/usr/lib/ocaml/z3/z3.ml is in libz3-ocaml-dev 4.4.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 | (**
The Z3 ML/OCaml Interface.
Copyright (C) 2012 Microsoft Corporation
@author CM Wintersteiger (cwinter) 2012-12-17
*)
open Z3enums
exception Error = Z3native.Exception
(* Some helpers. *)
let null = Z3native.mk_null()
let is_null o = (Z3native.is_null o)
(* Internal types *)
type z3_native_context = { m_n_ctx : Z3native.z3_context; m_n_obj_cnt: int; }
type context = z3_native_context
type z3_native_object = {
m_ctx : context ;
mutable m_n_obj : Z3native.ptr ;
inc_ref : Z3native.z3_context -> Z3native.ptr -> unit;
dec_ref : Z3native.z3_context -> Z3native.ptr -> unit }
(** Internal stuff *)
module Internal =
struct
let dispose_context ctx =
if ctx.m_n_obj_cnt == 0 then (
(Z3native.del_context ctx.m_n_ctx)
) else (
Printf.printf "ERROR: NOT DISPOSING CONTEXT (because it still has %d objects alive)\n" ctx.m_n_obj_cnt;
)
let create_context settings =
let cfg = Z3native.mk_config () in
let f e = (Z3native.set_param_value cfg (fst e) (snd e)) in
(List.iter f settings) ;
let v = Z3native.mk_context_rc cfg in
Z3native.del_config(cfg) ;
Z3native.set_ast_print_mode v (int_of_ast_print_mode PRINT_SMTLIB2_COMPLIANT) ;
Z3native.set_internal_error_handler v ;
let res = { m_n_ctx = v; m_n_obj_cnt = 0 } in
let f = fun o -> dispose_context o in
Gc.finalise f res;
res
let context_add1 ctx = ignore (ctx.m_n_obj_cnt = ctx.m_n_obj_cnt + 1)
let context_sub1 ctx = ignore (ctx.m_n_obj_cnt = ctx.m_n_obj_cnt - 1)
let context_gno ctx = ctx.m_n_ctx
let z3obj_gc o = o.m_ctx
let z3obj_gnc o = (context_gno o.m_ctx)
let z3obj_gno o = o.m_n_obj
let z3obj_sno o ctx no =
(context_add1 ctx) ;
o.inc_ref (context_gno ctx) no ;
(
if not (is_null o.m_n_obj) then
o.dec_ref (context_gno ctx) o.m_n_obj ;
(context_sub1 ctx)
) ;
o.m_n_obj <- no
let z3obj_dispose o =
if not (is_null o.m_n_obj) then
(
o.dec_ref (z3obj_gnc o) o.m_n_obj ;
(context_sub1 (z3obj_gc o))
) ;
o.m_n_obj <- null
let z3obj_create o =
let f = fun o -> (z3obj_dispose o) in
Gc.finalise f o
let z3obj_nil_ref x y = ()
let z3_native_object_of_ast_ptr : context -> Z3native.ptr -> z3_native_object = fun ctx no ->
let res : z3_native_object = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.inc_ref ;
dec_ref = Z3native.dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
end
open Internal
module Log =
struct
let open_ filename = ((lbool_of_int (Z3native.open_log filename)) == L_TRUE)
let close = Z3native.close_log
let append s = Z3native.append_log s
end
module Version =
struct
let major = let (x, _, _, _) = Z3native.get_version () in x
let minor = let (_, x, _, _) = Z3native.get_version () in x
let build = let (_, _, x, _) = Z3native.get_version () in x
let revision = let (_, _, _, x) = Z3native.get_version () in x
let to_string =
let (mj, mn, bld, rev) = Z3native.get_version () in
string_of_int mj ^ "." ^
string_of_int mn ^ "." ^
string_of_int bld ^ "." ^
string_of_int rev
end
let mk_list ( f : int -> 'a ) ( n : int ) =
let rec mk_list' ( f : int -> 'a ) ( i : int ) ( n : int ) ( tail : 'a list ) : 'a list =
if (i >= n) then
tail
else
(f i) :: (mk_list' f (i+1) n tail)
in
mk_list' f 0 n []
let list_of_array ( x : _ array ) =
let f i = (Array.get x i) in
mk_list f (Array.length x)
let mk_context ( cfg : ( string * string ) list ) =
create_context cfg
module Symbol =
struct
type symbol = z3_native_object
let create_i ( ctx : context ) ( no : Z3native.ptr ) =
let res : symbol = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = z3obj_nil_ref ;
dec_ref = z3obj_nil_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let create_s ( ctx : context ) ( no : Z3native.ptr ) =
let res : symbol = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = z3obj_nil_ref ;
dec_ref = z3obj_nil_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let create ( ctx : context ) ( no : Z3native.ptr ) =
match (symbol_kind_of_int (Z3native.get_symbol_kind (context_gno ctx) no)) with
| INT_SYMBOL -> (create_i ctx no)
| STRING_SYMBOL -> (create_s ctx no)
let gc ( x : symbol ) = (z3obj_gc x)
let gnc ( x : symbol ) = (z3obj_gnc x)
let gno ( x : symbol ) = (z3obj_gno x)
let symbol_lton ( a : symbol list ) =
let f ( e : symbol ) = (gno e) in
Array.of_list (List.map f a)
let kind ( o : symbol ) = (symbol_kind_of_int (Z3native.get_symbol_kind (gnc o) (gno o)))
let is_int_symbol ( o : symbol ) = (kind o) == INT_SYMBOL
let is_string_symbol ( o : symbol ) = (kind o) == STRING_SYMBOL
let get_int (o : symbol) = Z3native.get_symbol_int (z3obj_gnc o) (z3obj_gno o)
let get_string (o : symbol ) = Z3native.get_symbol_string (z3obj_gnc o) (z3obj_gno o)
let to_string ( o : symbol ) =
match (kind o) with
| INT_SYMBOL -> (string_of_int (Z3native.get_symbol_int (gnc o) (gno o)))
| STRING_SYMBOL -> (Z3native.get_symbol_string (gnc o) (gno o))
let mk_int ( ctx : context ) ( i : int ) =
(create_i ctx (Z3native.mk_int_symbol (context_gno ctx) i))
let mk_string ( ctx : context ) ( s : string ) =
(create_s ctx (Z3native.mk_string_symbol (context_gno ctx) s))
let mk_ints ( ctx : context ) ( names : int list ) =
let f elem = mk_int ( ctx : context ) elem in
(List.map f names)
let mk_strings ( ctx : context ) ( names : string list ) =
let f elem = mk_string ( ctx : context ) elem in
(List.map f names)
end
module rec AST :
sig
type ast = z3_native_object
val context_of_ast : ast -> context
val nc_of_ast : ast -> Z3native.z3_context
val ptr_of_ast : ast -> Z3native.ptr
val ast_of_ptr : context -> Z3native.ptr -> ast
module ASTVector :
sig
type ast_vector = z3_native_object
val create : context -> Z3native.ptr -> ast_vector
val mk_ast_vector : context -> ast_vector
val get_size : ast_vector -> int
val get : ast_vector -> int -> ast
val set : ast_vector -> int -> ast -> unit
val resize : ast_vector -> int -> unit
val push : ast_vector -> ast -> unit
val translate : ast_vector -> context -> ast_vector
val to_list : ast_vector -> ast list
val to_expr_list : ast_vector -> Expr.expr list
val to_string : ast_vector -> string
end
module ASTMap :
sig
type ast_map = z3_native_object
val create : context -> Z3native.ptr -> ast_map
val mk_ast_map : context -> ast_map
val contains : ast_map -> ast -> bool
val find : ast_map -> ast -> ast
val insert : ast_map -> ast -> ast -> unit
val erase : ast_map -> ast -> unit
val reset : ast_map -> unit
val get_size : ast_map -> int
val get_keys : ast_map -> Expr.expr list
val to_string : ast_map -> string
end
val hash : ast -> int
val get_id : ast -> int
val get_ast_kind : ast -> Z3enums.ast_kind
val is_expr : ast -> bool
val is_app : ast -> bool
val is_var : ast -> bool
val is_quantifier : ast -> bool
val is_sort : ast -> bool
val is_func_decl : ast -> bool
val to_string : ast -> string
val to_sexpr : ast -> string
val equal : ast -> ast -> bool
val compare : ast -> ast -> int
val translate : ast -> context -> ast
val unwrap_ast : ast -> Z3native.ptr
val wrap_ast : context -> Z3native.z3_ast -> ast
end = struct
type ast = z3_native_object
let context_of_ast ( x : ast ) = (z3obj_gc x)
let nc_of_ast ( x : ast ) = (z3obj_gnc x)
let ptr_of_ast ( x : ast ) = (z3obj_gno x)
let rec ast_of_ptr : context -> Z3native.ptr -> ast = fun ctx no ->
match (ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) with
| FUNC_DECL_AST
| SORT_AST
| QUANTIFIER_AST
| APP_AST
| NUMERAL_AST
| VAR_AST -> z3_native_object_of_ast_ptr ctx no
| UNKNOWN_AST -> raise (Z3native.Exception "Cannot create asts of type unknown")
module ASTVector =
struct
type ast_vector = z3_native_object
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : ast_vector = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.ast_vector_inc_ref ;
dec_ref = Z3native.ast_vector_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let mk_ast_vector ( ctx : context ) = (create ctx (Z3native.mk_ast_vector (context_gno ctx)))
let get_size ( x : ast_vector ) =
Z3native.ast_vector_size (z3obj_gnc x) (z3obj_gno x)
let get ( x : ast_vector ) ( i : int ) =
ast_of_ptr (z3obj_gc x) (Z3native.ast_vector_get (z3obj_gnc x) (z3obj_gno x) i)
let set ( x : ast_vector ) ( i : int ) ( value : ast ) =
Z3native.ast_vector_set (z3obj_gnc x) (z3obj_gno x) i (z3obj_gno value)
let resize ( x : ast_vector ) ( new_size : int ) =
Z3native.ast_vector_resize (z3obj_gnc x) (z3obj_gno x) new_size
let push ( x : ast_vector ) ( a : ast ) =
Z3native.ast_vector_push (z3obj_gnc x) (z3obj_gno x) (z3obj_gno a)
let translate ( x : ast_vector ) ( to_ctx : context ) =
create to_ctx (Z3native.ast_vector_translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx))
let to_list ( x : ast_vector ) =
let xs = (get_size x) in
let f i = (get x i) in
mk_list f xs
let to_expr_list ( x : ast_vector ) =
let xs = (get_size x) in
let f i = (Expr.expr_of_ptr (z3obj_gc x) (z3obj_gno (get x i))) in
mk_list f xs
let to_string ( x : ast_vector ) =
Z3native.ast_vector_to_string (z3obj_gnc x) (z3obj_gno x)
end
module ASTMap =
struct
type ast_map = z3_native_object
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : ast_map = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.ast_map_inc_ref ;
dec_ref = Z3native.ast_map_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let mk_ast_map ( ctx : context ) = (create ctx (Z3native.mk_ast_map (context_gno ctx)))
let astmap_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
let res : ast_map = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.ast_map_inc_ref ;
dec_ref = Z3native.ast_map_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let contains ( x : ast_map ) ( key : ast ) =
Z3native.ast_map_contains (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key)
let find ( x : ast_map ) ( key : ast ) =
ast_of_ptr (z3obj_gc x) (Z3native.ast_map_find (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key))
let insert ( x : ast_map ) ( key : ast ) ( value : ast ) =
Z3native.ast_map_insert (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key) (z3obj_gno value)
let erase ( x : ast_map ) ( key : ast ) =
Z3native.ast_map_erase (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key)
let reset ( x : ast_map ) =
Z3native.ast_map_reset (z3obj_gnc x) (z3obj_gno x)
let get_size ( x : ast_map ) =
Z3native.ast_map_size (z3obj_gnc x) (z3obj_gno x)
let get_keys ( x : ast_map ) =
let av = ASTVector.create (z3obj_gc x) (Z3native.ast_map_keys (z3obj_gnc x) (z3obj_gno x)) in
(ASTVector.to_expr_list av)
let to_string ( x : ast_map ) =
Z3native.ast_map_to_string (z3obj_gnc x) (z3obj_gno x)
end
let hash ( x : ast ) = Z3native.get_ast_hash (z3obj_gnc x) (z3obj_gno x)
let get_id ( x : ast ) = Z3native.get_ast_id (z3obj_gnc x) (z3obj_gno x)
let get_ast_kind ( x : ast ) = (ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc x) (z3obj_gno x)))
let is_expr ( x : ast ) =
match get_ast_kind ( x : ast ) with
| APP_AST
| NUMERAL_AST
| QUANTIFIER_AST
| VAR_AST -> true
| _ -> false
let is_app ( x : ast ) = (get_ast_kind x) == APP_AST
let is_var ( x : ast ) = (get_ast_kind x) == VAR_AST
let is_quantifier ( x : ast ) = (get_ast_kind x) == QUANTIFIER_AST
let is_sort ( x : ast ) = (get_ast_kind x) == SORT_AST
let is_func_decl ( x : ast ) = (get_ast_kind x) == FUNC_DECL_AST
let to_string ( x : ast ) = Z3native.ast_to_string (z3obj_gnc x) (z3obj_gno x)
let to_sexpr ( x : ast ) = Z3native.ast_to_string (z3obj_gnc x) (z3obj_gno x)
let equal ( a : ast ) ( b : ast ) = (a == b) ||
if (z3obj_gnc a) != (z3obj_gnc b) then
false
else
Z3native.is_eq_ast (z3obj_gnc a) (z3obj_gno a) (z3obj_gno b)
let compare a b =
if (get_id a) < (get_id b) then -1 else
if (get_id a) > (get_id b) then 1 else
0
let translate ( x : ast ) ( to_ctx : context ) =
if (z3obj_gnc x) == (context_gno to_ctx) then
x
else
ast_of_ptr to_ctx (Z3native.translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx))
let unwrap_ast ( x : ast ) = (z3obj_gno x)
let wrap_ast ( ctx : context ) ( ptr : Z3native.ptr ) = ast_of_ptr ctx ptr
end
and Sort :
sig
type sort = Sort of AST.ast
val ast_of_sort : Sort.sort -> AST.ast
val sort_of_ptr : context -> Z3native.ptr -> sort
val gc : sort -> context
val gnc : sort -> Z3native.ptr
val gno : sort -> Z3native.ptr
val sort_lton : sort list -> Z3native.ptr array
val sort_option_lton : sort option list -> Z3native.ptr array
val equal : sort -> sort -> bool
val get_id : sort -> int
val get_sort_kind : sort -> Z3enums.sort_kind
val get_name : sort -> Symbol.symbol
val to_string : sort -> string
val mk_uninterpreted : context -> Symbol.symbol -> sort
val mk_uninterpreted_s : context -> string -> sort
end = struct
type sort = Sort of AST.ast
let sort_of_ptr : context -> Z3native.ptr -> sort = fun ctx no ->
if ((Z3enums.ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) != Z3enums.SORT_AST) then
raise (Z3native.Exception "Invalid coercion")
else
match (sort_kind_of_int (Z3native.get_sort_kind (context_gno ctx) no)) with
| ARRAY_SORT
| BOOL_SORT
| BV_SORT
| DATATYPE_SORT
| INT_SORT
| REAL_SORT
| UNINTERPRETED_SORT
| FINITE_DOMAIN_SORT
| RELATION_SORT
| FLOATING_POINT_SORT
| ROUNDING_MODE_SORT -> Sort(z3_native_object_of_ast_ptr ctx no)
| UNKNOWN_SORT -> raise (Z3native.Exception "Unknown sort kind encountered")
let ast_of_sort s = match s with Sort(x) -> x
let gc ( x : sort ) = (match x with Sort(a) -> (z3obj_gc a))
let gnc ( x : sort ) = (match x with Sort(a) -> (z3obj_gnc a))
let gno ( x : sort ) = (match x with Sort(a) -> (z3obj_gno a))
let sort_lton ( a : sort list ) =
let f ( e : sort ) = match e with Sort(a) -> (AST.ptr_of_ast a) in
Array.of_list (List.map f a)
let sort_option_lton ( a : sort option list ) =
let f ( e : sort option ) = match e with None -> null | Some(Sort(a)) -> (AST.ptr_of_ast a) in
Array.of_list (List.map f a)
let equal : sort -> sort -> bool = fun a b ->
(a == b) ||
if (gnc a) != (gnc b) then
false
else
(Z3native.is_eq_sort (gnc a) (gno a) (gno b))
let get_id ( x : sort ) = Z3native.get_sort_id (gnc x) (gno x)
let get_sort_kind ( x : sort ) = (sort_kind_of_int (Z3native.get_sort_kind (gnc x) (gno x)))
let get_name ( x : sort ) = (Symbol.create (gc x) (Z3native.get_sort_name (gnc x) (gno x)))
let to_string ( x : sort ) = Z3native.sort_to_string (gnc x) (gno x)
let mk_uninterpreted ( ctx : context ) ( s : Symbol.symbol ) =
let res = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.inc_ref ;
dec_ref = Z3native.dec_ref } in
(z3obj_sno res ctx (Z3native.mk_uninterpreted_sort (context_gno ctx) (Symbol.gno s))) ;
(z3obj_create res) ;
Sort(res)
let mk_uninterpreted_s ( ctx : context ) ( s : string ) =
mk_uninterpreted ctx (Symbol.mk_string ( ctx : context ) s)
end
and FuncDecl :
sig
type func_decl = FuncDecl of AST.ast
val ast_of_func_decl : FuncDecl.func_decl -> AST.ast
val func_decl_of_ptr : context -> Z3native.ptr -> func_decl
val gc : func_decl -> context
val gnc : func_decl -> Z3native.ptr
val gno : func_decl -> Z3native.ptr
module Parameter :
sig
type parameter =
P_Int of int
| P_Dbl of float
| P_Sym of Symbol.symbol
| P_Srt of Sort.sort
| P_Ast of AST.ast
| P_Fdl of func_decl
| P_Rat of string
val get_kind : parameter -> Z3enums.parameter_kind
val get_int : parameter -> int
val get_float : parameter -> float
val get_symbol : parameter -> Symbol.symbol
val get_sort : parameter -> Sort.sort
val get_ast : parameter -> AST.ast
val get_func_decl : parameter -> func_decl
val get_rational : parameter -> string
end
val mk_func_decl : context -> Symbol.symbol -> Sort.sort list -> Sort.sort -> func_decl
val mk_func_decl_s : context -> string -> Sort.sort list -> Sort.sort -> func_decl
val mk_fresh_func_decl : context -> string -> Sort.sort list -> Sort.sort -> func_decl
val mk_const_decl : context -> Symbol.symbol -> Sort.sort -> func_decl
val mk_const_decl_s : context -> string -> Sort.sort -> func_decl
val mk_fresh_const_decl : context -> string -> Sort.sort -> func_decl
val equal : func_decl -> func_decl -> bool
val to_string : func_decl -> string
val get_id : func_decl -> int
val get_arity : func_decl -> int
val get_domain_size : func_decl -> int
val get_domain : func_decl -> Sort.sort list
val get_range : func_decl -> Sort.sort
val get_decl_kind : func_decl -> Z3enums.decl_kind
val get_name : func_decl -> Symbol.symbol
val get_num_parameters : func_decl -> int
val get_parameters : func_decl -> Parameter.parameter list
val apply : func_decl -> Expr.expr list -> Expr.expr
end = struct
type func_decl = FuncDecl of AST.ast
let func_decl_of_ptr : context -> Z3native.ptr -> func_decl = fun ctx no ->
if ((Z3enums.ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) != Z3enums.FUNC_DECL_AST) then
raise (Z3native.Exception "Invalid coercion")
else
FuncDecl(z3_native_object_of_ast_ptr ctx no)
let ast_of_func_decl f = match f with FuncDecl(x) -> x
let create_ndr ( ctx : context ) ( name : Symbol.symbol ) ( domain : Sort.sort list ) ( range : Sort.sort ) =
let res = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.inc_ref ;
dec_ref = Z3native.dec_ref } in
(z3obj_sno res ctx (Z3native.mk_func_decl (context_gno ctx) (Symbol.gno name) (List.length domain) (Sort.sort_lton domain) (Sort.gno range))) ;
(z3obj_create res) ;
FuncDecl(res)
let create_pdr ( ctx : context) ( prefix : string ) ( domain : Sort.sort list ) ( range : Sort.sort ) =
let res = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.inc_ref ;
dec_ref = Z3native.dec_ref } in
(z3obj_sno res ctx (Z3native.mk_fresh_func_decl (context_gno ctx) prefix (List.length domain) (Sort.sort_lton domain) (Sort.gno range))) ;
(z3obj_create res) ;
FuncDecl(res)
let gc ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gc a)
let gnc ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gnc a)
let gno ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gno a)
module Parameter =
struct
type parameter =
| P_Int of int
| P_Dbl of float
| P_Sym of Symbol.symbol
| P_Srt of Sort.sort
| P_Ast of AST.ast
| P_Fdl of func_decl
| P_Rat of string
let get_kind ( x : parameter ) =
(match x with
| P_Int(_) -> PARAMETER_INT
| P_Dbl(_) -> PARAMETER_DOUBLE
| P_Sym(_) -> PARAMETER_SYMBOL
| P_Srt(_) -> PARAMETER_SORT
| P_Ast(_) -> PARAMETER_AST
| P_Fdl(_) -> PARAMETER_FUNC_DECL
| P_Rat(_) -> PARAMETER_RATIONAL)
let get_int ( x : parameter ) =
match x with
| P_Int(x) -> x
| _ -> raise (Z3native.Exception "parameter is not an int")
let get_float ( x : parameter ) =
match x with
| P_Dbl(x) -> x
| _ -> raise (Z3native.Exception "parameter is not a float")
let get_symbol ( x : parameter ) =
match x with
| P_Sym(x) -> x
| _ -> raise (Z3native.Exception "parameter is not a symbol")
let get_sort ( x : parameter ) =
match x with
| P_Srt(x) -> x
| _ -> raise (Z3native.Exception "parameter is not a sort")
let get_ast ( x : parameter ) =
match x with
| P_Ast(x) -> x
| _ -> raise (Z3native.Exception "parameter is not an ast")
let get_func_decl ( x : parameter ) =
match x with
| P_Fdl(x) -> x
| _ -> raise (Z3native.Exception "parameter is not a func_decl")
let get_rational ( x : parameter ) =
match x with
| P_Rat(x) -> x
| _ -> raise (Z3native.Exception "parameter is not a rational string")
end
let mk_func_decl ( ctx : context ) ( name : Symbol.symbol ) ( domain : Sort.sort list ) ( range : Sort.sort ) =
create_ndr ctx name domain range
let mk_func_decl_s ( ctx : context ) ( name : string ) ( domain : Sort.sort list ) ( range : Sort.sort ) =
mk_func_decl ctx (Symbol.mk_string ctx name) domain range
let mk_fresh_func_decl ( ctx : context ) ( prefix : string ) ( domain : Sort.sort list ) ( range : Sort.sort ) =
create_pdr ctx prefix domain range
let mk_const_decl ( ctx : context ) ( name : Symbol.symbol ) ( range : Sort.sort ) =
create_ndr ctx name [] range
let mk_const_decl_s ( ctx : context ) ( name : string ) ( range : Sort.sort ) =
create_ndr ctx (Symbol.mk_string ctx name) [] range
let mk_fresh_const_decl ( ctx : context ) ( prefix : string ) ( range : Sort.sort ) =
create_pdr ctx prefix [] range
let equal ( a : func_decl ) ( b : func_decl ) = (a == b) ||
if (gnc a) != (gnc b) then
false
else
(Z3native.is_eq_func_decl (gnc a) (gno a) (gno b))
let to_string ( x : func_decl ) = Z3native.func_decl_to_string (gnc x) (gno x)
let get_id ( x : func_decl ) = Z3native.get_func_decl_id (gnc x) (gno x)
let get_arity ( x : func_decl ) = Z3native.get_arity (gnc x) (gno x)
let get_domain_size ( x : func_decl ) = Z3native.get_domain_size (gnc x) (gno x)
let get_domain ( x : func_decl ) =
let n = (get_domain_size x) in
let f i = Sort.sort_of_ptr (gc x) (Z3native.get_domain (gnc x) (gno x) i) in
mk_list f n
let get_range ( x : func_decl ) =
Sort.sort_of_ptr (gc x) (Z3native.get_range (gnc x) (gno x))
let get_decl_kind ( x : func_decl ) = (decl_kind_of_int (Z3native.get_decl_kind (gnc x) (gno x)))
let get_name ( x : func_decl ) = (Symbol.create (gc x) (Z3native.get_decl_name (gnc x) (gno x)))
let get_num_parameters ( x : func_decl ) = (Z3native.get_decl_num_parameters (gnc x) (gno x))
let get_parameters ( x : func_decl ) =
let n = (get_num_parameters x) in
let f i = (match (parameter_kind_of_int (Z3native.get_decl_parameter_kind (gnc x) (gno x) i)) with
| PARAMETER_INT -> Parameter.P_Int (Z3native.get_decl_int_parameter (gnc x) (gno x) i)
| PARAMETER_DOUBLE -> Parameter.P_Dbl (Z3native.get_decl_double_parameter (gnc x) (gno x) i)
| PARAMETER_SYMBOL-> Parameter.P_Sym (Symbol.create (gc x) (Z3native.get_decl_symbol_parameter (gnc x) (gno x) i))
| PARAMETER_SORT -> Parameter.P_Srt (Sort.sort_of_ptr (gc x) (Z3native.get_decl_sort_parameter (gnc x) (gno x) i))
| PARAMETER_AST -> Parameter.P_Ast (AST.ast_of_ptr (gc x) (Z3native.get_decl_ast_parameter (gnc x) (gno x) i))
| PARAMETER_FUNC_DECL -> Parameter.P_Fdl (func_decl_of_ptr (gc x) (Z3native.get_decl_func_decl_parameter (gnc x) (gno x) i))
| PARAMETER_RATIONAL -> Parameter.P_Rat (Z3native.get_decl_rational_parameter (gnc x) (gno x) i)
) in
mk_list f n
let apply ( x : func_decl ) ( args : Expr.expr list ) = Expr.expr_of_func_app (gc x) x args
end
and Params :
sig
type params = z3_native_object
module ParamDescrs :
sig
type param_descrs
val param_descrs_of_ptr : context -> Z3native.ptr -> param_descrs
val validate : param_descrs -> params -> unit
val get_kind : param_descrs -> Symbol.symbol -> Z3enums.param_kind
val get_names : param_descrs -> Symbol.symbol list
val get_size : param_descrs -> int
val to_string : param_descrs -> string
end
val add_bool : params -> Symbol.symbol -> bool -> unit
val add_int : params -> Symbol.symbol -> int -> unit
val add_float : params -> Symbol.symbol -> float -> unit
val add_symbol : params -> Symbol.symbol -> Symbol.symbol -> unit
val mk_params : context -> params
val to_string : params -> string
val update_param_value : context -> string -> string -> unit
val set_print_mode : context -> Z3enums.ast_print_mode -> unit
end = struct
type params = z3_native_object
module ParamDescrs =
struct
type param_descrs = z3_native_object
let param_descrs_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
let res : param_descrs = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.param_descrs_inc_ref ;
dec_ref = Z3native.param_descrs_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let validate ( x : param_descrs ) ( p : params ) =
Z3native.params_validate (z3obj_gnc x) (z3obj_gno p) (z3obj_gno x)
let get_kind ( x : param_descrs ) ( name : Symbol.symbol ) =
(param_kind_of_int (Z3native.param_descrs_get_kind (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name)))
let get_names ( x : param_descrs ) =
let n = Z3native.param_descrs_size (z3obj_gnc x) (z3obj_gno x) in
let f i = Symbol.create (z3obj_gc x) (Z3native.param_descrs_get_name (z3obj_gnc x) (z3obj_gno x) i) in
mk_list f n
let get_size ( x : param_descrs ) = Z3native.param_descrs_size (z3obj_gnc x) (z3obj_gno x)
let to_string ( x : param_descrs ) = Z3native.param_descrs_to_string (z3obj_gnc x) (z3obj_gno x)
end
let add_bool ( x : params ) ( name : Symbol.symbol ) ( value : bool ) =
Z3native.params_set_bool (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value
let add_int ( x : params ) (name : Symbol.symbol ) ( value : int ) =
Z3native.params_set_uint (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value
let add_float ( x : params ) ( name : Symbol.symbol ) ( value : float ) =
Z3native.params_set_double (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value
let add_symbol ( x : params ) ( name : Symbol.symbol ) ( value : Symbol.symbol ) =
Z3native.params_set_symbol (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) (Symbol.gno value)
let mk_params ( ctx : context ) =
let res : params = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.params_inc_ref ;
dec_ref = Z3native.params_dec_ref } in
(z3obj_sno res ctx (Z3native.mk_params (context_gno ctx))) ;
(z3obj_create res) ;
res
let to_string ( x : params ) = Z3native.params_to_string (z3obj_gnc x) (z3obj_gno x)
let update_param_value ( ctx : context ) ( id : string) ( value : string )=
Z3native.update_param_value (context_gno ctx) id value
let set_print_mode ( ctx : context ) ( value : ast_print_mode ) =
Z3native.set_ast_print_mode (context_gno ctx) (int_of_ast_print_mode value)
end
(** General expressions (terms) *)
and Expr :
sig
type expr = Expr of AST.ast
val expr_of_ptr : context -> Z3native.ptr -> expr
val gc : expr -> context
val gnc : expr -> Z3native.ptr
val gno : expr -> Z3native.ptr
val expr_lton : expr list -> Z3native.ptr array
val ast_of_expr : expr -> AST.ast
val expr_of_ast : AST.ast -> expr
val expr_of_func_app : context -> FuncDecl.func_decl -> expr list -> expr
val simplify : expr -> Params.params option -> expr
val get_simplify_help : context -> string
val get_simplify_parameter_descrs : context -> Params.ParamDescrs.param_descrs
val get_func_decl : expr -> FuncDecl.func_decl
val get_num_args : expr -> int
val get_args : expr -> expr list
val update : expr -> expr list -> expr
val substitute : expr -> expr list -> expr list -> expr
val substitute_one : expr -> expr -> expr -> expr
val substitute_vars : expr -> expr list -> expr
val translate : expr -> context -> expr
val to_string : expr -> string
val is_numeral : expr -> bool
val is_well_sorted : expr -> bool
val get_sort : expr -> Sort.sort
val is_const : expr -> bool
val mk_const : context -> Symbol.symbol -> Sort.sort -> expr
val mk_const_s : context -> string -> Sort.sort -> expr
val mk_const_f : context -> FuncDecl.func_decl -> expr
val mk_fresh_const : context -> string -> Sort.sort -> expr
val mk_app : context -> FuncDecl.func_decl -> expr list -> expr
val mk_numeral_string : context -> string -> Sort.sort -> expr
val mk_numeral_int : context -> int -> Sort.sort -> expr
val equal : expr -> expr -> bool
val compare : expr -> expr -> int
end = struct
type expr = Expr of AST.ast
let gc e = match e with Expr(a) -> (z3obj_gc a)
let gnc e = match e with Expr(a) -> (z3obj_gnc a)
let gno e = match e with Expr(a) -> (z3obj_gno a)
let expr_of_ptr : context -> Z3native.ptr -> expr = fun ctx no ->
if ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no) == QUANTIFIER_AST then
Expr(z3_native_object_of_ast_ptr ctx no)
else
let s = Z3native.get_sort (context_gno ctx) no in
let sk = (sort_kind_of_int (Z3native.get_sort_kind (context_gno ctx) s)) in
if (Z3native.is_algebraic_number (context_gno ctx) no) then
Expr(z3_native_object_of_ast_ptr ctx no)
else
if (Z3native.is_numeral_ast (context_gno ctx) no) then
if (sk == INT_SORT || sk == REAL_SORT || sk == BV_SORT ||
sk == FLOATING_POINT_SORT || sk == ROUNDING_MODE_SORT) then
Expr(z3_native_object_of_ast_ptr ctx no)
else
raise (Z3native.Exception "Unsupported numeral object")
else
Expr(z3_native_object_of_ast_ptr ctx no)
let expr_of_ast a =
let q = (Z3enums.ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc a) (z3obj_gno a))) in
if (q != Z3enums.APP_AST && q != VAR_AST && q != QUANTIFIER_AST && q != NUMERAL_AST) then
raise (Z3native.Exception "Invalid coercion")
else
Expr(a)
let ast_of_expr e = match e with Expr(a) -> a
let expr_lton ( a : expr list ) =
let f ( e : expr ) = match e with Expr(a) -> (AST.ptr_of_ast a) in
Array.of_list (List.map f a)
let expr_of_func_app : context -> FuncDecl.func_decl -> expr list -> expr = fun ctx f args ->
match f with FuncDecl.FuncDecl(fa) ->
let o = Z3native.mk_app (context_gno ctx) (AST.ptr_of_ast fa) (List.length args) (expr_lton args) in
expr_of_ptr ctx o
let simplify ( x : expr ) ( p : Params.params option ) = match p with
| None -> expr_of_ptr (Expr.gc x) (Z3native.simplify (gnc x) (gno x))
| Some pp -> expr_of_ptr (Expr.gc x) (Z3native.simplify_ex (gnc x) (gno x) (z3obj_gno pp))
let get_simplify_help ( ctx : context ) =
Z3native.simplify_get_help (context_gno ctx)
let get_simplify_parameter_descrs ( ctx : context ) =
Params.ParamDescrs.param_descrs_of_ptr ctx (Z3native.simplify_get_param_descrs (context_gno ctx))
let get_func_decl ( x : expr ) = FuncDecl.func_decl_of_ptr (Expr.gc x) (Z3native.get_app_decl (gnc x) (gno x))
let get_num_args ( x : expr ) = Z3native.get_app_num_args (gnc x) (gno x)
let get_args ( x : expr ) = let n = (get_num_args x) in
let f i = expr_of_ptr (Expr.gc x) (Z3native.get_app_arg (gnc x) (gno x) i) in
mk_list f n
let update ( x : expr ) ( args : expr list ) =
if ((AST.is_app (ast_of_expr x)) && (List.length args <> (get_num_args x))) then
raise (Z3native.Exception "Number of arguments does not match")
else
expr_of_ptr (Expr.gc x) (Z3native.update_term (gnc x) (gno x) (List.length args) (expr_lton args))
let substitute ( x : expr ) from to_ =
if (List.length from) <> (List.length to_) then
raise (Z3native.Exception "Argument sizes do not match")
else
expr_of_ptr (Expr.gc x) (Z3native.substitute (gnc x) (gno x) (List.length from) (expr_lton from) (expr_lton to_))
let substitute_one ( x : expr ) from to_ =
substitute ( x : expr ) [ from ] [ to_ ]
let substitute_vars ( x : expr ) to_ =
expr_of_ptr (Expr.gc x) (Z3native.substitute_vars (gnc x) (gno x) (List.length to_) (expr_lton to_))
let translate ( x : expr ) to_ctx =
if (Expr.gc x) == to_ctx then
x
else
expr_of_ptr to_ctx (Z3native.translate (gnc x) (gno x) (context_gno to_ctx))
let to_string ( x : expr ) = Z3native.ast_to_string (gnc x) (gno x)
let is_numeral ( x : expr ) = (Z3native.is_numeral_ast (gnc x) (gno x))
let is_well_sorted ( x : expr ) = Z3native.is_well_sorted (gnc x) (gno x)
let get_sort ( x : expr ) = Sort.sort_of_ptr (Expr.gc x) (Z3native.get_sort (gnc x) (gno x))
let is_const ( x : expr ) = (match x with Expr(a) -> (AST.is_app a)) &&
(get_num_args x) == 0 &&
(FuncDecl.get_domain_size (get_func_decl x)) == 0
let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( range : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_const (context_gno ctx) (Symbol.gno name) (Sort.gno range))
let mk_const_s ( ctx : context ) ( name : string ) ( range : Sort.sort ) =
mk_const ctx (Symbol.mk_string ctx name) range
let mk_const_f ( ctx : context ) ( f : FuncDecl.func_decl ) = Expr.expr_of_func_app ctx f []
let mk_fresh_const ( ctx : context ) ( prefix : string ) ( range : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_fresh_const (context_gno ctx) prefix (Sort.gno range))
let mk_app ( ctx : context ) ( f : FuncDecl.func_decl ) ( args : expr list ) = expr_of_func_app ctx f args
let mk_numeral_string ( ctx : context ) ( v : string ) ( ty : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno ty))
let mk_numeral_int ( ctx : context ) ( v : int ) ( ty : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (Sort.gno ty))
let equal ( a : expr ) ( b : expr ) = AST.equal (ast_of_expr a) (ast_of_expr b)
let compare a b = AST.compare (ast_of_expr a) (ast_of_expr b)
end
open FuncDecl
open Expr
module Boolean =
struct
let mk_sort ( ctx : context ) =
(Sort.sort_of_ptr ctx (Z3native.mk_bool_sort (context_gno ctx)))
let mk_const ( ctx : context ) ( name : Symbol.symbol ) =
(Expr.mk_const ctx name (mk_sort ctx))
let mk_const_s ( ctx : context ) ( name : string ) =
mk_const ctx (Symbol.mk_string ctx name)
let mk_true ( ctx : context ) =
expr_of_ptr ctx (Z3native.mk_true (context_gno ctx))
let mk_false ( ctx : context ) =
expr_of_ptr ctx (Z3native.mk_false (context_gno ctx))
let mk_val ( ctx : context ) ( value : bool ) =
if value then mk_true ctx else mk_false ctx
let mk_not ( ctx : context ) ( a : expr ) =
expr_of_ptr ctx (Z3native.mk_not (context_gno ctx) (gno a))
let mk_ite ( ctx : context ) ( t1 : expr ) ( t2 : expr ) ( t3 : expr ) =
expr_of_ptr ctx (Z3native.mk_ite (context_gno ctx) (gno t1) (gno t2) (gno t3))
let mk_iff ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_iff (context_gno ctx) (gno t1) (gno t2))
let mk_implies ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_implies (context_gno ctx) (gno t1) (gno t2))
let mk_xor ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_xor (context_gno ctx) (gno t1) (gno t2))
let mk_and ( ctx : context ) ( args : expr list ) =
let f x = (Expr.gno (x)) in
expr_of_ptr ctx (Z3native.mk_and (context_gno ctx) (List.length args) (Array.of_list (List.map f args)))
let mk_or ( ctx : context ) ( args : expr list ) =
let f x = (Expr.gno (x)) in
expr_of_ptr ctx (Z3native.mk_or (context_gno ctx) (List.length args) (Array.of_list(List.map f args)))
let mk_eq ( ctx : context ) ( x : expr ) ( y : expr ) =
expr_of_ptr ctx (Z3native.mk_eq (context_gno ctx) (Expr.gno x) (Expr.gno y))
let mk_distinct ( ctx : context ) ( args : expr list ) =
expr_of_ptr ctx (Z3native.mk_distinct (context_gno ctx) (List.length args) (expr_lton args))
let get_bool_value ( x : expr ) = lbool_of_int (Z3native.get_bool_value (gnc x) (gno x))
let is_bool ( x : expr ) = (match x with Expr(a) -> (AST.is_expr a)) &&
(Z3native.is_eq_sort (gnc x)
(Z3native.mk_bool_sort (gnc x))
(Z3native.get_sort (gnc x) (gno x)))
let is_true ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_TRUE)
let is_false ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_FALSE)
let is_eq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_EQ)
let is_distinct ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_DISTINCT)
let is_ite ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_ITE)
let is_and ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_AND)
let is_or ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_OR)
let is_iff ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_IFF)
let is_xor ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_XOR)
let is_not ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_NOT)
let is_implies ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_IMPLIES)
end
module Quantifier =
struct
type quantifier = Quantifier of expr
let expr_of_quantifier e = match e with Quantifier(x) -> x
let quantifier_of_expr e =
match e with Expr.Expr(a) ->
let q = (Z3enums.ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc a) (z3obj_gno a))) in
if (q != Z3enums.QUANTIFIER_AST) then
raise (Z3native.Exception "Invalid coercion")
else
Quantifier(e)
let gc ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gc e)
let gnc ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gnc e)
let gno ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gno e)
module Pattern =
struct
type pattern = Pattern of AST.ast
let ast_of_pattern e = match e with Pattern(x) -> x
let pattern_of_ast a =
(* CMW: Unchecked ok? *)
Pattern(a)
let gc ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gc a)
let gnc ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gnc a)
let gno ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gno a)
let get_num_terms ( x : pattern ) =
Z3native.get_pattern_num_terms (gnc x) (gno x)
let get_terms ( x : pattern ) =
let n = (get_num_terms x) in
let f i = (expr_of_ptr (gc x) (Z3native.get_pattern (gnc x) (gno x) i)) in
mk_list f n
let to_string ( x : pattern ) = Z3native.pattern_to_string (gnc x) (gno x)
end
let get_index ( x : expr ) =
if not (AST.is_var (match x with Expr.Expr(a) -> a)) then
raise (Z3native.Exception "Term is not a bound variable.")
else
Z3native.get_index_value (Expr.gnc x) (Expr.gno x)
let is_universal ( x : quantifier ) =
Z3native.is_quantifier_forall (gnc x) (gno x)
let is_existential ( x : quantifier ) = not (is_universal x)
let get_weight ( x : quantifier ) = Z3native.get_quantifier_weight (gnc x) (gno x)
let get_num_patterns ( x : quantifier ) = Z3native.get_quantifier_num_patterns (gnc x) (gno x)
let get_patterns ( x : quantifier ) =
let n = (get_num_patterns x) in
let f i = Pattern.Pattern (z3_native_object_of_ast_ptr (gc x) (Z3native.get_quantifier_pattern_ast (gnc x) (gno x) i)) in
mk_list f n
let get_num_no_patterns ( x : quantifier ) = Z3native.get_quantifier_num_no_patterns (gnc x) (gno x)
let get_no_patterns ( x : quantifier ) =
let n = (get_num_patterns x) in
let f i = Pattern.Pattern (z3_native_object_of_ast_ptr (gc x) (Z3native.get_quantifier_no_pattern_ast (gnc x) (gno x) i)) in
mk_list f n
let get_num_bound ( x : quantifier ) = Z3native.get_quantifier_num_bound (gnc x) (gno x)
let get_bound_variable_names ( x : quantifier ) =
let n = (get_num_bound x) in
let f i = (Symbol.create (gc x) (Z3native.get_quantifier_bound_name (gnc x) (gno x) i)) in
mk_list f n
let get_bound_variable_sorts ( x : quantifier ) =
let n = (get_num_bound x) in
let f i = (Sort.sort_of_ptr (gc x) (Z3native.get_quantifier_bound_sort (gnc x) (gno x) i)) in
mk_list f n
let get_body ( x : quantifier ) =
expr_of_ptr (gc x) (Z3native.get_quantifier_body (gnc x) (gno x))
let mk_bound ( ctx : context ) ( index : int ) ( ty : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_bound (context_gno ctx) index (Sort.gno ty))
let mk_pattern ( ctx : context ) ( terms : expr list ) =
if (List.length terms) == 0 then
raise (Z3native.Exception "Cannot create a pattern from zero terms")
else
Pattern.Pattern(z3_native_object_of_ast_ptr ctx (Z3native.mk_pattern (context_gno ctx) (List.length terms) (expr_lton terms)))
let mk_forall ( ctx : context ) ( sorts : Sort.sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
if (List.length sorts) != (List.length names) then
raise (Z3native.Exception "Number of sorts does not match number of names")
else if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier (context_gno ctx) true
(match weight with | None -> 1 | Some(x) -> x)
(List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
(List.length sorts) (Sort.sort_lton sorts)
(Symbol.symbol_lton names)
(Expr.gno body)))
else
Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_ex (context_gno ctx) true
(match weight with | None -> 1 | Some(x) -> x)
(match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
(match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
(List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
(List.length nopatterns) (expr_lton nopatterns)
(List.length sorts) (Sort.sort_lton sorts)
(Symbol.symbol_lton names)
(Expr.gno body)))
let mk_forall_const ( ctx : context ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const (context_gno ctx) true
(match weight with | None -> 1 | Some(x) -> x)
(List.length bound_constants) (expr_lton bound_constants)
(List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
(Expr.gno body)))
else
Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const_ex (context_gno ctx) true
(match weight with | None -> 1 | Some(x) -> x)
(match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
(match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
(List.length bound_constants) (expr_lton bound_constants)
(List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
(List.length nopatterns) (expr_lton nopatterns)
(Expr.gno body)))
let mk_exists ( ctx : context ) ( sorts : Sort.sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
if (List.length sorts) != (List.length names) then
raise (Z3native.Exception "Number of sorts does not match number of names")
else if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier (context_gno ctx) false
(match weight with | None -> 1 | Some(x) -> x)
(List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
(List.length sorts) (Sort.sort_lton sorts)
(Symbol.symbol_lton names)
(Expr.gno body)))
else
Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_ex (context_gno ctx) false
(match weight with | None -> 1 | Some(x) -> x)
(match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
(match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
(List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
(List.length nopatterns) (expr_lton nopatterns)
(List.length sorts) (Sort.sort_lton sorts)
(Symbol.symbol_lton names)
(Expr.gno body)))
let mk_exists_const ( ctx : context ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const (context_gno ctx) false
(match weight with | None -> 1 | Some(x) -> x)
(List.length bound_constants) (expr_lton bound_constants)
(List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
(Expr.gno body)))
else
Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const_ex (context_gno ctx) false
(match weight with | None -> 1 | Some(x) -> x)
(match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
(match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
(List.length bound_constants) (expr_lton bound_constants)
(List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
(List.length nopatterns) (expr_lton nopatterns)
(Expr.gno body)))
let mk_quantifier ( ctx : context ) ( universal : bool ) ( sorts : Sort.sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
if (universal) then
(mk_forall ctx sorts names body weight patterns nopatterns quantifier_id skolem_id)
else
(mk_exists ctx sorts names body weight patterns nopatterns quantifier_id skolem_id)
let mk_quantifier ( ctx : context ) ( universal : bool ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
if (universal) then
mk_forall_const ctx bound_constants body weight patterns nopatterns quantifier_id skolem_id
else
mk_exists_const ctx bound_constants body weight patterns nopatterns quantifier_id skolem_id
let to_string ( x : quantifier ) = (Expr.to_string (expr_of_quantifier x))
end
module Z3Array =
struct
let mk_sort ( ctx : context ) ( domain : Sort.sort ) ( range : Sort.sort ) =
Sort.sort_of_ptr ctx (Z3native.mk_array_sort (context_gno ctx) (Sort.gno domain) (Sort.gno range))
let is_store ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_STORE)
let is_select ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SELECT)
let is_constant_array ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CONST_ARRAY)
let is_default_array ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ARRAY_DEFAULT)
let is_array_map ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ARRAY_MAP)
let is_as_array ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_AS_ARRAY)
let is_array ( x : expr ) =
(Z3native.is_app (Expr.gnc x) (Expr.gno x)) &&
((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == ARRAY_SORT)
let get_domain ( x : Sort.sort ) = Sort.sort_of_ptr (Sort.gc x) (Z3native.get_array_sort_domain (Sort.gnc x) (Sort.gno x))
let get_range ( x : Sort.sort ) = Sort.sort_of_ptr (Sort.gc x) (Z3native.get_array_sort_range (Sort.gnc x) (Sort.gno x))
let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( domain : Sort.sort ) ( range : Sort.sort ) =
(Expr.mk_const ctx name (mk_sort ctx domain range))
let mk_const_s ( ctx : context ) ( name : string ) ( domain : Sort.sort ) ( range : Sort.sort ) =
mk_const ctx (Symbol.mk_string ctx name) domain range
let mk_select ( ctx : context ) ( a : expr ) ( i : expr ) =
expr_of_ptr ctx (Z3native.mk_select (context_gno ctx) (Expr.gno a) (Expr.gno i))
let mk_store ( ctx : context ) ( a : expr ) ( i : expr ) ( v : expr ) =
expr_of_ptr ctx (Z3native.mk_store (context_gno ctx) (Expr.gno a) (Expr.gno i) (Expr.gno v))
let mk_const_array ( ctx : context ) ( domain : Sort.sort ) ( v : expr ) =
expr_of_ptr ctx (Z3native.mk_const_array (context_gno ctx) (Sort.gno domain) (Expr.gno v))
let mk_map ( ctx : context ) ( f : func_decl ) ( args : expr list ) =
let m x = (Expr.gno x) in
expr_of_ptr ctx (Z3native.mk_map (context_gno ctx) (FuncDecl.gno f) (List.length args) (Array.of_list (List.map m args)))
let mk_term_array ( ctx : context ) ( arg : expr ) =
expr_of_ptr ctx (Z3native.mk_array_default (context_gno ctx) (Expr.gno arg))
end
module Set =
struct
let mk_sort ( ctx : context ) ( ty : Sort.sort ) =
Sort.sort_of_ptr ctx (Z3native.mk_set_sort (context_gno ctx) (Sort.gno ty))
let is_union ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_UNION)
let is_intersect ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_INTERSECT)
let is_difference ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_DIFFERENCE)
let is_complement ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_COMPLEMENT)
let is_subset ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_SUBSET)
let mk_empty ( ctx : context ) ( domain : Sort.sort ) =
(expr_of_ptr ctx (Z3native.mk_empty_set (context_gno ctx) (Sort.gno domain)))
let mk_full ( ctx : context ) ( domain : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_full_set (context_gno ctx) (Sort.gno domain))
let mk_set_add ( ctx : context ) ( set : expr ) ( element : expr ) =
expr_of_ptr ctx (Z3native.mk_set_add (context_gno ctx) (Expr.gno set) (Expr.gno element))
let mk_del ( ctx : context ) ( set : expr ) ( element : expr ) =
expr_of_ptr ctx (Z3native.mk_set_del (context_gno ctx) (Expr.gno set) (Expr.gno element))
let mk_union ( ctx : context ) ( args : expr list ) =
expr_of_ptr ctx (Z3native.mk_set_union (context_gno ctx) (List.length args) (expr_lton args))
let mk_intersection ( ctx : context ) ( args : expr list ) =
expr_of_ptr ctx (Z3native.mk_set_intersect (context_gno ctx) (List.length args) (expr_lton args))
let mk_difference ( ctx : context ) ( arg1 : expr ) ( arg2 : expr ) =
expr_of_ptr ctx (Z3native.mk_set_difference (context_gno ctx) (Expr.gno arg1) (Expr.gno arg2))
let mk_complement ( ctx : context ) ( arg : expr ) =
expr_of_ptr ctx (Z3native.mk_set_complement (context_gno ctx) (Expr.gno arg))
let mk_membership ( ctx : context ) ( elem : expr ) ( set : expr ) =
expr_of_ptr ctx (Z3native.mk_set_member (context_gno ctx) (Expr.gno elem) (Expr.gno set))
let mk_subset ( ctx : context ) ( arg1 : expr ) ( arg2 : expr ) =
expr_of_ptr ctx (Z3native.mk_set_subset (context_gno ctx) (Expr.gno arg1) (Expr.gno arg2))
end
module FiniteDomain =
struct
let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( size : int ) =
Sort.sort_of_ptr ctx (Z3native.mk_finite_domain_sort (context_gno ctx) (Symbol.gno name) size)
let mk_sort_s ( ctx : context ) ( name : string ) ( size : int ) =
mk_sort ctx (Symbol.mk_string ctx name) size
let is_finite_domain ( x : expr ) =
let nc = (Expr.gnc x) in
(Z3native.is_app (Expr.gnc x) (Expr.gno x)) &&
(sort_kind_of_int (Z3native.get_sort_kind nc (Z3native.get_sort nc (Expr.gno x))) == FINITE_DOMAIN_SORT)
let is_lt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FD_LT)
let get_size ( x : Sort.sort ) =
let (r, v) = (Z3native.get_finite_domain_sort_size (Sort.gnc x) (Sort.gno x)) in
if r then v
else raise (Z3native.Exception "Conversion failed.")
end
module Relation =
struct
let is_relation ( x : expr ) =
let nc = (Expr.gnc x) in
((Z3native.is_app (Expr.gnc x) (Expr.gno x)) &&
(sort_kind_of_int (Z3native.get_sort_kind nc (Z3native.get_sort nc (Expr.gno x))) == RELATION_SORT))
let is_store ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_STORE)
let is_empty ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_EMPTY)
let is_is_empty ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_IS_EMPTY)
let is_join ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_JOIN)
let is_union ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_UNION)
let is_widen ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_WIDEN)
let is_project ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_PROJECT)
let is_filter ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_FILTER)
let is_negation_filter ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_NEGATION_FILTER)
let is_rename ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_RENAME)
let is_complement ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_COMPLEMENT)
let is_select ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_SELECT)
let is_clone ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_CLONE)
let get_arity ( x : Sort.sort ) = Z3native.get_relation_arity (Sort.gnc x) (Sort.gno x)
let get_column_sorts ( x : Sort.sort ) =
let n = get_arity x in
let f i = (Sort.sort_of_ptr (Sort.gc x) (Z3native.get_relation_column (Sort.gnc x) (Sort.gno x) i)) in
mk_list f n
end
module Datatype =
struct
module Constructor =
struct
type constructor = z3_native_object
module FieldNumTable = Hashtbl.Make(struct
type t = AST.ast
let equal x y = AST.compare x y = 0
let hash = AST.hash
end)
let _field_nums = FieldNumTable.create 0
let create ( ctx : context ) ( name : Symbol.symbol ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : Sort.sort option list ) ( sort_refs : int list ) =
let n = (List.length field_names) in
if n != (List.length sorts) then
raise (Z3native.Exception "Number of field names does not match number of sorts")
else
if n != (List.length sort_refs) then
raise (Z3native.Exception "Number of field names does not match number of sort refs")
else
let ptr = (Z3native.mk_constructor (context_gno ctx) (Symbol.gno name)
(Symbol.gno recognizer)
n
(Symbol.symbol_lton field_names)
(Sort.sort_option_lton sorts)
(Array.of_list sort_refs)) in
let no : constructor = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = z3obj_nil_ref ;
dec_ref = z3obj_nil_ref} in
(z3obj_sno no ctx ptr) ;
(z3obj_create no) ;
let f = fun o -> Z3native.del_constructor (z3obj_gnc o) (z3obj_gno o) in
Gc.finalise f no ;
FieldNumTable.add _field_nums no n ;
no
let get_num_fields ( x : constructor ) = FieldNumTable.find _field_nums x
let get_constructor_decl ( x : constructor ) =
let (a, _, _) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in
func_decl_of_ptr (z3obj_gc x) a
let get_tester_decl ( x : constructor ) =
let (_, b, _) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in
func_decl_of_ptr (z3obj_gc x) b
let get_accessor_decls ( x : constructor ) =
let (_, _, c) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in
let f i = func_decl_of_ptr (z3obj_gc x) (Array.get c i) in
mk_list f (Array.length c)
end
module ConstructorList =
struct
type constructor_list = z3_native_object
let create ( ctx : context ) ( c : Constructor.constructor list ) =
let res : constructor_list = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = z3obj_nil_ref ;
dec_ref = z3obj_nil_ref} in
let f x =(z3obj_gno x) in
(z3obj_sno res ctx (Z3native.mk_constructor_list (context_gno ctx) (List.length c) (Array.of_list (List.map f c)))) ;
(z3obj_create res) ;
let f = fun o -> Z3native.del_constructor_list (z3obj_gnc o) (z3obj_gno o) in
Gc.finalise f res;
res
end
let mk_constructor ( ctx : context ) ( name : Symbol.symbol ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : Sort.sort option list ) ( sort_refs : int list ) =
Constructor.create ctx name recognizer field_names sorts sort_refs
let mk_constructor_s ( ctx : context ) ( name : string ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : Sort.sort option list ) ( sort_refs : int list ) =
mk_constructor ctx (Symbol.mk_string ctx name) recognizer field_names sorts sort_refs
let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( constructors : Constructor.constructor list ) =
let f x = (z3obj_gno x) in
let (x,_) = (Z3native.mk_datatype (context_gno ctx) (Symbol.gno name) (List.length constructors) (Array.of_list (List.map f constructors))) in
Sort.sort_of_ptr ctx x
let mk_sort_s ( ctx : context ) ( name : string ) ( constructors : Constructor.constructor list ) =
mk_sort ctx (Symbol.mk_string ctx name) constructors
let mk_sorts ( ctx : context ) ( names : Symbol.symbol list ) ( c : Constructor.constructor list list ) =
let n = (List.length names) in
let f e = (AST.ptr_of_ast (ConstructorList.create ctx e)) in
let cla = (Array.of_list (List.map f c)) in
let (r, a) = (Z3native.mk_datatypes (context_gno ctx) n (Symbol.symbol_lton names) cla) in
let g i = (Sort.sort_of_ptr ctx (Array.get r i)) in
mk_list g (Array.length r)
let mk_sorts_s ( ctx : context ) ( names : string list ) ( c : Constructor.constructor list list ) =
mk_sorts ctx
(
let f e = (Symbol.mk_string ctx e) in
List.map f names
)
c
let get_num_constructors ( x : Sort.sort ) = Z3native.get_datatype_sort_num_constructors (Sort.gnc x) (Sort.gno x)
let get_constructors ( x : Sort.sort ) =
let n = (get_num_constructors x) in
let f i = func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x) i) in
mk_list f n
let get_recognizers ( x : Sort.sort ) =
let n = (get_num_constructors x) in
let f i = func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_recognizer (Sort.gnc x) (Sort.gno x) i) in
mk_list f n
let get_accessors ( x : Sort.sort ) =
let n = (get_num_constructors x) in
let f i = (
let fd = func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x) i) in
let ds = Z3native.get_domain_size (FuncDecl.gnc fd) (FuncDecl.gno fd) in
let g j = func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor_accessor (Sort.gnc x) (Sort.gno x) i j) in
mk_list g ds
) in
mk_list f n
end
module Enumeration =
struct
let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( enum_names : Symbol.symbol list ) =
let (a, _, _) = (Z3native.mk_enumeration_sort (context_gno ctx) (Symbol.gno name) (List.length enum_names) (Symbol.symbol_lton enum_names)) in
Sort.sort_of_ptr ctx a
let mk_sort_s ( ctx : context ) ( name : string ) ( enum_names : string list ) =
mk_sort ctx (Symbol.mk_string ctx name) (Symbol.mk_strings ctx enum_names)
let get_const_decls ( x : Sort.sort ) =
let n = Z3native.get_datatype_sort_num_constructors (Sort.gnc x) (Sort.gno x) in
let f i = (func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x) i)) in
mk_list f n
let get_const_decl ( x : Sort.sort ) ( inx : int ) =
func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x) inx)
let get_consts ( x : Sort.sort ) =
let n = Z3native.get_datatype_sort_num_constructors (Sort.gnc x) (Sort.gno x) in
let f i = (Expr.mk_const_f (Sort.gc x) (get_const_decl x i)) in
mk_list f n
let get_const ( x : Sort.sort ) ( inx : int ) =
Expr.mk_const_f (Sort.gc x) (get_const_decl x inx)
let get_tester_decls ( x : Sort.sort ) =
let n = Z3native.get_datatype_sort_num_constructors (Sort.gnc x) (Sort.gno x) in
let f i = (func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_recognizer (Sort.gnc x) (Sort.gno x) i)) in
mk_list f n
let get_tester_decl ( x : Sort.sort ) ( inx : int ) =
func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_recognizer (Sort.gnc x) (Sort.gno x) inx)
end
module Z3List =
struct
let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( elem_sort : Sort.sort ) =
let (r, _, _, _, _, _, _) = (Z3native.mk_list_sort (context_gno ctx) (Symbol.gno name) (Sort.gno elem_sort)) in
Sort.sort_of_ptr ctx r
let mk_list_s ( ctx : context ) ( name : string ) elem_sort =
mk_sort ctx (Symbol.mk_string ctx name) elem_sort
let get_nil_decl ( x : Sort.sort ) =
func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x) 0)
let get_is_nil_decl ( x : Sort.sort ) =
func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_recognizer (Sort.gnc x) (Sort.gno x) 0)
let get_cons_decl ( x : Sort.sort ) =
func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x) 1)
let get_is_cons_decl ( x : Sort.sort ) =
func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_recognizer (Sort.gnc x) (Sort.gno x) 1)
let get_head_decl ( x : Sort.sort ) =
func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor_accessor (Sort.gnc x) (Sort.gno x) 1 0)
let get_tail_decl ( x : Sort.sort ) =
func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor_accessor (Sort.gnc x) (Sort.gno x) 1 1)
let nil ( x : Sort.sort ) = expr_of_func_app (Sort.gc x) (get_nil_decl x) []
end
module Tuple =
struct
let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( field_sorts : Sort.sort list ) =
let (r, _, _) = (Z3native.mk_tuple_sort (context_gno ctx) (Symbol.gno name) (List.length field_names) (Symbol.symbol_lton field_names) (Sort.sort_lton field_sorts)) in
Sort.sort_of_ptr ctx r
let get_mk_decl ( x : Sort.sort ) =
func_decl_of_ptr (Sort.gc x) (Z3native.get_tuple_sort_mk_decl (Sort.gnc x) (Sort.gno x))
let get_num_fields ( x : Sort.sort ) = Z3native.get_tuple_sort_num_fields (Sort.gnc x) (Sort.gno x)
let get_field_decls ( x : Sort.sort ) =
let n = get_num_fields x in
let f i = func_decl_of_ptr (Sort.gc x) (Z3native.get_tuple_sort_field_decl (Sort.gnc x) (Sort.gno x) i) in
mk_list f n
end
module Arithmetic =
struct
let is_int ( x : expr ) =
(Z3native.is_numeral_ast (Expr.gnc x) (Expr.gno x)) &&
((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == INT_SORT)
let is_arithmetic_numeral ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ANUM)
let is_le ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_LE)
let is_ge ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_GE)
let is_lt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_LT)
let is_gt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_GT)
let is_add ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ADD)
let is_sub ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SUB)
let is_uminus ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UMINUS)
let is_mul ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_MUL)
let is_div ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_DIV)
let is_idiv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_IDIV)
let is_remainder ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_REM)
let is_modulus ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_MOD)
let is_int2real ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_TO_REAL)
let is_real2int ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_TO_INT)
let is_real_is_int ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_IS_INT)
let is_real ( x : expr ) =
((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == REAL_SORT)
let is_int_numeral ( x : expr ) = (Expr.is_numeral x) && (is_int x)
let is_rat_numeral ( x : expr ) = (Expr.is_numeral x) && (is_real x)
let is_algebraic_number ( x : expr ) = Z3native.is_algebraic_number (Expr.gnc x) (Expr.gno x)
module Integer =
struct
let mk_sort ( ctx : context ) =
Sort.sort_of_ptr ctx (Z3native.mk_int_sort (context_gno ctx))
let get_int ( x : expr ) =
let (r, v) = Z3native.get_numeral_int (Expr.gnc x) (Expr.gno x) in
if r then v
else raise (Z3native.Exception "Conversion failed.")
let get_big_int ( x : expr ) =
if (is_int_numeral x) then
let s = (Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)) in
(Big_int.big_int_of_string s)
else raise (Z3native.Exception "Conversion failed.")
let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)
let mk_const ( ctx : context ) ( name : Symbol.symbol ) =
Expr.mk_const ctx name (mk_sort ctx)
let mk_const_s ( ctx : context ) ( name : string ) =
mk_const ctx (Symbol.mk_string ctx name)
let mk_mod ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_mod (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_rem ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_rem (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_numeral_s ( ctx : context ) ( v : string ) =
expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno (mk_sort ctx)))
let mk_numeral_i ( ctx : context ) ( v : int ) =
expr_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (Sort.gno (mk_sort ctx)))
let mk_int2real ( ctx : context ) ( t : expr ) =
(Expr.expr_of_ptr ctx (Z3native.mk_int2real (context_gno ctx) (Expr.gno t)))
let mk_int2bv ( ctx : context ) ( n : int ) ( t : expr ) =
(Expr.expr_of_ptr ctx (Z3native.mk_int2bv (context_gno ctx) n (Expr.gno t)))
end
module Real =
struct
let mk_sort ( ctx : context ) =
Sort.sort_of_ptr ctx (Z3native.mk_real_sort (context_gno ctx))
let get_numerator ( x : expr ) =
expr_of_ptr (Expr.gc x) (Z3native.get_numerator (Expr.gnc x) (Expr.gno x))
let get_denominator ( x : expr ) =
expr_of_ptr (Expr.gc x) (Z3native.get_denominator (Expr.gnc x) (Expr.gno x))
let get_ratio ( x : expr ) =
if (is_rat_numeral x) then
let s = (Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)) in
(Ratio.ratio_of_string s)
else raise (Z3native.Exception "Conversion failed.")
let to_decimal_string ( x : expr ) ( precision : int ) =
Z3native.get_numeral_decimal_string (Expr.gnc x) (Expr.gno x) precision
let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)
let mk_const ( ctx : context ) ( name : Symbol.symbol ) =
Expr.mk_const ctx name (mk_sort ctx)
let mk_const_s ( ctx : context ) ( name : string ) =
mk_const ctx (Symbol.mk_string ctx name)
let mk_numeral_nd ( ctx : context ) ( num : int ) ( den : int ) =
if (den == 0) then
raise (Z3native.Exception "Denominator is zero")
else
expr_of_ptr ctx (Z3native.mk_real (context_gno ctx) num den)
let mk_numeral_s ( ctx : context ) ( v : string ) =
expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno (mk_sort ctx)))
let mk_numeral_i ( ctx : context ) ( v : int ) =
expr_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (Sort.gno (mk_sort ctx)))
let mk_is_integer ( ctx : context ) ( t : expr ) =
(expr_of_ptr ctx (Z3native.mk_is_int (context_gno ctx) (Expr.gno t)))
let mk_real2int ( ctx : context ) ( t : expr ) =
(expr_of_ptr ctx (Z3native.mk_real2int (context_gno ctx) (Expr.gno t)))
module AlgebraicNumber =
struct
let to_upper ( x : expr ) ( precision : int ) =
expr_of_ptr (Expr.gc x) (Z3native.get_algebraic_number_upper (Expr.gnc x) (Expr.gno x) precision)
let to_lower ( x : expr ) precision =
expr_of_ptr (Expr.gc x) (Z3native.get_algebraic_number_lower (Expr.gnc x) (Expr.gno x) precision)
let to_decimal_string ( x : expr ) ( precision : int ) =
Z3native.get_numeral_decimal_string (Expr.gnc x) (Expr.gno x) precision
let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)
end
end
let mk_add ( ctx : context ) ( t : expr list ) =
let f x = (Expr.gno x) in
(expr_of_ptr ctx (Z3native.mk_add (context_gno ctx) (List.length t) (Array.of_list (List.map f t))))
let mk_mul ( ctx : context ) ( t : expr list ) =
let f x = (Expr.gno x) in
(expr_of_ptr ctx (Z3native.mk_mul (context_gno ctx) (List.length t) (Array.of_list (List.map f t))))
let mk_sub ( ctx : context ) ( t : expr list ) =
let f x = (Expr.gno x) in
(expr_of_ptr ctx (Z3native.mk_sub (context_gno ctx) (List.length t) (Array.of_list (List.map f t))))
let mk_unary_minus ( ctx : context ) ( t : expr ) =
(expr_of_ptr ctx (Z3native.mk_unary_minus (context_gno ctx) (Expr.gno t)))
let mk_div ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_div (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_power ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_power (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_lt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_lt (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_le ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_le (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_gt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_gt (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_ge ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_ge (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
end
module BitVector =
struct
let mk_sort ( ctx : context ) size =
Sort.sort_of_ptr ctx (Z3native.mk_bv_sort (context_gno ctx) size)
let is_bv ( x : expr ) =
((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == BV_SORT)
let is_bv_numeral ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNUM)
let is_bv_bit1 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BIT1)
let is_bv_bit0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BIT0)
let is_bv_uminus ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNEG)
let is_bv_add ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BADD)
let is_bv_sub ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSUB)
let is_bv_mul ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BMUL)
let is_bv_sdiv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSDIV)
let is_bv_udiv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUDIV)
let is_bv_SRem ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSREM)
let is_bv_urem ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUREM)
let is_bv_smod ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSMOD)
let is_bv_sdiv0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSDIV0)
let is_bv_udiv0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUDIV0)
let is_bv_srem0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSREM0)
let is_bv_urem0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUREM0)
let is_bv_smod0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSMOD0)
let is_bv_ule ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ULEQ)
let is_bv_sle ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SLEQ)
let is_bv_uge ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UGEQ)
let is_bv_sge ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SGEQ)
let is_bv_ult ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ULT)
let is_bv_slt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SLT)
let is_bv_ugt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UGT)
let is_bv_sgt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SGT)
let is_bv_and ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BAND)
let is_bv_or ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BOR)
let is_bv_not ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNOT)
let is_bv_xor ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BXOR)
let is_bv_nand ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNAND)
let is_bv_nor ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNOR)
let is_bv_xnor ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BXNOR)
let is_bv_concat ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CONCAT)
let is_bv_signextension ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SIGN_EXT)
let is_bv_zeroextension ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ZERO_EXT)
let is_bv_extract ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXTRACT)
let is_bv_repeat ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_REPEAT)
let is_bv_reduceor ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BREDOR)
let is_bv_reduceand ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BREDAND)
let is_bv_comp ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BCOMP)
let is_bv_shiftleft ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSHL)
let is_bv_shiftrightlogical ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BLSHR)
let is_bv_shiftrightarithmetic ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BASHR)
let is_bv_rotateleft ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ROTATE_LEFT)
let is_bv_rotateright ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ROTATE_RIGHT)
let is_bv_rotateleftextended ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXT_ROTATE_LEFT)
let is_bv_rotaterightextended ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXT_ROTATE_RIGHT)
let is_int2bv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_INT2BV)
let is_bv2int ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BV2INT)
let is_bv_carry ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CARRY)
let is_bv_xor3 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_XOR3)
let get_size (x : Sort.sort ) = Z3native.get_bv_sort_size (Sort.gnc x) (Sort.gno x)
let get_int ( x : expr ) =
let (r, v) = Z3native.get_numeral_int (Expr.gnc x) (Expr.gno x) in
if r then v
else raise (Z3native.Exception "Conversion failed.")
let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)
let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( size : int ) =
Expr.mk_const ctx name (mk_sort ctx size)
let mk_const_s ( ctx : context ) ( name : string ) ( size : int ) =
mk_const ctx (Symbol.mk_string ctx name) size
let mk_not ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_bvnot (context_gno ctx) (Expr.gno t))
let mk_redand ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_bvredand (context_gno ctx) (Expr.gno t))
let mk_redor ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_bvredor (context_gno ctx) (Expr.gno t))
let mk_and ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvand (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_or ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvor (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_xor ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvxor (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_nand ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvnand (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_nor ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvnor (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_xnor ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvxnor (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_neg ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_bvneg (context_gno ctx) (Expr.gno t))
let mk_add ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvadd (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_sub ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvsub (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_mul ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvmul (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_udiv ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvudiv (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_sdiv ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvsdiv (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_urem ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvurem (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_srem ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvsrem (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_smod ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvsmod (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_ult ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvult (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_slt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvslt (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_ule ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvule (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_sle ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvsle (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_uge ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvuge (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_sge ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvsge (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_ugt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvugt (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_sgt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvsgt (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_concat ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_concat (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_extract ( ctx : context ) ( high : int ) ( low : int ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_extract (context_gno ctx) high low (Expr.gno t))
let mk_sign_ext ( ctx : context ) ( i : int ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_sign_ext (context_gno ctx) i (Expr.gno t))
let mk_zero_ext ( ctx : context ) ( i : int ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_zero_ext (context_gno ctx) i (Expr.gno t))
let mk_repeat ( ctx : context ) ( i : int ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_repeat (context_gno ctx) i (Expr.gno t))
let mk_shl ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvshl (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_lshr ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvlshr (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_ashr ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_bvashr (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_rotate_left ( ctx : context ) ( i : int ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_rotate_left (context_gno ctx) i (Expr.gno t))
let mk_rotate_right ( ctx : context ) ( i : int ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_rotate_right (context_gno ctx) i (Expr.gno t))
let mk_ext_rotate_left ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_ext_rotate_left (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_ext_rotate_right ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_ext_rotate_right (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_bv2int ( ctx : context ) ( t : expr ) ( signed : bool ) =
expr_of_ptr ctx (Z3native.mk_bv2int (context_gno ctx) (Expr.gno t) signed)
let mk_add_no_overflow ( ctx : context ) ( t1 : expr ) ( t2 : expr ) ( signed : bool) =
(expr_of_ptr ctx (Z3native.mk_bvadd_no_overflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2) signed))
let mk_add_no_underflow ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvadd_no_underflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_sub_no_overflow ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvsub_no_overflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_sub_no_underflow ( ctx : context ) ( t1 : expr ) ( t2 : expr ) ( signed : bool) =
(expr_of_ptr ctx (Z3native.mk_bvsub_no_underflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2) signed))
let mk_sdiv_no_overflow ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvsdiv_no_overflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_neg_no_overflow ( ctx : context ) ( t : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvneg_no_overflow (context_gno ctx) (Expr.gno t)))
let mk_mul_no_overflow ( ctx : context ) ( t1 : expr ) ( t2 : expr ) ( signed : bool) =
(expr_of_ptr ctx (Z3native.mk_bvmul_no_overflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2) signed))
let mk_mul_no_underflow ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
(expr_of_ptr ctx (Z3native.mk_bvmul_no_underflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
let mk_numeral ( ctx : context ) ( v : string ) ( size : int ) =
expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno (mk_sort ctx size)))
end
module FloatingPoint =
struct
module RoundingMode =
struct
let mk_sort ( ctx : context ) =
(Sort.sort_of_ptr ctx (Z3native.mk_fpa_rounding_mode_sort (context_gno ctx)))
let is_fprm ( x : expr ) =
(Sort.get_sort_kind (Expr.get_sort(x))) == ROUNDING_MODE_SORT
let mk_round_nearest_ties_to_even ( ctx : context ) =
(expr_of_ptr ctx (Z3native.mk_fpa_round_nearest_ties_to_even (context_gno ctx)))
let mk_rne ( ctx : context ) =
(expr_of_ptr ctx (Z3native.mk_fpa_rne (context_gno ctx)))
let mk_round_nearest_ties_to_away ( ctx : context ) =
(expr_of_ptr ctx (Z3native.mk_fpa_round_nearest_ties_to_away (context_gno ctx)))
let mk_rna ( ctx : context ) =
(expr_of_ptr ctx (Z3native.mk_fpa_rna (context_gno ctx)))
let mk_round_toward_positive ( ctx : context ) =
(expr_of_ptr ctx (Z3native.mk_fpa_round_toward_positive (context_gno ctx)))
let mk_rtp ( ctx : context ) =
(expr_of_ptr ctx (Z3native.mk_fpa_rtp (context_gno ctx)))
let mk_round_toward_negative ( ctx : context ) =
(expr_of_ptr ctx (Z3native.mk_fpa_round_toward_negative (context_gno ctx)))
let mk_rtn ( ctx : context ) =
(expr_of_ptr ctx (Z3native.mk_fpa_rtn (context_gno ctx)))
let mk_round_toward_zero ( ctx : context ) =
(expr_of_ptr ctx (Z3native.mk_fpa_round_toward_zero (context_gno ctx)))
let mk_rtz ( ctx : context ) =
(expr_of_ptr ctx (Z3native.mk_fpa_rtz (context_gno ctx)))
end
let mk_sort ( ctx : context ) ( ebits : int ) ( sbits : int ) =
(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort (context_gno ctx) ebits sbits))
let mk_sort_half ( ctx : context ) =
(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_half (context_gno ctx)))
let mk_sort_16 ( ctx : context ) =
(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_16 (context_gno ctx)))
let mk_sort_single ( ctx : context ) =
(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_single (context_gno ctx)))
let mk_sort_32 ( ctx : context ) =
(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_32 (context_gno ctx)))
let mk_sort_double ( ctx : context ) =
(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_double (context_gno ctx)))
let mk_sort_64 ( ctx : context ) =
(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_64 (context_gno ctx)))
let mk_sort_quadruple ( ctx : context ) =
(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_quadruple (context_gno ctx)))
let mk_sort_128 ( ctx : context ) =
(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_128 (context_gno ctx)))
let mk_nan ( ctx : context ) ( s : Sort.sort ) =
(expr_of_ptr ctx (Z3native.mk_fpa_nan (context_gno ctx) (Sort.gno s)))
let mk_inf ( ctx : context ) ( s : Sort.sort ) ( negative : bool ) =
(expr_of_ptr ctx (Z3native.mk_fpa_inf (context_gno ctx) (Sort.gno s) negative))
let mk_zero ( ctx : context ) ( s : Sort.sort ) ( negative : bool ) =
(expr_of_ptr ctx (Z3native.mk_fpa_zero (context_gno ctx) (Sort.gno s) negative))
let mk_fp ( ctx : context ) ( sign : expr ) ( exponent : expr ) ( significand : expr ) =
(expr_of_ptr ctx (Z3native.mk_fpa_fp (context_gno ctx) (Expr.gno sign) (Expr.gno exponent) (Expr.gno significand)))
let mk_numeral_f ( ctx : context ) ( value : float ) ( s : Sort.sort ) =
(expr_of_ptr ctx (Z3native.mk_fpa_numeral_double (context_gno ctx) value (Sort.gno s)))
let mk_numeral_i ( ctx : context ) ( value : int ) ( s : Sort.sort ) =
(expr_of_ptr ctx (Z3native.mk_fpa_numeral_int (context_gno ctx) value (Sort.gno s)))
let mk_numeral_i_u ( ctx : context ) ( sign : bool ) ( exponent : int ) ( significand : int ) ( s : Sort.sort ) =
(expr_of_ptr ctx (Z3native.mk_fpa_numeral_int64_uint64 (context_gno ctx) sign exponent significand (Sort.gno s)))
let mk_numeral_s ( ctx : context ) ( v : string ) ( s : Sort.sort ) =
(expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno s)))
let is_fp ( x : expr ) = (Sort.get_sort_kind (Expr.get_sort x)) == FLOATING_POINT_SORT
let is_abs ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_ABS)
let is_neg ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_NEG)
let is_add ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_ADD)
let is_sub ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_SUB)
let is_mul ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_MUL)
let is_div ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_DIV)
let is_fma ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_FMA)
let is_sqrt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_SQRT)
let is_rem ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_REM)
let is_round_to_integral ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_ROUND_TO_INTEGRAL)
let is_min ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_MIN)
let is_max ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_MAX)
let is_leq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_LE)
let is_lt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_LT)
let is_geq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_GE)
let is_gt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_GT)
let is_eq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_EQ)
let is_is_normal ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_NORMAL)
let is_is_subnormal ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_SUBNORMAL)
let is_is_zero ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_ZERO)
let is_is_infinite ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_INF)
let is_is_nan ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_NAN)
let is_is_negative ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_NEGATIVE)
let is_is_positive ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_POSITIVE)
let is_to_fp ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_FP)
let is_to_fp_unsigned ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_FP_UNSIGNED)
let is_to_ubv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_UBV)
let is_to_sbv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_SBV)
let is_to_real ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_REAL)
let is_to_ieee_bv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_IEEE_BV)
let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)
let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( s : Sort.sort ) =
Expr.mk_const ctx name s
let mk_const_s ( ctx : context ) ( name : string ) ( s : Sort.sort ) =
mk_const ctx (Symbol.mk_string ctx name) s
let mk_abs ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_abs (context_gno ctx) (Expr.gno t))
let mk_neg ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_neg (context_gno ctx) (Expr.gno t))
let mk_add ( ctx : context ) ( rm : expr ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_add (context_gno ctx) (Expr.gno rm) (Expr.gno t1) (Expr.gno t2))
let mk_sub ( ctx : context ) ( rm : expr ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_sub (context_gno ctx) (Expr.gno rm) (Expr.gno t1) (Expr.gno t2))
let mk_mul ( ctx : context ) ( rm : expr ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_mul (context_gno ctx) (Expr.gno rm) (Expr.gno t1) (Expr.gno t2))
let mk_div ( ctx : context ) ( rm : expr ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_div (context_gno ctx) (Expr.gno rm) (Expr.gno t1) (Expr.gno t2))
let mk_fma ( ctx : context ) ( rm : expr ) ( t1 : expr ) ( t2 : expr ) ( t3 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_fma (context_gno ctx) (Expr.gno rm) (Expr.gno t1) (Expr.gno t2) (Expr.gno t3))
let mk_sqrt ( ctx : context ) ( rm : expr ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_sqrt (context_gno ctx) (Expr.gno rm) (Expr.gno t))
let mk_rem ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_rem (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_round_to_integral ( ctx : context ) ( rm : expr ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_round_to_integral (context_gno ctx) (Expr.gno rm) (Expr.gno t))
let mk_min ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_min (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_max ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_max (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_leq ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_leq (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_lt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_lt (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_geq ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_geq (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_gt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_gt (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_eq ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_eq (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
let mk_is_normal ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_is_normal (context_gno ctx) (Expr.gno t))
let mk_is_subnormal ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_is_subnormal (context_gno ctx) (Expr.gno t))
let mk_is_zero ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_is_zero (context_gno ctx) (Expr.gno t))
let mk_is_infinite ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_is_infinite (context_gno ctx) (Expr.gno t))
let mk_is_nan ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_is_nan (context_gno ctx) (Expr.gno t))
let mk_is_negative ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_is_negative (context_gno ctx) (Expr.gno t))
let mk_is_positive ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_is_positive (context_gno ctx) (Expr.gno t))
let mk_to_fp_bv ( ctx : context ) ( t : expr ) ( s : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_fpa_to_fp_bv (context_gno ctx) (Expr.gno t) (Sort.gno s))
let mk_to_fp_float ( ctx : context ) ( rm : expr) ( t : expr ) ( s : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_fpa_to_fp_float (context_gno ctx) (Expr.gno rm) (Expr.gno t) (Sort.gno s))
let mk_to_fp_real ( ctx : context ) ( rm : expr ) ( t : expr ) ( s : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_fpa_to_fp_real (context_gno ctx) (Expr.gno rm) (Expr.gno t) (Sort.gno s))
let mk_to_fp_signed ( ctx : context ) ( rm : expr) ( t : expr ) ( s : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_fpa_to_fp_signed (context_gno ctx) (Expr.gno rm) (Expr.gno t) (Sort.gno s))
let mk_to_fp_unsigned ( ctx : context ) ( rm : expr) ( t : expr ) ( s : Sort.sort ) =
expr_of_ptr ctx (Z3native.mk_fpa_to_fp_unsigned (context_gno ctx) (Expr.gno rm) (Expr.gno t) (Sort.gno s))
let mk_to_ubv ( ctx : context ) ( rm : expr) ( t : expr ) ( size : int ) =
expr_of_ptr ctx (Z3native.mk_fpa_to_ubv (context_gno ctx) (Expr.gno rm) (Expr.gno t) size)
let mk_to_sbv ( ctx : context ) ( rm : expr) ( t : expr ) ( size : int ) =
expr_of_ptr ctx (Z3native.mk_fpa_to_sbv (context_gno ctx) (Expr.gno rm) (Expr.gno t) size)
let mk_to_real ( ctx : context ) ( t : expr ) =
expr_of_ptr ctx (Z3native.mk_fpa_to_real (context_gno ctx) (Expr.gno t))
let get_ebits ( ctx : context ) ( s : Sort.sort ) =
(Z3native.fpa_get_ebits (context_gno ctx) (Sort.gno s))
let get_sbits ( ctx : context ) ( s : Sort.sort ) =
(Z3native.fpa_get_sbits (context_gno ctx) (Sort.gno s))
let get_numeral_sign ( ctx : context ) ( t : expr ) =
(Z3native.fpa_get_numeral_sign (context_gno ctx) (Expr.gno t))
let get_numeral_significand_string ( ctx : context ) ( t : expr ) =
(Z3native.fpa_get_numeral_significand_string (context_gno ctx) (Expr.gno t))
let get_numeral_significand_uint ( ctx : context ) ( t : expr ) =
(Z3native.fpa_get_numeral_significand_uint64 (context_gno ctx) (Expr.gno t))
let get_numeral_exponent_string ( ctx : context ) ( t : expr ) =
(Z3native.fpa_get_numeral_exponent_string (context_gno ctx) (Expr.gno t))
let get_numeral_exponent_int ( ctx : context ) ( t : expr ) =
(Z3native.fpa_get_numeral_exponent_int64 (context_gno ctx) (Expr.gno t))
let mk_to_ieee_bv ( ctx : context ) ( t : expr ) =
(expr_of_ptr ctx (Z3native.mk_fpa_to_ieee_bv (context_gno ctx) (Expr.gno t)))
let mk_to_fp_int_real ( ctx : context ) ( rm : expr ) ( exponent : expr ) ( significand : expr ) ( s : Sort.sort ) =
(expr_of_ptr ctx (Z3native.mk_fpa_to_fp_int_real (context_gno ctx) (Expr.gno rm) (Expr.gno exponent) (Expr.gno significand) (Sort.gno s)))
let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)
end
module Proof =
struct
let is_true ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRUE)
let is_asserted ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_ASSERTED)
let is_goal ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_GOAL)
let is_oeq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_OEQ)
let is_modus_ponens ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MODUS_PONENS)
let is_reflexivity ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REFLEXIVITY)
let is_symmetry ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_SYMMETRY)
let is_transitivity ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRANSITIVITY)
let is_Transitivity_star ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRANSITIVITY_STAR)
let is_monotonicity ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MONOTONICITY)
let is_quant_intro ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_QUANT_INTRO)
let is_distributivity ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DISTRIBUTIVITY)
let is_and_elimination ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_AND_ELIM)
let is_or_elimination ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NOT_OR_ELIM)
let is_rewrite ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REWRITE)
let is_rewrite_star ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REWRITE_STAR)
let is_pull_quant ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PULL_QUANT)
let is_pull_quant_star ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PULL_QUANT_STAR)
let is_push_quant ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PUSH_QUANT)
let is_elim_unused_vars ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_ELIM_UNUSED_VARS)
let is_der ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DER)
let is_quant_inst ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_QUANT_INST)
let is_hypothesis ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_HYPOTHESIS)
let is_lemma ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_LEMMA)
let is_unit_resolution ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_UNIT_RESOLUTION)
let is_iff_true ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_TRUE)
let is_iff_false ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_FALSE)
let is_commutativity ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_COMMUTATIVITY) (* *)
let is_def_axiom ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DEF_AXIOM)
let is_def_intro ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DEF_INTRO)
let is_apply_def ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_APPLY_DEF)
let is_iff_oeq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_OEQ)
let is_nnf_pos ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_POS)
let is_nnf_neg ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_NEG)
let is_nnf_star ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_STAR)
let is_cnf_star ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_CNF_STAR)
let is_skolemize ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_SKOLEMIZE)
let is_modus_ponens_oeq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MODUS_PONENS_OEQ)
let is_theory_lemma ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TH_LEMMA)
end
module Goal =
struct
type goal = z3_native_object
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : goal = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.goal_inc_ref ;
dec_ref = Z3native.goal_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let get_precision ( x : goal ) =
goal_prec_of_int (Z3native.goal_precision (z3obj_gnc x) (z3obj_gno x))
let is_precise ( x : goal ) =
(get_precision x) == GOAL_PRECISE
let is_underapproximation ( x : goal ) =
(get_precision x) == GOAL_UNDER
let is_overapproximation ( x : goal ) =
(get_precision x) == GOAL_OVER
let is_garbage ( x : goal ) =
(get_precision x) == GOAL_UNDER_OVER
let add ( x : goal ) ( constraints : expr list ) =
let f e = Z3native.goal_assert (z3obj_gnc x) (z3obj_gno x) (Expr.gno e) in
ignore (List.map f constraints) ;
()
let is_inconsistent ( x : goal ) =
Z3native.goal_inconsistent (z3obj_gnc x) (z3obj_gno x)
let get_depth ( x : goal ) = Z3native.goal_depth (z3obj_gnc x) (z3obj_gno x)
let reset ( x : goal ) = Z3native.goal_reset (z3obj_gnc x) (z3obj_gno x)
let get_size ( x : goal ) = Z3native.goal_size (z3obj_gnc x) (z3obj_gno x)
let get_formulas ( x : goal ) =
let n = get_size x in
let f i = ((expr_of_ptr (z3obj_gc x)
(Z3native.goal_formula (z3obj_gnc x) (z3obj_gno x) i))) in
mk_list f n
let get_num_exprs ( x : goal ) = Z3native.goal_num_exprs (z3obj_gnc x) (z3obj_gno x)
let is_decided_sat ( x : goal ) =
Z3native.goal_is_decided_sat (z3obj_gnc x) (z3obj_gno x)
let is_decided_unsat ( x : goal ) =
Z3native.goal_is_decided_unsat (z3obj_gnc x) (z3obj_gno x)
let translate ( x : goal ) ( to_ctx : context ) =
create to_ctx (Z3native.goal_translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx))
let simplify ( x : goal ) ( p : Params.params option ) =
let tn = Z3native.mk_tactic (z3obj_gnc x) "simplify" in
Z3native.tactic_inc_ref (z3obj_gnc x) tn ;
let arn = match p with
| None -> Z3native.tactic_apply (z3obj_gnc x) tn (z3obj_gno x)
| Some(pn) -> Z3native.tactic_apply_ex (z3obj_gnc x) tn (z3obj_gno x) (z3obj_gno pn)
in
Z3native.apply_result_inc_ref (z3obj_gnc x) arn ;
let sg = Z3native.apply_result_get_num_subgoals (z3obj_gnc x) arn in
let res = if sg == 0 then
raise (Z3native.Exception "No subgoals")
else
Z3native.apply_result_get_subgoal (z3obj_gnc x) arn 0 in
Z3native.apply_result_dec_ref (z3obj_gnc x) arn ;
Z3native.tactic_dec_ref (z3obj_gnc x) tn ;
create (z3obj_gc x) res
let mk_goal ( ctx : context ) ( models : bool ) ( unsat_cores : bool ) ( proofs : bool ) =
create ctx (Z3native.mk_goal (context_gno ctx) models unsat_cores proofs)
let to_string ( x : goal ) = Z3native.goal_to_string (z3obj_gnc x) (z3obj_gno x)
let as_expr ( x : goal ) =
let n = get_size x in
if n = 0 then
(Boolean.mk_true (z3obj_gc x))
else if n = 1 then
(List.hd (get_formulas x))
else
(Boolean.mk_and (z3obj_gc x) (get_formulas x))
end
module Model =
struct
type model = z3_native_object
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : model = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.model_inc_ref ;
dec_ref = Z3native.model_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
module FuncInterp =
struct
type func_interp = z3_native_object
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : func_interp = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.func_interp_inc_ref ;
dec_ref = Z3native.func_interp_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
module FuncEntry =
struct
type func_entry = z3_native_object
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : func_entry = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.func_entry_inc_ref ;
dec_ref = Z3native.func_entry_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let get_value ( x : func_entry ) =
expr_of_ptr (z3obj_gc x) (Z3native.func_entry_get_value (z3obj_gnc x) (z3obj_gno x))
let get_num_args ( x : func_entry ) = Z3native.func_entry_get_num_args (z3obj_gnc x) (z3obj_gno x)
let get_args ( x : func_entry ) =
let n = (get_num_args x) in
let f i = (expr_of_ptr (z3obj_gc x) (Z3native.func_entry_get_arg (z3obj_gnc x) (z3obj_gno x) i)) in
mk_list f n
let to_string ( x : func_entry ) =
let a = (get_args x) in
let f c p = (p ^ (Expr.to_string c) ^ ", ") in
"[" ^ List.fold_right f a ((Expr.to_string (get_value x)) ^ "]")
end
let get_num_entries ( x: func_interp ) = Z3native.func_interp_get_num_entries (z3obj_gnc x) (z3obj_gno x)
let get_entries ( x : func_interp ) =
let n = (get_num_entries x) in
let f i = (FuncEntry.create (z3obj_gc x) (Z3native.func_interp_get_entry (z3obj_gnc x) (z3obj_gno x) i)) in
mk_list f n
let get_else ( x : func_interp ) = expr_of_ptr (z3obj_gc x) (Z3native.func_interp_get_else (z3obj_gnc x) (z3obj_gno x))
let get_arity ( x : func_interp ) = Z3native.func_interp_get_arity (z3obj_gnc x) (z3obj_gno x)
let to_string ( x : func_interp ) =
let f c p = (
let n = (FuncEntry.get_num_args c) in
p ^
let g c p = (p ^ (Expr.to_string c) ^ ", ") in
(if n > 1 then "[" else "") ^
(List.fold_right
g
(FuncEntry.get_args c)
((if n > 1 then "]" else "") ^ " -> " ^ (Expr.to_string (FuncEntry.get_value c)) ^ ", "))
) in
List.fold_right f (get_entries x) ("else -> " ^ (Expr.to_string (get_else x)) ^ "]")
end
let get_const_interp ( x : model ) ( f : func_decl ) =
if (FuncDecl.get_arity f) != 0 ||
(sort_kind_of_int (Z3native.get_sort_kind (FuncDecl.gnc f) (Z3native.get_range (FuncDecl.gnc f) (FuncDecl.gno f)))) == ARRAY_SORT then
raise (Z3native.Exception "Non-zero arity functions and arrays have FunctionInterpretations as a model. Use FuncInterp.")
else
let np = Z3native.model_get_const_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) in
if (Z3native.is_null np) then
None
else
Some (expr_of_ptr (z3obj_gc x) np)
let get_const_interp_e ( x : model ) ( a : expr ) = get_const_interp x (Expr.get_func_decl a)
let rec get_func_interp ( x : model ) ( f : func_decl ) =
let sk = (sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc x) (Z3native.get_range (FuncDecl.gnc f) (FuncDecl.gno f)))) in
if (FuncDecl.get_arity f) == 0 then
let n = Z3native.model_get_const_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) in
if (Z3native.is_null n) then
None
else
match sk with
| ARRAY_SORT ->
if not (Z3native.is_as_array (z3obj_gnc x) n) then
raise (Z3native.Exception "Argument was not an array constant")
else
let fd = Z3native.get_as_array_func_decl (z3obj_gnc x) n in
get_func_interp x (func_decl_of_ptr (z3obj_gc x) fd)
| _ -> raise (Z3native.Exception "Constant functions do not have a function interpretation; use ConstInterp");
else
let n = (Z3native.model_get_func_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f)) in
if (Z3native.is_null n) then None else Some (FuncInterp.create (z3obj_gc x) n)
(** The number of constants that have an interpretation in the model. *)
let get_num_consts ( x : model ) = Z3native.model_get_num_consts (z3obj_gnc x) (z3obj_gno x)
let get_const_decls ( x : model ) =
let n = (get_num_consts x) in
let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_const_decl (z3obj_gnc x) (z3obj_gno x) i) in
mk_list f n
let get_num_funcs ( x : model ) = Z3native.model_get_num_funcs (z3obj_gnc x) (z3obj_gno x)
let get_func_decls ( x : model ) =
let n = (get_num_funcs x) in
let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_func_decl (z3obj_gnc x) (z3obj_gno x) i) in
mk_list f n
let get_decls ( x : model ) =
let n_funcs = (get_num_funcs x) in
let n_consts = (get_num_consts x ) in
let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_func_decl (z3obj_gnc x) (z3obj_gno x) i) in
let g i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_const_decl (z3obj_gnc x) (z3obj_gno x) i) in
(mk_list f n_funcs) @ (mk_list g n_consts)
let eval ( x : model ) ( t : expr ) ( completion : bool ) =
let (r, v) = (Z3native.model_eval (z3obj_gnc x) (z3obj_gno x) (Expr.gno t) completion) in
if not r then
None
else
Some(expr_of_ptr (z3obj_gc x) v)
let evaluate ( x : model ) ( t : expr ) ( completion : bool ) =
eval x t completion
let get_num_sorts ( x : model ) = Z3native.model_get_num_sorts (z3obj_gnc x) (z3obj_gno x)
let get_sorts ( x : model ) =
let n = (get_num_sorts x) in
let f i = (Sort.sort_of_ptr (z3obj_gc x) (Z3native.model_get_sort (z3obj_gnc x) (z3obj_gno x) i)) in
mk_list f n
let sort_universe ( x : model ) ( s : Sort.sort ) =
let av = AST.ASTVector.create (z3obj_gc x) (Z3native.model_get_sort_universe (z3obj_gnc x) (z3obj_gno x) (Sort.gno s)) in
(AST.ASTVector.to_expr_list av)
let to_string ( x : model ) = Z3native.model_to_string (z3obj_gnc x) (z3obj_gno x)
end
module Probe =
struct
type probe = z3_native_object
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : probe = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.probe_inc_ref ;
dec_ref = Z3native.probe_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let apply ( x : probe ) ( g : Goal.goal ) =
Z3native.probe_apply (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g)
let get_num_probes ( ctx : context ) =
Z3native.get_num_probes (context_gno ctx)
let get_probe_names ( ctx : context ) =
let n = (get_num_probes ctx) in
let f i = (Z3native.get_probe_name (context_gno ctx) i) in
mk_list f n
let get_probe_description ( ctx : context ) ( name : string ) =
Z3native.probe_get_descr (context_gno ctx) name
let mk_probe ( ctx : context ) ( name : string ) =
(create ctx (Z3native.mk_probe (context_gno ctx) name))
let const ( ctx : context ) ( v : float ) =
(create ctx (Z3native.probe_const (context_gno ctx) v))
let lt ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
(create ctx (Z3native.probe_lt (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
let gt ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
(create ctx (Z3native.probe_gt (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
let le ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
(create ctx (Z3native.probe_le (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
let ge ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
(create ctx (Z3native.probe_ge (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
let eq ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
(create ctx (Z3native.probe_eq (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
let and_ ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
(create ctx (Z3native.probe_and (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
let or_ ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
(create ctx (Z3native.probe_or (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
let not_ ( ctx : context ) ( p : probe ) =
(create ctx (Z3native.probe_not (context_gno ctx) (z3obj_gno p)))
end
module Tactic =
struct
type tactic = z3_native_object
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : tactic = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.tactic_inc_ref ;
dec_ref = Z3native.tactic_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
module ApplyResult =
struct
type apply_result = z3_native_object
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : apply_result = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.apply_result_inc_ref ;
dec_ref = Z3native.apply_result_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let get_num_subgoals ( x : apply_result ) =
Z3native.apply_result_get_num_subgoals (z3obj_gnc x) (z3obj_gno x)
let get_subgoals ( x : apply_result ) =
let n = (get_num_subgoals x) in
let f i = Goal.create (z3obj_gc x) (Z3native.apply_result_get_subgoal (z3obj_gnc x) (z3obj_gno x) i) in
mk_list f n
let get_subgoal ( x : apply_result ) ( i : int ) =
Goal.create (z3obj_gc x) (Z3native.apply_result_get_subgoal (z3obj_gnc x) (z3obj_gno x) i)
let convert_model ( x : apply_result ) ( i : int ) ( m : Model.model ) =
Model.create (z3obj_gc x) (Z3native.apply_result_convert_model (z3obj_gnc x) (z3obj_gno x) i (z3obj_gno m))
let to_string ( x : apply_result ) = Z3native.apply_result_to_string (z3obj_gnc x) (z3obj_gno x)
end
let get_help ( x : tactic ) = Z3native.tactic_get_help (z3obj_gnc x) (z3obj_gno x)
let get_param_descrs ( x : tactic ) =
Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.tactic_get_param_descrs (z3obj_gnc x) (z3obj_gno x))
let apply ( x : tactic ) ( g : Goal.goal ) ( p : Params.params option ) =
match p with
| None -> (ApplyResult.create (z3obj_gc x) (Z3native.tactic_apply (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g)))
| Some (pn) -> (ApplyResult.create (z3obj_gc x) (Z3native.tactic_apply_ex (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g) (z3obj_gno pn)))
let get_num_tactics ( ctx : context ) = Z3native.get_num_tactics (context_gno ctx)
let get_tactic_names ( ctx : context ) =
let n = (get_num_tactics ctx ) in
let f i = (Z3native.get_tactic_name (context_gno ctx) i) in
mk_list f n
let get_tactic_description ( ctx : context ) ( name : string ) =
Z3native.tactic_get_descr (context_gno ctx) name
let mk_tactic ( ctx : context ) ( name : string ) =
create ctx (Z3native.mk_tactic (context_gno ctx) name)
let and_then ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) ( ts : tactic list ) =
let f p c = (match p with
| None -> (Some (z3obj_gno c))
| Some(x) -> (Some (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno c) x))) in
match (List.fold_left f None ts) with
| None ->
create ctx (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2))
| Some(x) ->
let o = (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t2) x) in
create ctx (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t1) o)
let or_else ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) =
create ctx (Z3native.tactic_or_else (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2))
let try_for ( ctx : context ) ( t : tactic ) ( ms : int ) =
create ctx (Z3native.tactic_try_for (context_gno ctx) (z3obj_gno t) ms)
let when_ ( ctx : context ) ( p : Probe.probe ) ( t : tactic ) =
create ctx (Z3native.tactic_when (context_gno ctx) (z3obj_gno p) (z3obj_gno t))
let cond ( ctx : context ) ( p : Probe.probe ) ( t1 : tactic ) ( t2 : tactic ) =
create ctx (Z3native.tactic_cond (context_gno ctx) (z3obj_gno p) (z3obj_gno t1) (z3obj_gno t2))
let repeat ( ctx : context ) ( t : tactic ) ( max : int ) =
create ctx (Z3native.tactic_repeat (context_gno ctx) (z3obj_gno t) max)
let skip ( ctx : context ) =
create ctx (Z3native.tactic_skip (context_gno ctx))
let fail ( ctx : context ) =
create ctx (Z3native.tactic_fail (context_gno ctx))
let fail_if ( ctx : context ) ( p : Probe.probe ) =
create ctx (Z3native.tactic_fail_if (context_gno ctx) (z3obj_gno p))
let fail_if_not_decided ( ctx : context ) =
create ctx (Z3native.tactic_fail_if_not_decided (context_gno ctx))
let using_params ( ctx : context ) ( t : tactic ) ( p : Params.params ) =
create ctx (Z3native.tactic_using_params (context_gno ctx) (z3obj_gno t) (z3obj_gno p))
let with_ ( ctx : context ) ( t : tactic ) ( p : Params.params ) =
using_params ctx t p
let par_or ( ctx : context ) ( t : tactic list ) =
let f e = (z3obj_gno e) in
create ctx (Z3native.tactic_par_or (context_gno ctx) (List.length t) (Array.of_list (List.map f t)))
let par_and_then ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) =
create ctx (Z3native.tactic_par_and_then (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2))
let interrupt ( ctx : context ) =
Z3native.interrupt (context_gno ctx)
end
module Statistics =
struct
type statistics = z3_native_object
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : statistics = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.stats_inc_ref ;
dec_ref = Z3native.stats_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
module Entry =
struct
type statistics_entry = {
mutable m_key : string;
mutable m_is_int : bool ;
mutable m_is_float : bool ;
mutable m_int : int ;
mutable m_float : float }
let create_si k v =
let res : statistics_entry = {
m_key = k ;
m_is_int = true ;
m_is_float = false ;
m_int = v ;
m_float = 0.0
} in
res
let create_sd k v =
let res : statistics_entry = {
m_key = k ;
m_is_int = false ;
m_is_float = true ;
m_int = 0 ;
m_float = v
} in
res
let get_key (x : statistics_entry) = x.m_key
let get_int (x : statistics_entry) = x.m_int
let get_float (x : statistics_entry) = x.m_float
let is_int (x : statistics_entry) = x.m_is_int
let is_float (x : statistics_entry) = x.m_is_float
let to_string_value (x : statistics_entry) =
if (is_int x) then
string_of_int (get_int x)
else if (is_float x) then
string_of_float (get_float x)
else
raise (Z3native.Exception "Unknown statistical entry type")
let to_string ( x : statistics_entry ) = (get_key x) ^ ": " ^ (to_string_value x)
end
let to_string ( x : statistics ) = Z3native.stats_to_string (z3obj_gnc x) (z3obj_gno x)
let get_size ( x : statistics ) = Z3native.stats_size (z3obj_gnc x) (z3obj_gno x)
let get_entries ( x : statistics ) =
let n = (get_size x ) in
let f i = (
let k = Z3native.stats_get_key (z3obj_gnc x) (z3obj_gno x) i in
if (Z3native.stats_is_uint (z3obj_gnc x) (z3obj_gno x) i) then
(Entry.create_si k (Z3native.stats_get_uint_value (z3obj_gnc x) (z3obj_gno x) i))
else
(Entry.create_sd k (Z3native.stats_get_double_value (z3obj_gnc x) (z3obj_gno x) i))
) in
mk_list f n
let get_keys ( x : statistics ) =
let n = (get_size x) in
let f i = (Z3native.stats_get_key (z3obj_gnc x) (z3obj_gno x) i) in
mk_list f n
let get ( x : statistics ) ( key : string ) =
let f p c = (if ((Entry.get_key c) == key) then (Some c) else p) in
List.fold_left f None (get_entries x)
end
module Solver =
struct
type solver = z3_native_object
type status = UNSATISFIABLE | UNKNOWN | SATISFIABLE
let create ( ctx : context ) ( no : Z3native.ptr ) =
let res : solver = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.solver_inc_ref ;
dec_ref = Z3native.solver_dec_ref } in
(z3obj_sno res ctx no) ;
(z3obj_create res) ;
res
let string_of_status ( s : status) = match s with
| UNSATISFIABLE -> "unsatisfiable"
| SATISFIABLE -> "satisfiable"
| _ -> "unknown"
let get_help ( x : solver ) = Z3native.solver_get_help (z3obj_gnc x) (z3obj_gno x)
let set_parameters ( x : solver ) ( p : Params.params )=
Z3native.solver_set_params (z3obj_gnc x) (z3obj_gno x) (z3obj_gno p)
let get_param_descrs ( x : solver ) =
Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.solver_get_param_descrs (z3obj_gnc x) (z3obj_gno x))
let get_num_scopes ( x : solver ) = Z3native.solver_get_num_scopes (z3obj_gnc x) (z3obj_gno x)
let push ( x : solver ) = Z3native.solver_push (z3obj_gnc x) (z3obj_gno x)
let pop ( x : solver ) ( n : int ) = Z3native.solver_pop (z3obj_gnc x) (z3obj_gno x) n
let reset ( x : solver ) = Z3native.solver_reset (z3obj_gnc x) (z3obj_gno x)
let add ( x : solver ) ( constraints : expr list ) =
let f e = (Z3native.solver_assert (z3obj_gnc x) (z3obj_gno x) (Expr.gno e)) in
ignore (List.map f constraints)
let assert_and_track_l ( x : solver ) ( cs : expr list ) ( ps : expr list ) =
if ((List.length cs) != (List.length ps)) then
raise (Z3native.Exception "Argument size mismatch")
else
let f a b = (Z3native.solver_assert_and_track (z3obj_gnc x) (z3obj_gno x) (Expr.gno a) (Expr.gno b)) in
ignore (List.iter2 f cs ps)
let assert_and_track ( x : solver ) ( c : expr ) ( p : expr ) =
Z3native.solver_assert_and_track (z3obj_gnc x) (z3obj_gno x) (Expr.gno c) (Expr.gno p)
let get_num_assertions ( x : solver ) =
let a = AST.ASTVector.create (z3obj_gc x) (Z3native.solver_get_assertions (z3obj_gnc x) (z3obj_gno x)) in
(AST.ASTVector.get_size a)
let get_assertions ( x : solver ) =
let av = AST.ASTVector.create (z3obj_gc x) (Z3native.solver_get_assertions (z3obj_gnc x) (z3obj_gno x)) in
(AST.ASTVector.to_expr_list av)
let check ( x : solver ) ( assumptions : expr list ) =
let r =
if ((List.length assumptions) == 0) then
lbool_of_int (Z3native.solver_check (z3obj_gnc x) (z3obj_gno x))
else
let f x = (Expr.gno x) in
lbool_of_int (Z3native.solver_check_assumptions (z3obj_gnc x) (z3obj_gno x) (List.length assumptions) (Array.of_list (List.map f assumptions)))
in
match r with
| L_TRUE -> SATISFIABLE
| L_FALSE -> UNSATISFIABLE
| _ -> UNKNOWN
let get_model ( x : solver ) =
let q = Z3native.solver_get_model (z3obj_gnc x) (z3obj_gno x) in
if (Z3native.is_null q) then
None
else
Some (Model.create (z3obj_gc x) q)
let get_proof ( x : solver ) =
let q = Z3native.solver_get_proof (z3obj_gnc x) (z3obj_gno x) in
if (Z3native.is_null q) then
None
else
Some (expr_of_ptr (z3obj_gc x) q)
let get_unsat_core ( x : solver ) =
let av = AST.ASTVector.create (z3obj_gc x) (Z3native.solver_get_unsat_core (z3obj_gnc x) (z3obj_gno x)) in
(AST.ASTVector.to_expr_list av)
let get_reason_unknown ( x : solver ) = Z3native.solver_get_reason_unknown (z3obj_gnc x) (z3obj_gno x)
let get_statistics ( x : solver ) =
(Statistics.create (z3obj_gc x) (Z3native.solver_get_statistics (z3obj_gnc x) (z3obj_gno x)))
let mk_solver ( ctx : context ) ( logic : Symbol.symbol option ) =
match logic with
| None -> (create ctx (Z3native.mk_solver (context_gno ctx)))
| Some (x) -> (create ctx (Z3native.mk_solver_for_logic (context_gno ctx) (Symbol.gno x)))
let mk_solver_s ( ctx : context ) ( logic : string ) =
mk_solver ctx (Some (Symbol.mk_string ctx logic))
let mk_simple_solver ( ctx : context ) =
(create ctx (Z3native.mk_simple_solver (context_gno ctx)))
let mk_solver_t ( ctx : context ) ( t : Tactic.tactic ) =
(create ctx (Z3native.mk_solver_from_tactic (context_gno ctx) (z3obj_gno t)))
let to_string ( x : solver ) = Z3native.solver_to_string (z3obj_gnc x) (z3obj_gno x)
end
module Fixedpoint =
struct
type fixedpoint = z3_native_object
let create ( ctx : context ) =
let res : fixedpoint = { m_ctx = ctx ;
m_n_obj = null ;
inc_ref = Z3native.fixedpoint_inc_ref ;
dec_ref = Z3native.fixedpoint_dec_ref } in
(z3obj_sno res ctx (Z3native.mk_fixedpoint (context_gno ctx))) ;
(z3obj_create res) ;
res
let get_help ( x : fixedpoint ) =
Z3native.fixedpoint_get_help (z3obj_gnc x) (z3obj_gno x)
let set_params ( x : fixedpoint ) ( p : Params.params )=
Z3native.fixedpoint_set_params (z3obj_gnc x) (z3obj_gno x) (z3obj_gno p)
let get_param_descrs ( x : fixedpoint ) =
Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.fixedpoint_get_param_descrs (z3obj_gnc x) (z3obj_gno x))
let add ( x : fixedpoint ) ( constraints : expr list ) =
let f e = (Z3native.fixedpoint_assert (z3obj_gnc x) (z3obj_gno x) (Expr.gno e)) in
ignore (List.map f constraints) ;
()
let register_relation ( x : fixedpoint ) ( f : func_decl ) =
Z3native.fixedpoint_register_relation (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f)
let add_rule ( x : fixedpoint ) ( rule : expr ) ( name : Symbol.symbol option ) =
match name with
| None -> Z3native.fixedpoint_add_rule (z3obj_gnc x) (z3obj_gno x) (Expr.gno rule) null
| Some(y) -> Z3native.fixedpoint_add_rule (z3obj_gnc x) (z3obj_gno x) (Expr.gno rule) (Symbol.gno y)
let add_fact ( x : fixedpoint ) ( pred : func_decl ) ( args : int list ) =
Z3native.fixedpoint_add_fact (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno pred) (List.length args) (Array.of_list args)
let query ( x : fixedpoint ) ( query : expr ) =
match (lbool_of_int (Z3native.fixedpoint_query (z3obj_gnc x) (z3obj_gno x) (Expr.gno query))) with
| L_TRUE -> Solver.SATISFIABLE
| L_FALSE -> Solver.UNSATISFIABLE
| _ -> Solver.UNKNOWN
let query_r ( x : fixedpoint ) ( relations : func_decl list ) =
let f x = AST.ptr_of_ast (ast_of_func_decl x) in
match (lbool_of_int (Z3native.fixedpoint_query_relations (z3obj_gnc x) (z3obj_gno x) (List.length relations) (Array.of_list (List.map f relations)))) with
| L_TRUE -> Solver.SATISFIABLE
| L_FALSE -> Solver.UNSATISFIABLE
| _ -> Solver.UNKNOWN
let push ( x : fixedpoint ) =
Z3native.fixedpoint_push (z3obj_gnc x) (z3obj_gno x)
let pop ( x : fixedpoint ) =
Z3native.fixedpoint_pop (z3obj_gnc x) (z3obj_gno x)
let update_rule ( x : fixedpoint ) ( rule : expr ) ( name : Symbol.symbol ) =
Z3native.fixedpoint_update_rule (z3obj_gnc x) (z3obj_gno x) (Expr.gno rule) (Symbol.gno name)
let get_answer ( x : fixedpoint ) =
let q = (Z3native.fixedpoint_get_answer (z3obj_gnc x) (z3obj_gno x)) in
if (Z3native.is_null q) then
None
else
Some (expr_of_ptr (z3obj_gc x) q)
let get_reason_unknown ( x : fixedpoint ) =
Z3native.fixedpoint_get_reason_unknown (z3obj_gnc x) (z3obj_gno x)
let get_num_levels ( x : fixedpoint ) ( predicate : func_decl ) =
Z3native.fixedpoint_get_num_levels (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno predicate)
let get_cover_delta ( x : fixedpoint ) ( level : int ) ( predicate : func_decl ) =
let q = (Z3native.fixedpoint_get_cover_delta (z3obj_gnc x) (z3obj_gno x) level (FuncDecl.gno predicate)) in
if (Z3native.is_null q) then
None
else
Some (expr_of_ptr (z3obj_gc x) q)
let add_cover ( x : fixedpoint ) ( level : int ) ( predicate : func_decl ) ( property : expr ) =
Z3native.fixedpoint_add_cover (z3obj_gnc x) (z3obj_gno x) level (FuncDecl.gno predicate) (Expr.gno property)
let to_string ( x : fixedpoint ) = Z3native.fixedpoint_to_string (z3obj_gnc x) (z3obj_gno x) 0 [||]
let set_predicate_representation ( x : fixedpoint ) ( f : func_decl ) ( kinds : Symbol.symbol list ) =
Z3native.fixedpoint_set_predicate_representation (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) (List.length kinds) (Symbol.symbol_lton kinds)
let to_string_q ( x : fixedpoint ) ( queries : expr list ) =
let f x = Expr.gno x in
Z3native.fixedpoint_to_string (z3obj_gnc x) (z3obj_gno x) (List.length queries) (Array.of_list (List.map f queries))
let get_rules ( x : fixedpoint ) =
let av = (AST.ASTVector.create (z3obj_gc x) (Z3native.fixedpoint_get_rules (z3obj_gnc x) (z3obj_gno x))) in
(AST.ASTVector.to_expr_list av)
let get_assertions ( x : fixedpoint ) =
let av = (AST.ASTVector.create (z3obj_gc x) (Z3native.fixedpoint_get_assertions (z3obj_gnc x) (z3obj_gno x))) in
(AST.ASTVector.to_expr_list av)
let mk_fixedpoint ( ctx : context ) = create ctx
let get_statistics ( x : fixedpoint ) =
let s = Z3native.fixedpoint_get_statistics (z3obj_gnc x) (z3obj_gno x) in
(Statistics.create (z3obj_gc x) s)
let parse_string ( x : fixedpoint ) ( s : string ) =
let av = (AST.ASTVector.create (z3obj_gc x) (Z3native.fixedpoint_from_string (z3obj_gnc x) (z3obj_gno x) s)) in
(AST.ASTVector.to_expr_list av)
let parse_file ( x : fixedpoint ) ( filename : string ) =
let av = (AST.ASTVector.create (z3obj_gc x) (Z3native.fixedpoint_from_file (z3obj_gnc x) (z3obj_gno x) filename)) in
(AST.ASTVector.to_expr_list av)
end
module SMT =
struct
let benchmark_to_smtstring ( ctx : context ) ( name : string ) ( logic : string ) ( status : string ) ( attributes : string ) ( assumptions : expr list ) ( formula : expr ) =
Z3native.benchmark_to_smtlib_string (context_gno ctx) name logic status attributes
(List.length assumptions) (let f x = Expr.gno (x) in (Array.of_list (List.map f assumptions)))
(Expr.gno formula)
let parse_smtlib_string ( ctx : context ) ( str : string ) ( sort_names : Symbol.symbol list ) ( sorts : Sort.sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
let csn = (List.length sort_names) in
let cs = (List.length sorts) in
let cdn = (List.length decl_names) in
let cd = (List.length decls) in
if (csn != cs || cdn != cd) then
raise (Z3native.Exception "Argument size mismatch")
else
Z3native.parse_smtlib_string (context_gno ctx) str
cs
(Symbol.symbol_lton sort_names)
(Sort.sort_lton sorts)
cd
(Symbol.symbol_lton decl_names)
(let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))
let parse_smtlib_file ( ctx : context ) ( file_name : string ) ( sort_names : Symbol.symbol list ) ( sorts : Sort.sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
let csn = (List.length sort_names) in
let cs = (List.length sorts) in
let cdn = (List.length decl_names) in
let cd = (List.length decls) in
if (csn != cs || cdn != cd) then
raise (Z3native.Exception "Argument size mismatch")
else
Z3native.parse_smtlib_file (context_gno ctx) file_name
cs
(Symbol.symbol_lton sort_names)
(Sort.sort_lton sorts)
cd
(Symbol.symbol_lton decl_names)
(let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))
let get_num_smtlib_formulas ( ctx : context ) = Z3native.get_smtlib_num_formulas (context_gno ctx)
let get_smtlib_formulas ( ctx : context ) =
let n = (get_num_smtlib_formulas ctx ) in
let f i =(expr_of_ptr ctx (Z3native.get_smtlib_formula (context_gno ctx) i)) in
mk_list f n
let get_num_smtlib_assumptions ( ctx : context ) = Z3native.get_smtlib_num_assumptions (context_gno ctx)
let get_smtlib_assumptions ( ctx : context ) =
let n = (get_num_smtlib_assumptions ctx ) in
let f i = (expr_of_ptr ctx (Z3native.get_smtlib_assumption (context_gno ctx) i)) in
mk_list f n
let get_num_smtlib_decls ( ctx : context ) = Z3native.get_smtlib_num_decls (context_gno ctx)
let get_smtlib_decls ( ctx : context ) =
let n = (get_num_smtlib_decls ctx) in
let f i = func_decl_of_ptr ctx (Z3native.get_smtlib_decl (context_gno ctx) i) in
mk_list f n
let get_num_smtlib_sorts ( ctx : context ) = Z3native.get_smtlib_num_sorts (context_gno ctx)
let get_smtlib_sorts ( ctx : context ) =
let n = (get_num_smtlib_sorts ctx) in
let f i = (Sort.sort_of_ptr ctx (Z3native.get_smtlib_sort (context_gno ctx) i)) in
mk_list f n
let parse_smtlib2_string ( ctx : context ) ( str : string ) ( sort_names : Symbol.symbol list ) ( sorts : Sort.sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
let csn = (List.length sort_names) in
let cs = (List.length sorts) in
let cdn = (List.length decl_names) in
let cd = (List.length decls) in
if (csn != cs || cdn != cd) then
raise (Z3native.Exception "Argument size mismatch")
else
(expr_of_ptr ctx (Z3native.parse_smtlib2_string (context_gno ctx) str
cs
(Symbol.symbol_lton sort_names)
(Sort.sort_lton sorts)
cd
(Symbol.symbol_lton decl_names)
(let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))))
let parse_smtlib2_file ( ctx : context ) ( file_name : string ) ( sort_names : Symbol.symbol list ) ( sorts : Sort.sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
let csn = (List.length sort_names) in
let cs = (List.length sorts) in
let cdn = (List.length decl_names) in
let cd = (List.length decls) in
if (csn != cs || cdn != cd) then
raise (Z3native.Exception "Argument size mismatch")
else
(expr_of_ptr ctx (Z3native.parse_smtlib2_string (context_gno ctx) file_name
cs
(Symbol.symbol_lton sort_names)
(Sort.sort_lton sorts)
cd
(Symbol.symbol_lton decl_names)
(let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))))
end
module Interpolation =
struct
let mk_interpolant ( ctx : context ) ( a : expr ) =
(expr_of_ptr ctx (Z3native.mk_interpolant (context_gno ctx) (Expr.gno a)))
let mk_interpolation_context ( settings : ( string * string ) list ) =
let cfg = Z3native.mk_config () in
let f e = (Z3native.set_param_value cfg (fst e) (snd e)) in
(List.iter f settings) ;
let v = Z3native.mk_interpolation_context cfg in
Z3native.del_config(cfg) ;
Z3native.set_ast_print_mode v (int_of_ast_print_mode PRINT_SMTLIB2_COMPLIANT) ;
Z3native.set_internal_error_handler v ;
let res = { m_n_ctx = v; m_n_obj_cnt = 0 } in
let f = fun o -> dispose_context o in
Gc.finalise f res;
res
let get_interpolant ( ctx : context ) ( pf : expr ) ( pat: expr ) ( p : Params.params ) =
let av = (AST.ASTVector.create ctx (Z3native.get_interpolant (context_gno ctx) (Expr.gno pf) (Expr.gno pat) (z3obj_gno p))) in
AST.ASTVector.to_expr_list av
let compute_interpolant ( ctx : context ) ( pat : expr ) ( p : Params.params ) =
let (r, interp, model) = (Z3native.compute_interpolant (context_gno ctx) (Expr.gno pat) (z3obj_gno p)) in
let res = (lbool_of_int r) in
match res with
| L_TRUE -> (res, None, Some(Model.create ctx model))
| L_FALSE -> (res, Some((AST.ASTVector.to_expr_list (AST.ASTVector.create ctx interp))), None)
| _ -> (res, None, None)
let get_interpolation_profile ( ctx : context ) =
(Z3native.interpolation_profile (context_gno ctx))
let read_interpolation_problem ( ctx : context ) ( filename : string ) =
let (r, num, cnsts, parents, error, num_theory, theory) = (Z3native.read_interpolation_problem (context_gno ctx) filename) in
match r with
| 0 -> raise (Z3native.Exception "Interpolation problem could not be read.")
| _ ->
let f1 i = (expr_of_ptr ctx (Array.get cnsts i)) in
let f2 i = (Array.get parents i) in
let f3 i = (expr_of_ptr ctx (Array.get theory i)) in
((mk_list f1 num),
(mk_list f2 num),
(mk_list f3 num_theory))
let check_interpolant ( ctx : context ) ( num : int ) ( cnsts : Expr.expr list ) ( parents : int list ) ( interps : Expr.expr list ) ( num_theory : int ) ( theory : Expr.expr list ) =
let (r, str) = (Z3native.check_interpolant (context_gno ctx)
num
(let f x = Expr.gno x in (Array.of_list (List.map f cnsts)))
(Array.of_list parents)
(let f x = Expr.gno x in (Array.of_list (List.map f interps)))
num_theory
(let f x = Expr.gno x in (Array.of_list (List.map f theory)))) in
match (lbool_of_int r) with
| L_UNDEF -> raise (Z3native.Exception "Interpolant could not be verified.")
| L_FALSE -> raise (Z3native.Exception "Interpolant could not be verified.")
| _ -> ()
let write_interpolation_problem ( ctx : context ) ( num : int ) ( cnsts : Expr.expr list ) ( parents : int list ) ( filename : string ) ( num_theory : int ) ( theory : Expr.expr list ) =
(Z3native.write_interpolation_problem (context_gno ctx) num (expr_lton cnsts) (Array.of_list parents) filename num_theory (expr_lton theory)) ;
()
end
let set_global_param ( id : string ) ( value : string ) =
(Z3native.global_param_set id value)
let get_global_param ( id : string ) =
let (r, v) = (Z3native.global_param_get id) in
if not r then
None
else
Some v
let global_param_reset_all =
Z3native.global_param_reset_all
let toggle_warning_messages ( enabled : bool ) =
Z3native.toggle_warning_messages enabled
let enable_trace ( tag : string ) =
(Z3native.enable_trace tag)
let disable_trace ( tag : string ) =
(Z3native.enable_trace tag)
|