one.
def_API('Z3_ast_vector_push', VOID, (_in(CONTEXT), _in(AST_VECTOR), _in(AST)))
*/
void Z3_API Z3_ast_vector_push(__in Z3_context c, __in Z3_ast_vector v, __in Z3_ast a);
/**
\brief Translate the AST vector \c v from context \c s into an AST vector in context \c t.
def_API('Z3_ast_vector_translate', AST_VECTOR, (_in(CONTEXT), _in(AST_VECTOR), _in(CONTEXT)))
*/
Z3_ast_vector Z3_API Z3_ast_vector_translate(__in Z3_context s, __in Z3_ast_vector v, __in Z3_context t);
/**
\brief Convert AST vector into a string.
def_API('Z3_ast_vector_to_string', STRING, (_in(CONTEXT), _in(AST_VECTOR)))
*/
Z3_string Z3_API Z3_ast_vector_to_string(__in Z3_context c, __in Z3_ast_vector v);
/*@}*/
/**
@name AST maps
*/
/*@{*/
/**
\brief Return an empty mapping from AST to AST
\conly \remark Reference counting must be used to manage AST maps, even when the Z3_context was
\conly created using #Z3_mk_context instead of #Z3_mk_context_rc.
def_API('Z3_mk_ast_map', AST_MAP, (_in(CONTEXT),) )
*/
Z3_ast_map Z3_API Z3_mk_ast_map(__in Z3_context c);
#ifdef Conly
/**
\brief Increment the reference counter of the given AST map.
def_API('Z3_ast_map_inc_ref', VOID, (_in(CONTEXT), _in(AST_MAP)))
*/
void Z3_API Z3_ast_map_inc_ref(__in Z3_context c, __in Z3_ast_map m);
/**
\brief Decrement the reference counter of the given AST map.
def_API('Z3_ast_map_dec_ref', VOID, (_in(CONTEXT), _in(AST_MAP)))
*/
void Z3_API Z3_ast_map_dec_ref(__in Z3_context c, __in Z3_ast_map m);
#endif
/**
\brief Return true if the map \c m contains the AST key \c k.
def_API('Z3_ast_map_contains', BOOL, (_in(CONTEXT), _in(AST_MAP), _in(AST)))
*/
Z3_bool Z3_API Z3_ast_map_contains(__in Z3_context c, __in Z3_ast_map m, __in Z3_ast k);
/**
\brief Return the value associated with the key \c k.
The procedure invokes the error handler if \c k is not in the map.
def_API('Z3_ast_map_find', AST, (_in(CONTEXT), _in(AST_MAP), _in(AST)))
*/
Z3_ast Z3_API Z3_ast_map_find(__in Z3_context c, __in Z3_ast_map m, __in Z3_ast k);
/**
\brief Store/Replace a new key, value pair in the given map.
def_API('Z3_ast_map_insert', VOID, (_in(CONTEXT), _in(AST_MAP), _in(AST), _in(AST)))
*/
void Z3_API Z3_ast_map_insert(__in Z3_context c, __in Z3_ast_map m, __in Z3_ast k, __in Z3_ast v);
/**
\brief Erase a key from the map.
def_API('Z3_ast_map_erase', VOID, (_in(CONTEXT), _in(AST_MAP), _in(AST)))
*/
void Z3_API Z3_ast_map_erase(__in Z3_context c, __in Z3_ast_map m, __in Z3_ast k);
/**
\brief Remove all keys from the given map.
def_API('Z3_ast_map_reset', VOID, (_in(CONTEXT), _in(AST_MAP)))
*/
void Z3_API Z3_ast_map_reset(__in Z3_context c, __in Z3_ast_map m);
/**
\brief Return the size of the given map.
def_API('Z3_ast_map_size', UINT, (_in(CONTEXT), _in(AST_MAP)))
*/
unsigned Z3_API Z3_ast_map_size(__in Z3_context c, __in Z3_ast_map m);
/**
\brief Return the keys stored in the given map.
def_API('Z3_ast_map_keys', AST_VECTOR, (_in(CONTEXT), _in(AST_MAP)))
*/
Z3_ast_vector Z3_API Z3_ast_map_keys(__in Z3_context c, __in Z3_ast_map m);
/**
\brief Convert the given map into a string.
def_API('Z3_ast_map_to_string', STRING, (_in(CONTEXT), _in(AST_MAP)))
*/
Z3_string Z3_API Z3_ast_map_to_string(__in Z3_context c, __in Z3_ast_map m);
/*@}*/
/**
@name Goals
*/
/*@{*/
/**
\brief Create a goal (aka problem). A goal is essentially a set
of formulas, that can be solved and/or transformed using
tactics and solvers.
If models == true, then model generation is enabled for the new goal.
If unsat_cores == true, then unsat core generation is enabled for the new goal.
If proofs == true, then proof generation is enabled for the new goal. Remark, the
Z3 context c must have been created with proof generation support.
\conly \remark Reference counting must be used to manage goals, even when the Z3_context was
\conly created using #Z3_mk_context instead of #Z3_mk_context_rc.
def_API('Z3_mk_goal', GOAL, (_in(CONTEXT), _in(BOOL), _in(BOOL), _in(BOOL)))
*/
Z3_goal Z3_API Z3_mk_goal(__in Z3_context c, __in Z3_bool models, __in Z3_bool unsat_cores, __in Z3_bool proofs);
#ifdef Conly
/**
\brief Increment the reference counter of the given goal.
def_API('Z3_goal_inc_ref', VOID, (_in(CONTEXT), _in(GOAL)))
*/
void Z3_API Z3_goal_inc_ref(__in Z3_context c, __in Z3_goal g);
/**
\brief Decrement the reference counter of the given goal.
def_API('Z3_goal_dec_ref', VOID, (_in(CONTEXT), _in(GOAL)))
*/
void Z3_API Z3_goal_dec_ref(__in Z3_context c, __in Z3_goal g);
#endif
/**
\brief Return the "precision" of the given goal. Goals can be transformed using over and under approximations.
A under approximation is applied when the objective is to find a model for a given goal.
An over approximation is applied when the objective is to find a proof for a given goal.
def_API('Z3_goal_precision', UINT, (_in(CONTEXT), _in(GOAL)))
*/
Z3_goal_prec Z3_API Z3_goal_precision(__in Z3_context c, __in Z3_goal g);
/**
\brief Add a new formula \c a to the given goal.
def_API('Z3_goal_assert', VOID, (_in(CONTEXT), _in(GOAL), _in(AST)))
*/
void Z3_API Z3_goal_assert(__in Z3_context c, __in Z3_goal g, __in Z3_ast a);
/**
\brief Return true if the given goal contains the formula \c false.
def_API('Z3_goal_inconsistent', BOOL, (_in(CONTEXT), _in(GOAL)))
*/
Z3_bool Z3_API Z3_goal_inconsistent(__in Z3_context c, __in Z3_goal g);
/**
\brief Return the depth of the given goal. It tracks how many transformations were applied to it.
def_API('Z3_goal_depth', UINT, (_in(CONTEXT), _in(GOAL)))
*/
unsigned Z3_API Z3_goal_depth(__in Z3_context c, __in Z3_goal g);
/**
\brief Erase all formulas from the given goal.
def_API('Z3_goal_reset', VOID, (_in(CONTEXT), _in(GOAL)))
*/
void Z3_API Z3_goal_reset(__in Z3_context c, __in Z3_goal g);
/**
\brief Return the number of formulas in the given goal.
def_API('Z3_goal_size', UINT, (_in(CONTEXT), _in(GOAL)))
*/
unsigned Z3_API Z3_goal_size(__in Z3_context c, __in Z3_goal g);
/**
\brief Return a formula from the given goal.
\pre idx < Z3_goal_size(c, g)
def_API('Z3_goal_formula', AST, (_in(CONTEXT), _in(GOAL), _in(UINT)))
*/
Z3_ast Z3_API Z3_goal_formula(__in Z3_context c, __in Z3_goal g, __in unsigned idx);
/**
\brief Return the number of formulas, subformulas and terms in the given goal.
def_API('Z3_goal_num_exprs', UINT, (_in(CONTEXT), _in(GOAL)))
*/
unsigned Z3_API Z3_goal_num_exprs(__in Z3_context c, __in Z3_goal g);
/**
\brief Return true if the goal is empty, and it is precise or the product of a under approximation.
def_API('Z3_goal_is_decided_sat', BOOL, (_in(CONTEXT), _in(GOAL)))
*/
Z3_bool Z3_API Z3_goal_is_decided_sat(__in Z3_context c, __in Z3_goal g);
/**
\brief Return true if the goal contains false, and it is precise or the product of an over approximation.
def_API('Z3_goal_is_decided_unsat', BOOL, (_in(CONTEXT), _in(GOAL)))
*/
Z3_bool Z3_API Z3_goal_is_decided_unsat(__in Z3_context c, __in Z3_goal g);
/**
\brief Copy a goal \c g from the context \c source to a the context \c target.
def_API('Z3_goal_translate', GOAL, (_in(CONTEXT), _in(GOAL), _in(CONTEXT)))
*/
Z3_goal Z3_API Z3_goal_translate(__in Z3_context source, __in Z3_goal g, __in Z3_context target);
/**
\brief Convert a goal into a string.
def_API('Z3_goal_to_string', STRING, (_in(CONTEXT), _in(GOAL)))
*/
Z3_string Z3_API Z3_goal_to_string(__in Z3_context c, __in Z3_goal g);
/*@}*/
/**
@name Tactics and Probes
*/
/*@{*/
/**
\brief Return a tactic associated with the given name.
The complete list of tactics may be obtained using the procedures #Z3_get_num_tactics and #Z3_get_tactic_name.
It may also be obtained using the command <tt>(help-tactics)</tt> in the SMT 2.0 front-end.
Tactics are the basic building block for creating custom solvers for specific problem domains.
def_API('Z3_mk_tactic', TACTIC, (_in(CONTEXT), _in(STRING)))
*/
Z3_tactic Z3_API Z3_mk_tactic(__in Z3_context c, __in Z3_string name);
#ifdef Conly
/**
\brief Increment the reference counter of the given tactic.
def_API('Z3_tactic_inc_ref', VOID, (_in(CONTEXT), _in(TACTIC)))
*/
void Z3_API Z3_tactic_inc_ref(__in Z3_context c, __in Z3_tactic t);
/**
\brief Decrement the reference counter of the given tactic.
def_API('Z3_tactic_dec_ref', VOID, (_in(CONTEXT), _in(TACTIC)))
*/
void Z3_API Z3_tactic_dec_ref(__in Z3_context c, __in Z3_tactic g);
#endif
/**
\brief Return a probe associated with the given name.
The complete list of probes may be obtained using the procedures #Z3_get_num_probes and #Z3_get_probe_name.
It may also be obtained using the command <tt>(help-tactics)</tt> in the SMT 2.0 front-end.
Probes are used to inspect a goal (aka problem) and collect information that may be used to decide
which solver and/or preprocessing step will be used.
def_API('Z3_mk_probe', PROBE, (_in(CONTEXT), _in(STRING)))
*/
Z3_probe Z3_API Z3_mk_probe(__in Z3_context c, __in Z3_string name);
#ifdef Conly
/**
\brief Increment the reference counter of the given probe.
def_API('Z3_probe_inc_ref', VOID, (_in(CONTEXT), _in(PROBE)))
*/
void Z3_API Z3_probe_inc_ref(__in Z3_context c, __in Z3_probe p);
/**
\brief Decrement the reference counter of the given probe.
def_API('Z3_probe_dec_ref', VOID, (_in(CONTEXT), _in(PROBE)))
*/
void Z3_API Z3_probe_dec_ref(__in Z3_context c, __in Z3_probe p);
#endif
/**
\brief Return a tactic that applies \c t1 to a given goal and \c t2
to every subgoal produced by t1.
def_API('Z3_tactic_and_then', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
*/
Z3_tactic Z3_API Z3_tactic_and_then(__in Z3_context c, __in Z3_tactic t1, __in Z3_tactic t2);
/**
\brief Return a tactic that first applies \c t1 to a given goal,
if it fails then returns the result of \c t2 applied to the given goal.
def_API('Z3_tactic_or_else', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
*/
Z3_tactic Z3_API Z3_tactic_or_else(__in Z3_context c, __in Z3_tactic t1, __in Z3_tactic t2);
/**
\brief Return a tactic that applies the given tactics in parallel.
def_API('Z3_tactic_par_or', TACTIC, (_in(CONTEXT), _in(UINT), _in_array(1, TACTIC)))
*/
Z3_tactic Z3_API Z3_tactic_par_or(__in Z3_context c, __in unsigned num, __in_ecount(num) Z3_tactic const ts[]);
/**
\brief Return a tactic that applies \c t1 to a given goal and then \c t2
to every subgoal produced by t1. The subgoals are processed in parallel.
def_API('Z3_tactic_par_and_then', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
*/
Z3_tactic Z3_API Z3_tactic_par_and_then(__in Z3_context c, __in Z3_tactic t1, __in Z3_tactic t2);
/**
\brief Return a tactic that applies \c t to a given goal for \c ms milliseconds.
If \c t does not terminate in \c ms milliseconds, then it fails.
def_API('Z3_tactic_try_for', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(UINT)))
*/
Z3_tactic Z3_API Z3_tactic_try_for(__in Z3_context c, __in Z3_tactic t, __in unsigned ms);
/**
\brief Return a tactic that applies \c t to a given goal is the probe \c p evaluates to true.
If \c p evaluates to false, then the new tactic behaves like the skip tactic.
def_API('Z3_tactic_when', TACTIC, (_in(CONTEXT), _in(PROBE), _in(TACTIC)))
*/
Z3_tactic Z3_API Z3_tactic_when(__in Z3_context c, __in Z3_probe p, __in Z3_tactic t);
/**
\brief Return a tactic that applies \c t1 to a given goal if the probe \c p evaluates to true,
and \c t2 if \c p evaluates to false.
def_API('Z3_tactic_cond', TACTIC, (_in(CONTEXT), _in(PROBE), _in(TACTIC), _in(TACTIC)))
*/
Z3_tactic Z3_API Z3_tactic_cond(__in Z3_context c, __in Z3_probe p, __in Z3_tactic t1, __in Z3_tactic t2);
/**
\brief Return a tactic that keeps applying \c t until the goal is not modified anymore or the maximum
number of iterations \c max is reached.
def_API('Z3_tactic_repeat', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(UINT)))
*/
Z3_tactic Z3_API Z3_tactic_repeat(__in Z3_context c, __in Z3_tactic t, unsigned max);
/**
\brief Return a tactic that just return the given goal.
def_API('Z3_tactic_skip', TACTIC, (_in(CONTEXT),))
*/
Z3_tactic Z3_API Z3_tactic_skip(__in Z3_context c);
/**
\brief Return a tactic that always fails.
def_API('Z3_tactic_fail', TACTIC, (_in(CONTEXT),))
*/
Z3_tactic Z3_API Z3_tactic_fail(__in Z3_context c);
/**
\brief Return a tactic that fails if the probe \c p evaluates to false.
def_API('Z3_tactic_fail_if', TACTIC, (_in(CONTEXT), _in(PROBE)))
*/
Z3_tactic Z3_API Z3_tactic_fail_if(__in Z3_context c, __in Z3_probe p);
/**
\brief Return a tactic that fails if the goal is not trivially satisfiable (i.e., empty) or
trivially unsatisfiable (i.e., contains false).
def_API('Z3_tactic_fail_if_not_decided', TACTIC, (_in(CONTEXT),))
*/
Z3_tactic Z3_API Z3_tactic_fail_if_not_decided(__in Z3_context c);
/**
\brief Return a tactic that applies \c t using the given set of parameters.
def_API('Z3_tactic_using_params', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(PARAMS)))
*/
Z3_tactic Z3_API Z3_tactic_using_params(__in Z3_context c, __in Z3_tactic t, __in Z3_params p);
/**
\brief Return a probe that always evaluates to val.
def_API('Z3_probe_const', PROBE, (_in(CONTEXT), _in(DOUBLE)))
*/
Z3_probe Z3_API Z3_probe_const(__in Z3_context x, __in double val);
/**
\brief Return a probe that evaluates to "true" when the value returned by \c p1 is less than the value returned by \c p2.
\remark For probes, "true" is any value different from 0.0.
def_API('Z3_probe_lt', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
*/
Z3_probe Z3_API Z3_probe_lt(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);
/**
\brief Return a probe that evaluates to "true" when the value returned by \c p1 is greater than the value returned by \c p2.
\remark For probes, "true" is any value different from 0.0.
def_API('Z3_probe_gt', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
*/
Z3_probe Z3_API Z3_probe_gt(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);
/**
\brief Return a probe that evaluates to "true" when the value returned by \c p1 is less than or equal to the value returned by \c p2.
\remark For probes, "true" is any value different from 0.0.
def_API('Z3_probe_le', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
*/
Z3_probe Z3_API Z3_probe_le(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);
/**
\brief Return a probe that evaluates to "true" when the value returned by \c p1 is greater than or equal to the value returned by \c p2.
\remark For probes, "true" is any value different from 0.0.
def_API('Z3_probe_ge', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
*/
Z3_probe Z3_API Z3_probe_ge(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);
/**
\brief Return a probe that evaluates to "true" when the value returned by \c p1 is equal to the value returned by \c p2.
\remark For probes, "true" is any value different from 0.0.
def_API('Z3_probe_eq', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
*/
Z3_probe Z3_API Z3_probe_eq(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);
/**
\brief Return a probe that evaluates to "true" when \c p1 and \c p2 evaluates to true.
\remark For probes, "true" is any value different from 0.0.
def_API('Z3_probe_and', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
*/
Z3_probe Z3_API Z3_probe_and(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);
/**
\brief Return a probe that evaluates to "true" when \c p1 or \c p2 evaluates to true.
\remark For probes, "true" is any value different from 0.0.
def_API('Z3_probe_or', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
*/
Z3_probe Z3_API Z3_probe_or(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);
/**
\brief Return a probe that evaluates to "true" when \c p does not evaluate to true.
\remark For probes, "true" is any value different from 0.0.
def_API('Z3_probe_not', PROBE, (_in(CONTEXT), _in(PROBE)))
*/
Z3_probe Z3_API Z3_probe_not(__in Z3_context x, __in Z3_probe p);
/**
\brief Return the number of builtin tactics available in Z3.
def_API('Z3_get_num_tactics', UINT, (_in(CONTEXT),))
*/
unsigned Z3_API Z3_get_num_tactics(__in Z3_context c);
/**
\brief Return the name of the idx tactic.
\pre i < Z3_get_num_tactics(c)
def_API('Z3_get_tactic_name', STRING, (_in(CONTEXT), _in(UINT)))
*/
Z3_string Z3_API Z3_get_tactic_name(__in Z3_context c, unsigned i);
/**
\brief Return the number of builtin probes available in Z3.
def_API('Z3_get_num_probes', UINT, (_in(CONTEXT),))
*/
unsigned Z3_API Z3_get_num_probes(__in Z3_context c);
/**
\brief Return the name of the i probe.
\pre i < Z3_get_num_probes(c)
def_API('Z3_get_probe_name', STRING, (_in(CONTEXT), _in(UINT)))
*/
Z3_string Z3_API Z3_get_probe_name(__in Z3_context c, unsigned i);
/**
\brief Return a string containing a description of parameters accepted by the given tactic.
def_API('Z3_tactic_get_help', STRING, (_in(CONTEXT), _in(TACTIC)))
*/
Z3_string Z3_API Z3_tactic_get_help(__in Z3_context c, __in Z3_tactic t);
/**
\brief Return the parameter description set for the given tactic object.
def_API('Z3_tactic_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(TACTIC)))
*/
Z3_param_descrs Z3_API Z3_tactic_get_param_descrs(__in Z3_context c, __in Z3_tactic t);
/**
\brief Return a string containing a description of the tactic with the given name.
def_API('Z3_tactic_get_descr', STRING, (_in(CONTEXT), _in(STRING)))
*/
Z3_string Z3_API Z3_tactic_get_descr(__in Z3_context c, __in Z3_string name);
/**
\brief Return a string containing a description of the probe with the given name.
def_API('Z3_probe_get_descr', STRING, (_in(CONTEXT), _in(STRING)))
*/
Z3_string Z3_API Z3_probe_get_descr(__in Z3_context c, __in Z3_string name);
/**
\brief Execute the probe over the goal. The probe always produce a double value.
"Boolean" probes return 0.0 for false, and a value different from 0.0 for true.
def_API('Z3_probe_apply', DOUBLE, (_in(CONTEXT), _in(PROBE), _in(GOAL)))
*/
double Z3_API Z3_probe_apply(__in Z3_context c, __in Z3_probe p, __in Z3_goal g);
/**
\brief Apply tactic \c t to the goal \c g.
def_API('Z3_tactic_apply', APPLY_RESULT, (_in(CONTEXT), _in(TACTIC), _in(GOAL)))
*/
Z3_apply_result Z3_API Z3_tactic_apply(__in Z3_context c, __in Z3_tactic t, __in Z3_goal g);
/**
\brief Apply tactic \c t to the goal \c g using the parameter set \c p.
def_API('Z3_tactic_apply_ex', APPLY_RESULT, (_in(CONTEXT), _in(TACTIC), _in(GOAL), _in(PARAMS)))
*/
Z3_apply_result Z3_API Z3_tactic_apply_ex(__in Z3_context c, __in Z3_tactic t, __in Z3_goal g, __in Z3_params p);
#ifdef CorML3
/**
\brief Increment the reference counter of the given \c Z3_apply_result object.
def_API('Z3_apply_result_inc_ref', VOID, (_in(CONTEXT), _in(APPLY_RESULT)))
*/
void Z3_API Z3_apply_result_inc_ref(__in Z3_context c, __in Z3_apply_result r);
/**
\brief Decrement the reference counter of the given \c Z3_apply_result object.
def_API('Z3_apply_result_dec_ref', VOID, (_in(CONTEXT), _in(APPLY_RESULT)))
*/
void Z3_API Z3_apply_result_dec_ref(__in Z3_context c, __in Z3_apply_result r);
#endif
/**
\brief Convert the \c Z3_apply_result object returned by #Z3_tactic_apply into a string.
def_API('Z3_apply_result_to_string', STRING, (_in(CONTEXT), _in(APPLY_RESULT)))
*/
Z3_string Z3_API Z3_apply_result_to_string(__in Z3_context c, __in Z3_apply_result r);
/**
\brief Return the number of subgoals in the \c Z3_apply_result object returned by #Z3_tactic_apply.
def_API('Z3_apply_result_get_num_subgoals', UINT, (_in(CONTEXT), _in(APPLY_RESULT)))
*/
unsigned Z3_API Z3_apply_result_get_num_subgoals(__in Z3_context c, __in Z3_apply_result r);
/**
\brief Return one of the subgoals in the \c Z3_apply_result object returned by #Z3_tactic_apply.
\pre i < Z3_apply_result_get_num_subgoals(c, r)
def_API('Z3_apply_result_get_subgoal', GOAL, (_in(CONTEXT), _in(APPLY_RESULT), _in(UINT)))
*/
Z3_goal Z3_API Z3_apply_result_get_subgoal(__in Z3_context c, __in Z3_apply_result r, __in unsigned i);
/**
\brief Convert a model for the subgoal \c Z3_apply_result_get_subgoal(c, r, i) into a model for the original goal \c g.
Where \c g is the goal used to create \c r using \c Z3_tactic_apply(c, t, g).
def_API('Z3_apply_result_convert_model', MODEL, (_in(CONTEXT), _in(APPLY_RESULT), _in(UINT), _in(MODEL)))
*/
Z3_model Z3_API Z3_apply_result_convert_model(__in Z3_context c, __in Z3_apply_result r, __in unsigned i, __in Z3_model m);
/*@}*/
/**
@name Solvers
*/
/*@{*/
/**
\brief Create a new (incremental) solver. This solver also uses a
set of builtin tactics for handling the first check-sat command, and
check-sat commands that take more than a given number of milliseconds to be solved.
\conly \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
\conly Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.
def_API('Z3_mk_solver', SOLVER, (_in(CONTEXT),))
*/
Z3_solver Z3_API Z3_mk_solver(__in Z3_context c);
/**
\brief Create a new (incremental) solver.
The function #Z3_solver_get_model retrieves a model if the
assertions is satisfiable (i.e., the result is \c
Z3_L_TRUE) and model construction is enabled.
The function #Z3_solver_get_model can also be used even
if the result is \c Z3_L_UNDEF, but the returned model
is not guaranteed to satisfy quantified assertions.
def_API('Z3_mk_simple_solver', SOLVER, (_in(CONTEXT),))
*/
Z3_solver Z3_API Z3_mk_simple_solver(__in Z3_context c);
/**
\brief Create a new solver customized for the given logic.
It behaves like #Z3_mk_solver if the logic is unknown or unsupported.
\conly \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
\conly Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.
def_API('Z3_mk_solver_for_logic', SOLVER, (_in(CONTEXT), _in(SYMBOL)))
*/
Z3_solver Z3_API Z3_mk_solver_for_logic(__in Z3_context c, __in Z3_symbol logic);
/**
\brief Create a new solver that is implemented using the given tactic.
The solver supports the commands #Z3_solver_push and #Z3_solver_pop, but it
will always solve each #Z3_solver_check from scratch.
def_API('Z3_mk_solver_from_tactic', SOLVER, (_in(CONTEXT), _in(TACTIC)))
*/
Z3_solver Z3_API Z3_mk_solver_from_tactic(__in Z3_context c, __in Z3_tactic t);
/**
\brief Return a string describing all solver available parameters.
def_API('Z3_solver_get_help', STRING, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_string Z3_API Z3_solver_get_help(__in Z3_context c, __in Z3_solver s);
/**
\brief Return the parameter description set for the given solver object.
def_API('Z3_solver_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_param_descrs Z3_API Z3_solver_get_param_descrs(__in Z3_context c, __in Z3_solver s);
/**
\brief Set the given solver using the given parameters.
def_API('Z3_solver_set_params', VOID, (_in(CONTEXT), _in(SOLVER), _in(PARAMS)))
*/
void Z3_API Z3_solver_set_params(__in Z3_context c, __in Z3_solver s, __in Z3_params p);
#ifdef Conly
/**
\brief Increment the reference counter of the given solver.
def_API('Z3_solver_inc_ref', VOID, (_in(CONTEXT), _in(SOLVER)))
*/
void Z3_API Z3_solver_inc_ref(__in Z3_context c, __in Z3_solver s);
/**
\brief Decrement the reference counter of the given solver.
def_API('Z3_solver_dec_ref', VOID, (_in(CONTEXT), _in(SOLVER)))
*/
void Z3_API Z3_solver_dec_ref(__in Z3_context c, __in Z3_solver s);
#endif
/**
\brief Create a backtracking point.
The solver contains a stack of assertions.
\sa Z3_solver_pop
def_API('Z3_solver_push', VOID, (_in(CONTEXT), _in(SOLVER)))
*/
void Z3_API Z3_solver_push(__in Z3_context c, __in Z3_solver s);
/**
\brief Backtrack \c n backtracking points.
\sa Z3_solver_push
\pre n <= Z3_solver_get_num_scopes(c, s)
def_API('Z3_solver_pop', VOID, (_in(CONTEXT), _in(SOLVER), _in(UINT)))
*/
void Z3_API Z3_solver_pop(__in Z3_context c, __in Z3_solver s, unsigned n);
/**
\brief Remove all assertions from the solver.
def_API('Z3_solver_reset', VOID, (_in(CONTEXT), _in(SOLVER)))
*/
void Z3_API Z3_solver_reset(__in Z3_context c, __in Z3_solver s);
/**
\brief Return the number of backtracking points.
\sa Z3_solver_push
\sa Z3_solver_pop
def_API('Z3_solver_get_num_scopes', UINT, (_in(CONTEXT), _in(SOLVER)))
*/
unsigned Z3_API Z3_solver_get_num_scopes(__in Z3_context c, __in Z3_solver s);
/**
\brief Assert a constraint into the solver.
The functions #Z3_solver_check and #Z3_solver_check_assumptions should be
used to check whether the logical context is consistent or not.
def_API('Z3_solver_assert', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST)))
*/
void Z3_API Z3_solver_assert(__in Z3_context c, __in Z3_solver s, __in Z3_ast a);
/**
\brief Assert a constraint \c a into the solver, and track it (in the unsat) core using
the Boolean constant \c p.
This API is an alternative to #Z3_solver_check_assumptions for extracting unsat cores.
Both APIs can be used in the same solver. The unsat core will contain a combination
of the Boolean variables provided using Z3_solver_assert_and_track and the Boolean literals
provided using #Z3_solver_check_assumptions.
\pre \c a must be a Boolean expression
\pre \c p must be a Boolean constant (aka variable).
def_API('Z3_solver_assert_and_track', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST), _in(AST)))
*/
void Z3_API Z3_solver_assert_and_track(__in Z3_context c, __in Z3_solver s, __in Z3_ast a, __in Z3_ast p);
/**
\brief Return the set of asserted formulas as a goal object.
def_API('Z3_solver_get_assertions', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_ast_vector Z3_API Z3_solver_get_assertions(__in Z3_context c, __in Z3_solver s);
/**
\brief Check whether the assertions in a given solver are consistent or not.
The function #Z3_solver_get_model retrieves a model if the
assertions is satisfiable (i.e., the result is \c
Z3_L_TRUE) and model construction is enabled.
Note that if the call returns Z3_L_UNDEF, Z3 does not
ensure that calls to #Z3_solver_get_model succeed and any models
produced in this case are not guaranteed to satisfy the assertions.
The function #Z3_solver_get_proof retrieves a proof if proof
generation was enabled when the context was created, and the
assertions are unsatisfiable (i.e., the result is \c Z3_L_FALSE).
def_API('Z3_solver_check', INT, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_lbool Z3_API Z3_solver_check(__in Z3_context c, __in Z3_solver s);
/**
\brief Check whether the assertions in the given solver and
optional assumptions are consistent or not.
The function #Z3_solver_get_unsat_core retrieves the subset of the
assumptions used in the unsatisfiability proof produced by Z3.
\sa Z3_solver_check
def_API('Z3_solver_check_assumptions', INT, (_in(CONTEXT), _in(SOLVER), _in(UINT), _in_array(2, AST)))
*/
Z3_lbool Z3_API Z3_solver_check_assumptions(__in Z3_context c, __in Z3_solver s,
__in unsigned num_assumptions, __in_ecount(num_assumptions) Z3_ast const assumptions[]);
/**
\brief Retrieve the model for the last #Z3_solver_check or #Z3_solver_check_assumptions
The error handler is invoked if a model is not available because
the commands above were not invoked for the given solver, or if the result was \c Z3_L_FALSE.
def_API('Z3_solver_get_model', MODEL, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_model Z3_API Z3_solver_get_model(__in Z3_context c, __in Z3_solver s);
/**
\brief Retrieve the proof for the last #Z3_solver_check or #Z3_solver_check_assumptions
The error handler is invoked if proof generation is not enabled,
or if the commands above were not invoked for the given solver,
or if the result was different from \c Z3_L_FALSE.
def_API('Z3_solver_get_proof', AST, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_ast Z3_API Z3_solver_get_proof(__in Z3_context c, __in Z3_solver s);
/**
\brief Retrieve the unsat core for the last #Z3_solver_check_assumptions
The unsat core is a subset of the assumptions \c a.
def_API('Z3_solver_get_unsat_core', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_ast_vector Z3_API Z3_solver_get_unsat_core(__in Z3_context c, __in Z3_solver s);
/**
\brief Return a brief justification for an "unknown" result (i.e., Z3_L_UNDEF) for
the commands #Z3_solver_check and #Z3_solver_check_assumptions
def_API('Z3_solver_get_reason_unknown', STRING, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_string Z3_API Z3_solver_get_reason_unknown(__in Z3_context c, __in Z3_solver s);
/**
\brief Return statistics for the given solver.
\conly \remark User must use #Z3_stats_inc_ref and #Z3_stats_dec_ref to manage Z3_stats objects.
def_API('Z3_solver_get_statistics', STATS, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_stats Z3_API Z3_solver_get_statistics(__in Z3_context c, __in Z3_solver s);
/**
\brief Convert a solver into a string.
def_API('Z3_solver_to_string', STRING, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_string Z3_API Z3_solver_to_string(__in Z3_context c, __in Z3_solver s);
/*@}*/
/**
@name Statistics
*/
/*@{*/
#ifdef ML4only
#include <mlx_statistics.idl>
#endif
/**
\brief Convert a statistics into a string.
def_API('Z3_stats_to_string', STRING, (_in(CONTEXT), _in(STATS)))
*/
Z3_string Z3_API Z3_stats_to_string(__in Z3_context c, __in Z3_stats s);
/**
\mlonly {4 {L Low-level API}} \endmlonly
*/
#ifdef Conly
/**
\brief Increment the reference counter of the given statistics object.
def_API('Z3_stats_inc_ref', VOID, (_in(CONTEXT), _in(STATS)))
*/
void Z3_API Z3_stats_inc_ref(__in Z3_context c, __in Z3_stats s);
/**
\brief Decrement the reference counter of the given statistics object.
def_API('Z3_stats_dec_ref', VOID, (_in(CONTEXT), _in(STATS)))
*/
void Z3_API Z3_stats_dec_ref(__in Z3_context c, __in Z3_stats s);
#endif
/**
\brief Return the number of statistical data in \c s.
def_API('Z3_stats_size', UINT, (_in(CONTEXT), _in(STATS)))
*/
unsigned Z3_API Z3_stats_size(__in Z3_context c, __in Z3_stats s);
/**
\brief Return the key (a string) for a particular statistical data.
\pre idx < Z3_stats_size(c, s)
def_API('Z3_stats_get_key', STRING, (_in(CONTEXT), _in(STATS), _in(UINT)))
*/
Z3_string Z3_API Z3_stats_get_key(__in Z3_context c, __in Z3_stats s, __in unsigned idx);
/**
\brief Return Z3_TRUE if the given statistical data is a unsigned integer.
\pre idx < Z3_stats_size(c, s)
def_API('Z3_stats_is_uint', BOOL, (_in(CONTEXT), _in(STATS), _in(UINT)))
*/
Z3_bool Z3_API Z3_stats_is_uint(__in Z3_context c, __in Z3_stats s, __in unsigned idx);
/**
\brief Return Z3_TRUE if the given statistical data is a double.
\pre idx < Z3_stats_size(c, s)
def_API('Z3_stats_is_double', BOOL, (_in(CONTEXT), _in(STATS), _in(UINT)))
*/
Z3_bool Z3_API Z3_stats_is_double(__in Z3_context c, __in Z3_stats s, __in unsigned idx);
/**
\brief Return the unsigned value of the given statistical data.
\pre idx < Z3_stats_size(c, s) && Z3_stats_is_uint(c, s)
def_API('Z3_stats_get_uint_value', UINT, (_in(CONTEXT), _in(STATS), _in(UINT)))
*/
unsigned Z3_API Z3_stats_get_uint_value(__in Z3_context c, __in Z3_stats s, __in unsigned idx);
/**
\brief Return the double value of the given statistical data.
\pre idx < Z3_stats_size(c, s) && Z3_stats_is_double(c, s)
def_API('Z3_stats_get_double_value', DOUBLE, (_in(CONTEXT), _in(STATS), _in(UINT)))
*/
double Z3_API Z3_stats_get_double_value(__in Z3_context c, __in Z3_stats s, __in unsigned idx);
/*@}*/
#endif
#ifdef CorML3
/**
@name Deprecated Injective functions API
*/
/*@{*/
/**
\brief Create injective function declaration
\deprecated This method just asserts a (universally quantified) formula that asserts that
the new function is injective. It is compatible with the old interface for solving:
#Z3_assert_cnstr, #Z3_check_assumptions, etc.
def_API('Z3_mk_injective_function', FUNC_DECL, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SORT), _in(SORT)))
*/
Z3_func_decl Z3_API Z3_mk_injective_function(
__in Z3_context c,
__in Z3_symbol s,
unsigned domain_size, __in_ecount(domain_size) Z3_sort const domain[],
__in Z3_sort range
);
/*@}*/
#endif
/**
@name Deprecated Constraints API
*/
/*@{*/
#ifdef CorML3
/**
\brief Set the SMTLIB logic to be used in the given logical context.
It is incorrect to invoke this function after invoking
#Z3_check, #Z3_check_and_get_model, #Z3_check_assumptions and #Z3_push.
Return \c Z3_TRUE if the logic was changed successfully, and \c Z3_FALSE otherwise.
\deprecated Subsumed by #Z3_mk_solver_for_logic
def_API('Z3_set_logic', VOID, (_in(CONTEXT), _in(STRING)))
*/
Z3_bool Z3_API Z3_set_logic(__in Z3_context c, __in Z3_string logic);
/**
\brief Create a backtracking point.
The logical context can be viewed as a stack of contexts. The
scope level is the number of elements on this stack. The stack
of contexts is simulated using trail (undo) stacks.
\sa Z3_pop
\deprecated Subsumed by #Z3_solver_push
def_API('Z3_push', VOID, (_in(CONTEXT),))
*/
void Z3_API Z3_push(__in Z3_context c);
/**
\brief Backtrack.
Restores the context from the top of the stack, and pops it off the
stack. Any changes to the logical context (by #Z3_assert_cnstr or
other functions) between the matching #Z3_push and \c Z3_pop
operators are flushed, and the context is completely restored to
what it was right before the #Z3_push.
\sa Z3_push
\deprecated Subsumed by #Z3_solver_pop
def_API('Z3_pop', VOID, (_in(CONTEXT), _in(UINT)))
*/
void Z3_API Z3_pop(__in Z3_context c, __in unsigned num_scopes);
/**
\brief Retrieve the current scope level.
It retrieves the number of scopes that have been pushed, but not yet popped.
\sa Z3_push
\sa Z3_pop
\deprecated Subsumed by #Z3_solver_get_num_scopes.
def_API('Z3_get_num_scopes', UINT, (_in(CONTEXT),))
*/
unsigned Z3_API Z3_get_num_scopes(__in Z3_context c);
/**
\conly \brief Persist AST through num_scopes pops.
\conly This function is only relevant if \c c was created using #Z3_mk_context.
\conly If \c c was created using #Z3_mk_context_rc, this function is a NOOP.
\conly Normally, for contexts created using #Z3_mk_context,
\conly references to terms are no longer valid when
\conly popping scopes beyond the level where the terms are created.
\conly If you want to reference a term below the scope where it
\conly was created, use this method to specify how many pops
\conly the term should survive.
\conly The num_scopes should be at most equal to the number of
\conly calls to Z3_push subtracted with the calls to Z3_pop.
\conly \deprecated Z3 users should move to #Z3_mk_context_rc and use the
\conly reference counting APIs for managing AST nodes.
\mlonly \deprecated This function has no effect. \endmlonly
def_API('Z3_persist_ast', VOID, (_in(CONTEXT), _in(AST), _in(UINT)))
*/
void Z3_API Z3_persist_ast(__in Z3_context c, __in Z3_ast a, __in unsigned num_scopes);
/**
\brief Assert a constraint into the logical context.
After one assertion, the logical context may become
inconsistent.
The functions #Z3_check or #Z3_check_and_get_model should be
used to check whether the logical context is consistent or not.
\sa Z3_check
\sa Z3_check_and_get_model
\deprecated Subsumed by #Z3_solver_assert
def_API('Z3_assert_cnstr', VOID, (_in(CONTEXT), _in(AST)))
*/
void Z3_API Z3_assert_cnstr(__in Z3_context c, __in Z3_ast a);
/**
\brief Check whether the given logical context is consistent or not.
If the logical context is not unsatisfiable (i.e., the return value is different from \c Z3_L_FALSE)
and model construction is enabled (see #Z3_mk_config),
\conly then a model is stored in \c m. Otherwise, the value \c NULL is stored in \c m.
\mlonly then a valid model is returned. Otherwise, it is unsafe to use the returned model.\endmlonly
\conly The caller is responsible for deleting the model using the function #Z3_del_model.
\conly \remark In contrast with the rest of the Z3 API, the reference counter of the
\conly model is incremented. This is to guarantee backward compatibility. In previous
\conly versions, models did not support reference counting.
\remark Model construction must be enabled using configuration
parameters (See, #Z3_mk_config).
\sa Z3_check
\conly \sa Z3_del_model
\deprecated Subsumed by #Z3_solver_check
def_API('Z3_check_and_get_model', INT, (_in(CONTEXT), _out(MODEL)))
*/
Z3_lbool Z3_API Z3_check_and_get_model(__in Z3_context c, __out Z3_model * m);
/**
\brief Check whether the given logical context is consistent or not.
The function #Z3_check_and_get_model should be used when models are needed.
\sa Z3_check_and_get_model
\deprecated Subsumed by #Z3_solver_check
def_API('Z3_check', INT, (_in(CONTEXT),))
*/
Z3_lbool Z3_API Z3_check(__in Z3_context c);
/**
\brief Check whether the given logical context and optional assumptions is consistent or not.
If the logical context is not unsatisfiable (i.e., the return value is different from \c Z3_L_FALSE),
\conly a non-NULL model argument is passed in,
and model construction is enabled (see #Z3_mk_config),
\conly then a model is stored in \c m. Otherwise, \c m is left unchanged.
\mlonly then a valid model is returned. Otherwise, it is unsafe to use the returned model.\endmlonly
\conly The caller is responsible for deleting the model using the function #Z3_del_model.
\conly \remark If the model argument is non-NULL, then model construction must be enabled using configuration
\conly parameters (See, #Z3_mk_config).
\param c logical context.
\param num_assumptions number of auxiliary assumptions.
\param assumptions array of auxiliary assumptions
\param m optional pointer to a model.
\param proof optional pointer to a proof term.
\param core_size size of unsatisfiable core.
\param core pointer to an array receiving unsatisfiable core.
The unsatisfiable core is a subset of the assumptions, so the array has the same size as the assumptions.
The \c core array is not populated if \c core_size is set to 0.
\pre assumptions comprises of propositional literals.
In other words, you cannot use compound formulas for assumptions,
but should use propositional variables or negations of propositional variables.
\conly \remark In constrast with the rest of the Z3 API, the reference counter of the
\conly model is incremented. This is to guarantee backward compatibility. In previous
\conly versions, models did not support reference counting.
\sa Z3_check
\conly \sa Z3_del_model
\deprecated Subsumed by #Z3_solver_check_assumptions
def_API('Z3_check_assumptions', INT, (_in(CONTEXT), _in(UINT), _in_array(1, AST), _out(MODEL), _out(AST), _out(UINT), _out_array2(1, 5, AST)))
*/
Z3_lbool Z3_API Z3_check_assumptions(
__in Z3_context c,
__in unsigned num_assumptions, __in_ecount(num_assumptions) Z3_ast const assumptions[],
__out Z3_model * m, __out Z3_ast* proof,
__inout unsigned* core_size, __inout_ecount(num_assumptions) Z3_ast core[]
);
#endif
#ifdef CorML4
/**
\brief Retrieve congruence class representatives for terms.
The function can be used for relying on Z3 to identify equal terms under the current
set of assumptions. The array of terms and array of class identifiers should have
the same length. The class identifiers are numerals that are assigned to the same
value for their corresponding terms if the current context forces the terms to be
equal. You cannot deduce that terms corresponding to different numerals must be all different,
(especially when using non-convex theories).
All implied equalities are returned by this call.
This means that two terms map to the same class identifier if and only if
the current context implies that they are equal.
A side-effect of the function is a satisfiability check on the assertions on the solver that is passed in.
The function return Z3_L_FALSE if the current assertions are not satisfiable.
\sa Z3_check_and_get_model
\sa Z3_check
\deprecated To be moved outside of API.
def_API('Z3_get_implied_equalities', UINT, (_in(CONTEXT), _in(SOLVER), _in(UINT), _in_array(2, AST), _out_array(2, UINT)))
*/
Z3_lbool Z3_API Z3_get_implied_equalities(
__in Z3_context c,
__in Z3_solver s,
__in unsigned num_terms,
__in_ecount(num_terms) Z3_ast const terms[],
__out_ecount(num_terms) unsigned class_ids[]
);
#endif
#ifdef CorML3
/**
\brief Delete a model object.
\sa Z3_check_and_get_model
\conly \remark The Z3_check_and_get_model automatically increments a reference count on the model.
\conly The expected usage is that models created by that method are deleted using Z3_del_model.
\conly This is for backwards compatibility and in contrast to the rest of the API where
\conly callers are responsible for managing reference counts.
\deprecated Subsumed by Z3_solver API
def_API('Z3_del_model', VOID, (_in(CONTEXT), _in(MODEL)))
*/
void Z3_API Z3_del_model(__in Z3_context c, __in Z3_model m);
/*@}*/
/**
@name Deprecated Search control API
*/
/*@{*/
/**
\brief Cancel an ongoing check.
Notifies the current check to abort and return.
This method should be called from a different thread
than the one performing the check.
\deprecated Use #Z3_interrupt instead.
def_API('Z3_soft_check_cancel', VOID, (_in(CONTEXT), ))
*/
void Z3_API Z3_soft_check_cancel(__in Z3_context c);
/**
\brief Retrieve reason for search failure.
If a call to #Z3_check or #Z3_check_and_get_model returns Z3_L_UNDEF,
use this facility to determine the more detailed cause of search failure.
\deprecated Subsumed by #Z3_solver_get_reason_unknown
def_API('Z3_get_search_failure', UINT, (_in(CONTEXT), ))
*/
Z3_search_failure Z3_API Z3_get_search_failure(__in Z3_context c);
/*@}*/
/**
@name Deprecated Labels API
*/
/*@{*/
/**
\brief Create a labeled formula.
\param c logical context.
\param s name of the label.
\param is_pos label polarity.
\param f formula being labeled.
A label behaves as an identity function, so the truth value of the
labeled formula is unchanged. Labels are used for identifying
useful sub-formulas when generating counter-examples.
\deprecated Labels are only supported by the old Solver API.
This feature is not essential (it can be simulated using auxiliary Boolean variables).
It is only available for backward compatibility.
def_API('Z3_mk_label', AST, (_in(CONTEXT), _in(SYMBOL), _in(BOOL), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_label(__in Z3_context c, __in Z3_symbol s, Z3_bool is_pos, Z3_ast f);
/**
\brief Retrieve the set of labels that were relevant in
the context of the current satisfied context.
\sa Z3_del_literals
\sa Z3_get_num_literals
\sa Z3_get_label_symbol
\sa Z3_get_literal
\deprecated This procedure is based on the old Solver API.
def_API('Z3_get_relevant_labels', LITERALS, (_in(CONTEXT), ))
*/
Z3_literals Z3_API Z3_get_relevant_labels(__in Z3_context c);
/**
\brief Retrieve the set of literals that satisfy the current context.
\sa Z3_del_literals
\sa Z3_get_num_literals
\sa Z3_get_label_symbol
\sa Z3_get_literal
\deprecated This procedure is based on the old Solver API.
def_API('Z3_get_relevant_literals', LITERALS, (_in(CONTEXT), ))
*/
Z3_literals Z3_API Z3_get_relevant_literals(__in Z3_context c);
/**
\brief Retrieve the set of literals that whose assignment were
guess, but not propagated during the search.
\sa Z3_del_literals
\sa Z3_get_num_literals
\sa Z3_get_label_symbol
\sa Z3_get_literal
\deprecated This procedure is based on the old Solver API.
def_API('Z3_get_guessed_literals', LITERALS, (_in(CONTEXT), ))
*/
Z3_literals Z3_API Z3_get_guessed_literals(__in Z3_context c);
/**
\brief Delete a labels context.
\sa Z3_get_relevant_labels
\deprecated This procedure is based on the old Solver API.
def_API('Z3_del_literals', VOID, (_in(CONTEXT), _in(LITERALS)))
*/
void Z3_API Z3_del_literals(__in Z3_context c, __in Z3_literals lbls);
/**
\brief Retrieve the number of label symbols that were returned.
\sa Z3_get_relevant_labels
\deprecated This procedure is based on the old Solver API.
def_API('Z3_get_num_literals', UINT, (_in(CONTEXT), _in(LITERALS)))
*/
unsigned Z3_API Z3_get_num_literals(__in Z3_context c, __in Z3_literals lbls);
/**
\brief Retrieve label symbol at idx.
\deprecated This procedure is based on the old Solver API.
def_API('Z3_get_label_symbol', SYMBOL, (_in(CONTEXT), _in(LITERALS), _in(UINT)))
*/
Z3_symbol Z3_API Z3_get_label_symbol(__in Z3_context c, __in Z3_literals lbls, __in unsigned idx);
/**
\brief Retrieve literal expression at idx.
\deprecated This procedure is based on the old Solver API.
def_API('Z3_get_literal', AST, (_in(CONTEXT), _in(LITERALS), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_literal(__in Z3_context c, __in Z3_literals lbls, __in unsigned idx);
/**
\brief Disable label.
The disabled label is not going to be used when blocking the subsequent search.
\sa Z3_block_literals
\deprecated This procedure is based on the old Solver API.
def_API('Z3_disable_literal', VOID, (_in(CONTEXT), _in(LITERALS), _in(UINT)))
*/
void Z3_API Z3_disable_literal(__in Z3_context c, __in Z3_literals lbls, __in unsigned idx);
/**
\brief Block subsequent checks using the remaining enabled labels.
\deprecated This procedure is based on the old Solver API.
def_API('Z3_block_literals', VOID, (_in(CONTEXT), _in(LITERALS)))
*/
void Z3_API Z3_block_literals(__in Z3_context c, __in Z3_literals lbls);
/*@}*/
/**
@name Deprecated Model API
*/
/*@{*/
/**
\brief Return the number of constants assigned by the given model.
\mlonly \remark Consider using {!get_model_constants}. \endmlonly
\sa Z3_get_model_constant
\deprecated use #Z3_model_get_num_consts
def_API('Z3_get_model_num_constants', UINT, (_in(CONTEXT), _in(MODEL)))
*/
unsigned Z3_API Z3_get_model_num_constants(__in Z3_context c, __in Z3_model m);
/**
\brief \mlh get_model_constant c m i \endmlh
Return the i-th constant in the given model.
\mlonly \remark Consider using {!get_model_constants}. \endmlonly
\pre i < Z3_get_model_num_constants(c, m)
\deprecated use #Z3_model_get_const_decl
def_API('Z3_get_model_constant', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
*/
Z3_func_decl Z3_API Z3_get_model_constant(__in Z3_context c, __in Z3_model m, __in unsigned i);
/**
\brief Return the number of function interpretations in the given model.
A function interpretation is represented as a finite map and an 'else' value.
Each entry in the finite map represents the value of a function given a set of arguments.
\deprecated use #Z3_model_get_num_funcs
def_API('Z3_get_model_num_funcs', UINT, (_in(CONTEXT), _in(MODEL)))
*/
unsigned Z3_API Z3_get_model_num_funcs(__in Z3_context c, __in Z3_model m);
/**
\brief \mlh get_model_func_decl c m i \endmlh
Return the declaration of the i-th function in the given model.
\pre i < Z3_get_model_num_funcs(c, m)
\sa Z3_get_model_num_funcs
\deprecated use #Z3_model_get_func_decl
def_API('Z3_get_model_func_decl', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
*/
Z3_func_decl Z3_API Z3_get_model_func_decl(__in Z3_context c, __in Z3_model m, __in unsigned i);
/**
\brief Return the value of the given constant or function
in the given model.
\deprecated Consider using #Z3_model_eval or #Z3_model_get_func_interp
def_API('Z3_eval_func_decl', BOOL, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL), _out(AST)))
*/
Z3_bool Z3_API Z3_eval_func_decl(__in Z3_context c, __in Z3_model m, __in Z3_func_decl decl, __out Z3_ast* v);
/**
\brief \mlh is_array_value c v \endmlh
Determine whether the term encodes an array value.
A term encodes an array value if it is a nested sequence of
applications of store on top of a constant array.
The indices to the stores have to be values (for example, integer constants)
so that equality between the indices can be evaluated.
Array values are useful for representing interpretations for arrays.
Return the number of entries mapping to non-default values of the array.
\deprecated Use #Z3_is_as_array
def_API('Z3_is_array_value', BOOL, (_in(CONTEXT), _in(MODEL), _in(AST), _out(UINT)))
*/
Z3_bool Z3_API Z3_is_array_value(__in Z3_context c, __in Z3_model m, __in Z3_ast v, __out unsigned* num_entries);
/**
\brief \mlh get_array_value c v \endmlh
An array values is represented as a dictionary plus a
default (else) value. This function returns the array graph.
\pre Z3_TRUE == Z3_is_array_value(c, v, &num_entries)
\deprecated Use Z3_func_interp objects and #Z3_get_as_array_func_decl
def_API('Z3_get_array_value', VOID, (_in(CONTEXT), _in(MODEL), _in(AST), _in(UINT), _out_array(3, AST), _out_array(3, AST), _out (AST)))
*/
void Z3_API Z3_get_array_value(__in Z3_context c,
__in Z3_model m,
__in Z3_ast v,
__in unsigned num_entries,
__inout_ecount(num_entries) Z3_ast indices[],
__inout_ecount(num_entries) Z3_ast values[],
__out Z3_ast* else_value
);
/**
\brief \mlh get_model_func_else c m i \endmlh
Return the 'else' value of the i-th function interpretation in the given model.
A function interpretation is represented as a finite map and an 'else' value.
\mlonly \remark Consider using {!get_model_funcs}. \endmlonly
\pre i < Z3_get_model_num_funcs(c, m)
\sa Z3_get_model_num_funcs
\sa Z3_get_model_func_num_entries
\sa Z3_get_model_func_entry_num_args
\sa Z3_get_model_func_entry_arg
\deprecated Use Z3_func_interp objects
def_API('Z3_get_model_func_else', AST, (_in(CONTEXT), _in(MODEL), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_model_func_else(__in Z3_context c, __in Z3_model m, __in unsigned i);
/**
\brief \mlh get_model_func_num_entries c m i \endmlh
Return the number of entries of the i-th function interpretation in the given model.
A function interpretation is represented as a finite map and an 'else' value.
\mlonly \remark Consider using {!get_model_funcs}. \endmlonly
\pre i < Z3_get_model_num_funcs(c, m)
\sa Z3_get_model_num_funcs
\sa Z3_get_model_func_else
\sa Z3_get_model_func_entry_num_args
\sa Z3_get_model_func_entry_arg
\deprecated Use Z3_func_interp objects
def_API('Z3_get_model_func_num_entries', UINT, (_in(CONTEXT), _in(MODEL), _in(UINT)))
*/
unsigned Z3_API Z3_get_model_func_num_entries(__in Z3_context c, __in Z3_model m, __in unsigned i);
/**
\brief \mlh get_model_func_entry_num_args c m i j \endmlh
Return the number of arguments of the j-th entry of the i-th function interpretation in the given
model.
A function interpretation is represented as a finite map and an 'else' value.
This function returns the j-th entry of this map.
An entry represents the value of a function given a set of arguments.
\conly That is: it has the following format <tt>f(args[0],...,args[num_args - 1]) = val</tt>.
\mlonly \remark Consider using {!get_model_funcs}. \endmlonly
\pre i < Z3_get_model_num_funcs(c, m)
\pre j < Z3_get_model_func_num_entries(c, m, i)
\sa Z3_get_model_num_funcs
\sa Z3_get_model_func_num_entries
\sa Z3_get_model_func_entry_arg
\deprecated Use Z3_func_interp objects
def_API('Z3_get_model_func_entry_num_args', UINT, (_in(CONTEXT), _in(MODEL), _in(UINT), _in(UINT)))
*/
unsigned Z3_API Z3_get_model_func_entry_num_args(__in Z3_context c,
__in Z3_model m,
__in unsigned i,
__in unsigned j);
/**
\brief \mlh get_model_func_entry_arg c m i j k \endmlh
Return the k-th argument of the j-th entry of the i-th function interpretation in the given
model.
A function interpretation is represented as a finite map and an 'else' value.
This function returns the j-th entry of this map.
An entry represents the value of a function given a set of arguments.
\conly That is: it has the following format <tt>f(args[0],...,args[num_args - 1]) = val</tt>.
\mlonly \remark Consider using {!get_model_funcs}. \endmlonly
\pre i < Z3_get_model_num_funcs(c, m)
\pre j < Z3_get_model_func_num_entries(c, m, i)
\pre k < Z3_get_model_func_entry_num_args(c, m, i, j)
\sa Z3_get_model_num_funcs
\sa Z3_get_model_func_num_entries
\sa Z3_get_model_func_entry_num_args
\deprecated Use Z3_func_interp objects
def_API('Z3_get_model_func_entry_arg', AST, (_in(CONTEXT), _in(MODEL), _in(UINT), _in(UINT), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_model_func_entry_arg(__in Z3_context c,
__in Z3_model m,
__in unsigned i,
__in unsigned j,
__in unsigned k);
/**
\brief \mlh get_model_func_entry_value c m i j \endmlh
Return the return value of the j-th entry of the i-th function interpretation in the given
model.
A function interpretation is represented as a finite map and an 'else' value.
This function returns the j-th entry of this map.
An entry represents the value of a function given a set of arguments.
\conly That is: it has the following format <tt>f(args[0],...,args[num_args - 1]) = val</tt>.
\mlonly \remark Consider using {!get_model_funcs}. \endmlonly
\pre i < Z3_get_model_num_funcs(c, m)
\pre j < Z3_get_model_func_num_entries(c, m, i)
\sa Z3_get_model_num_funcs
\sa Z3_get_model_func_num_entries
\deprecated Use Z3_func_interp objects
def_API('Z3_get_model_func_entry_value', AST, (_in(CONTEXT), _in(MODEL), _in(UINT), _in(UINT)))
*/
Z3_ast Z3_API Z3_get_model_func_entry_value(__in Z3_context c,
__in Z3_model m,
__in unsigned i,
__in unsigned j);
/**
\brief \mlh eval c m t \endmlh
Evaluate the AST node \c t in the given model.
\conly Return \c Z3_TRUE if succeeded, and store the result in \c v.
\mlonly Return a pair: Boolean and value. The Boolean is true if the term was successfully evaluated. \endmlonly
The evaluation may fail for the following reasons:
- \c t contains a quantifier.
- the model \c m is partial, that is, it doesn't have a complete interpretation for uninterpreted functions.
That is, the option <tt>MODEL_PARTIAL=true</tt> was used.
- \c t is type incorrect.
\deprecated Use #Z3_model_eval
def_API('Z3_eval', BOOL, (_in(CONTEXT), _in(MODEL), _in(AST), _out(AST)))
*/
Z3_bool Z3_API Z3_eval(__in Z3_context c, __in Z3_model m, __in Z3_ast t, __out Z3_ast * v);
/**
\brief Evaluate declaration given values.
Provides direct way to evaluate declarations
without going over terms.
\deprecated Consider using #Z3_model_eval and #Z3_substitute_vars
def_API('Z3_eval_decl', BOOL, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL), _in(UINT), _in_array(3, AST), _out(AST)))
*/
Z3_bool Z3_API Z3_eval_decl(__in Z3_context c, __in Z3_model m,
__in Z3_func_decl d,
__in unsigned num_args,
__in_ecount(num_args) Z3_ast const args[],
__out Z3_ast* v);
/*@}*/
/**
@name Deprecated String conversion API
*/
/*@{*/
/**
\brief Convert the given logical context into a string.
This function is mainly used for debugging purposes. It displays
the internal structure of a logical context.
\conly \warning The result buffer is statically allocated by Z3. It will
\conly be automatically deallocated when #Z3_del_context is invoked.
\conly So, the buffer is invalidated in the next call to \c Z3_context_to_string.
\deprecated This method is obsolete. It just displays the internal representation of
the global solver available for backward compatibility reasons.
def_API('Z3_context_to_string', STRING, (_in(CONTEXT),))
*/
Z3_string Z3_API Z3_context_to_string(__in Z3_context c);
/**
\brief Return runtime statistics as a string.
This function is mainly used for debugging purposes. It displays
statistics of the search activity.
\conly \warning The result buffer is statically allocated by Z3. It will
\conly be automatically deallocated when #Z3_del_context is invoked.
\conly So, the buffer is invalidated in the next call to \c Z3_context_to_string.
\deprecated This method is based on the old solver API.
Use #Z3_stats_to_string when using the new solver API.
def_API('Z3_statistics_to_string', STRING, (_in(CONTEXT),))
*/
Z3_string Z3_API Z3_statistics_to_string(__in Z3_context c);
/**
\brief Extract satisfying assignment from context as a conjunction.
This function can be used for debugging purposes. It returns a conjunction
of formulas that are assigned to true in the current context.
This conjunction will contain not only the assertions that are set to true
under the current assignment, but will also include additional literals
if there has been a call to #Z3_check or #Z3_check_and_get_model.
\deprecated This method is based on the old solver API.
def_API('Z3_get_context_assignment', AST, (_in(CONTEXT),))
*/
Z3_ast Z3_API Z3_get_context_assignment(__in Z3_context c);
/*@}*/
#endif
#ifndef CAMLIDL
#ifdef __cplusplus
};
#endif // __cplusplus
#else
}
#endif // CAMLIDL
/*@}*/
#endif
|