This file is indexed.

/usr/lib/ocaml/z3/z3.ml is in libz3-ocaml-dev 4.4.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
(**
   The Z3 ML/OCaml Interface.

   Copyright (C) 2012 Microsoft Corporation
   @author CM Wintersteiger (cwinter) 2012-12-17
*)

open Z3enums

exception Error = Z3native.Exception

(* Some helpers. *)
let null = Z3native.mk_null()
let is_null o = (Z3native.is_null o)

(* Internal types *)
type z3_native_context = { m_n_ctx : Z3native.z3_context; m_n_obj_cnt: int; } 
type context = z3_native_context

type z3_native_object = { 
  m_ctx : context ; 
  mutable m_n_obj : Z3native.ptr ; 
  inc_ref : Z3native.z3_context -> Z3native.ptr -> unit;
  dec_ref : Z3native.z3_context -> Z3native.ptr -> unit }

(** Internal stuff *)
module Internal =
struct
  let dispose_context ctx = 
    if ctx.m_n_obj_cnt == 0 then (
      (Z3native.del_context ctx.m_n_ctx)
    ) else (
      Printf.printf "ERROR: NOT DISPOSING CONTEXT (because it still has %d objects alive)\n" ctx.m_n_obj_cnt;
    )

  let create_context settings =
    let cfg = Z3native.mk_config () in
    let f e = (Z3native.set_param_value cfg (fst e) (snd e)) in
    (List.iter f settings) ;
    let v = Z3native.mk_context_rc cfg in
    Z3native.del_config(cfg) ;
    Z3native.set_ast_print_mode v (int_of_ast_print_mode PRINT_SMTLIB2_COMPLIANT) ;
    Z3native.set_internal_error_handler v ;
    let res = { m_n_ctx = v; m_n_obj_cnt = 0 } in
    let f = fun o -> dispose_context o in
    Gc.finalise f res;
    res

  let context_add1 ctx = ignore (ctx.m_n_obj_cnt = ctx.m_n_obj_cnt + 1)
  let context_sub1 ctx = ignore (ctx.m_n_obj_cnt = ctx.m_n_obj_cnt - 1)
  let context_gno ctx = ctx.m_n_ctx


  let z3obj_gc o = o.m_ctx
  let z3obj_gnc o = (context_gno o.m_ctx)

  let z3obj_gno o = o.m_n_obj
  let z3obj_sno o ctx no =
    (context_add1 ctx) ;
    o.inc_ref (context_gno ctx) no ;
    (
      if not (is_null o.m_n_obj) then
	o.dec_ref (context_gno ctx) o.m_n_obj ; 
      (context_sub1 ctx)
    ) ;
    o.m_n_obj <- no

  let z3obj_dispose o =
    if not (is_null o.m_n_obj) then
      (
	o.dec_ref (z3obj_gnc o) o.m_n_obj ;
	(context_sub1 (z3obj_gc o))
      ) ;
    o.m_n_obj <- null
      
  let z3obj_create o = 
    let f = fun o -> (z3obj_dispose o) in
    Gc.finalise f o

  let z3obj_nil_ref x y = ()

  let z3_native_object_of_ast_ptr : context -> Z3native.ptr -> z3_native_object = fun ctx no ->
    let res : z3_native_object = { m_ctx = ctx ;
				   m_n_obj = null ;
				   inc_ref = Z3native.inc_ref ;
				   dec_ref = Z3native.dec_ref } in
    (z3obj_sno res ctx no) ;
    (z3obj_create res) ;
    res  	        
end

open Internal

module Log = 
struct
  let open_ filename = ((lbool_of_int (Z3native.open_log filename)) == L_TRUE)
  let close = Z3native.close_log
  let append s = Z3native.append_log s
end


module Version =
struct
  let major = let (x, _, _, _) = Z3native.get_version () in x
  let minor = let (_, x, _, _) = Z3native.get_version () in x
  let build = let (_, _, x, _) = Z3native.get_version () in x
  let revision = let (_, _, _, x) = Z3native.get_version () in x
  let to_string = 
    let (mj, mn, bld, rev) = Z3native.get_version () in
    string_of_int mj ^ "." ^
      string_of_int mn ^ "." ^
      string_of_int bld ^ "." ^
      string_of_int rev
end


let mk_list ( f : int -> 'a ) ( n : int ) =
  let rec mk_list' ( f : int -> 'a ) ( i : int ) ( n : int )  ( tail : 'a list ) : 'a list =       
    if (i >= n) then 
      tail
    else
      (f i) :: (mk_list' f (i+1) n tail)
  in
  mk_list' f 0 n []

let list_of_array ( x : _ array ) =
  let f i = (Array.get x i) in
  mk_list f (Array.length x)

let mk_context ( cfg : ( string * string ) list ) =
  create_context cfg


module Symbol =
struct
  type symbol = z3_native_object

  let create_i ( ctx : context ) ( no : Z3native.ptr ) = 
    let res : symbol = { m_ctx = ctx ;
			 m_n_obj = null ;
			 inc_ref = z3obj_nil_ref ;
			 dec_ref = z3obj_nil_ref } in
    (z3obj_sno res ctx no) ;
    (z3obj_create res) ;
    res
      
  let create_s ( ctx : context ) ( no : Z3native.ptr ) = 
    let res : symbol = { m_ctx = ctx ;
			 m_n_obj = null ;
			 inc_ref = z3obj_nil_ref ;
			 dec_ref = z3obj_nil_ref } in
    (z3obj_sno res ctx no) ;
    (z3obj_create res) ;
    res

  let create ( ctx : context ) ( no : Z3native.ptr ) =
    match (symbol_kind_of_int (Z3native.get_symbol_kind (context_gno ctx) no)) with
      | INT_SYMBOL -> (create_i ctx no)
      | STRING_SYMBOL -> (create_s ctx no)	

  let gc ( x : symbol ) = (z3obj_gc x)
  let gnc ( x : symbol ) = (z3obj_gnc x)
  let gno ( x : symbol ) = (z3obj_gno x)

  let symbol_lton ( a : symbol list ) =
    let f ( e : symbol ) = (gno e) in 
    Array.of_list (List.map f a)
      
  let kind ( o : symbol ) = (symbol_kind_of_int (Z3native.get_symbol_kind (gnc o) (gno o)))   
  let is_int_symbol ( o : symbol ) = (kind o) == INT_SYMBOL
  let is_string_symbol ( o : symbol ) = (kind o) == STRING_SYMBOL
  let get_int (o : symbol) = Z3native.get_symbol_int (z3obj_gnc o) (z3obj_gno o)
  let get_string (o : symbol ) = Z3native.get_symbol_string (z3obj_gnc o) (z3obj_gno o)
  let to_string ( o : symbol ) = 
    match (kind o) with
      | INT_SYMBOL -> (string_of_int (Z3native.get_symbol_int (gnc o) (gno o)))
      | STRING_SYMBOL -> (Z3native.get_symbol_string (gnc o) (gno o))

  let mk_int ( ctx : context ) ( i : int ) = 
    (create_i ctx (Z3native.mk_int_symbol (context_gno ctx) i))
      
  let mk_string ( ctx : context ) ( s : string ) =
    (create_s ctx (Z3native.mk_string_symbol (context_gno ctx) s))

  let mk_ints ( ctx : context ) ( names : int list ) =
    let f elem = mk_int ( ctx : context ) elem in
    (List.map f names)

  let mk_strings ( ctx : context ) ( names : string list ) =
    let f elem = mk_string ( ctx : context ) elem in
    (List.map f names)      
end


module rec AST :
sig
  type ast = z3_native_object
  val context_of_ast : ast -> context
  val nc_of_ast : ast -> Z3native.z3_context
  val ptr_of_ast : ast -> Z3native.ptr
  val ast_of_ptr : context -> Z3native.ptr -> ast
  module ASTVector :
  sig
    type ast_vector = z3_native_object
    val create : context -> Z3native.ptr -> ast_vector
    val mk_ast_vector : context -> ast_vector
    val get_size : ast_vector -> int
    val get : ast_vector -> int -> ast
    val set : ast_vector -> int -> ast -> unit
    val resize : ast_vector -> int -> unit
    val push : ast_vector -> ast -> unit
    val translate : ast_vector -> context -> ast_vector
    val to_list : ast_vector -> ast list
    val to_expr_list : ast_vector -> Expr.expr list
    val to_string : ast_vector -> string
  end
  module ASTMap :
  sig
    type ast_map = z3_native_object
    val create : context -> Z3native.ptr -> ast_map
    val mk_ast_map : context -> ast_map
    val contains : ast_map -> ast -> bool
    val find : ast_map -> ast -> ast
    val insert : ast_map -> ast -> ast -> unit
    val erase : ast_map -> ast -> unit
    val reset : ast_map -> unit
    val get_size : ast_map -> int
    val get_keys : ast_map -> Expr.expr list
    val to_string : ast_map -> string
  end
  val hash : ast -> int
  val get_id : ast -> int
  val get_ast_kind : ast -> Z3enums.ast_kind
  val is_expr : ast -> bool
  val is_app : ast -> bool
  val is_var : ast -> bool
  val is_quantifier : ast -> bool
  val is_sort : ast -> bool
  val is_func_decl : ast -> bool
  val to_string : ast -> string
  val to_sexpr : ast -> string
  val equal : ast -> ast -> bool
  val compare : ast -> ast -> int
  val translate : ast -> context -> ast
  val unwrap_ast : ast -> Z3native.ptr
  val wrap_ast : context -> Z3native.z3_ast -> ast
end = struct    
  type ast = z3_native_object

  let context_of_ast ( x : ast ) = (z3obj_gc x)
  let nc_of_ast ( x : ast ) = (z3obj_gnc x)
  let ptr_of_ast ( x : ast ) = (z3obj_gno x)  
    
  let rec ast_of_ptr : context -> Z3native.ptr -> ast = fun ctx no -> 
    match (ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) with
      | FUNC_DECL_AST 
      | SORT_AST 
      | QUANTIFIER_AST
      | APP_AST
      | NUMERAL_AST
      | VAR_AST -> z3_native_object_of_ast_ptr ctx no
      | UNKNOWN_AST -> raise (Z3native.Exception "Cannot create asts of type unknown")

  module ASTVector = 
  struct
    type ast_vector = z3_native_object
	
    let create ( ctx : context ) ( no : Z3native.ptr ) = 
      let res : ast_vector = { m_ctx = ctx ;
			                   m_n_obj = null ;
			                   inc_ref = Z3native.ast_vector_inc_ref ;
			                   dec_ref = Z3native.ast_vector_dec_ref } in
      (z3obj_sno res ctx no) ;
      (z3obj_create res) ;
      res
	    
    let mk_ast_vector ( ctx : context ) = (create ctx (Z3native.mk_ast_vector (context_gno ctx)))
      
    let get_size ( x : ast_vector ) =
      Z3native.ast_vector_size (z3obj_gnc x) (z3obj_gno x)

    let get ( x : ast_vector ) ( i : int ) =
      ast_of_ptr (z3obj_gc x) (Z3native.ast_vector_get (z3obj_gnc x) (z3obj_gno x) i)

    let set ( x : ast_vector ) ( i : int ) ( value : ast ) =
      Z3native.ast_vector_set (z3obj_gnc x) (z3obj_gno x) i (z3obj_gno value)

    let resize ( x : ast_vector ) ( new_size : int ) =
      Z3native.ast_vector_resize (z3obj_gnc x) (z3obj_gno x) new_size
	
    let push ( x : ast_vector ) ( a : ast )  =
      Z3native.ast_vector_push (z3obj_gnc x) (z3obj_gno x) (z3obj_gno a)
	
    let translate ( x : ast_vector ) ( to_ctx : context ) =
      create to_ctx (Z3native.ast_vector_translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx))

    let to_list ( x : ast_vector ) =
	  let xs = (get_size x) in
      let f i = (get x i) in
      mk_list f xs

    let to_expr_list ( x : ast_vector ) =
	  let xs = (get_size x) in
      let f i = (Expr.expr_of_ptr (z3obj_gc x) (z3obj_gno (get x i))) in
      mk_list f xs
	
    let to_string ( x : ast_vector ) =
      Z3native.ast_vector_to_string (z3obj_gnc x) (z3obj_gno x)
  end

  module ASTMap =
  struct	
    type ast_map = z3_native_object
	
    let create ( ctx : context ) ( no : Z3native.ptr ) = 
      let res : ast_map  = { m_ctx = ctx ;
			                 m_n_obj = null ;
			                 inc_ref = Z3native.ast_map_inc_ref ;
			                 dec_ref = Z3native.ast_map_dec_ref } in
      (z3obj_sno res ctx no) ;
      (z3obj_create res) ;
      res	
	
    let mk_ast_map ( ctx : context ) = (create ctx (Z3native.mk_ast_map (context_gno ctx)))

    let astmap_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = 
      let res : ast_map = { m_ctx = ctx ;
			    m_n_obj = null ;
			    inc_ref = Z3native.ast_map_inc_ref ;
			    dec_ref = Z3native.ast_map_dec_ref } in
      (z3obj_sno res ctx no) ;
      (z3obj_create res) ;
      res
	
    let contains ( x : ast_map ) ( key : ast ) =
      Z3native.ast_map_contains (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key)
	
    let find ( x : ast_map ) ( key : ast ) =
      ast_of_ptr (z3obj_gc x) (Z3native.ast_map_find (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key))
	
    let insert ( x : ast_map ) ( key : ast ) ( value : ast ) =
      Z3native.ast_map_insert (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key) (z3obj_gno value)

    let erase ( x : ast_map ) ( key : ast ) =
      Z3native.ast_map_erase (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key)
	
    let reset ( x : ast_map ) =
      Z3native.ast_map_reset (z3obj_gnc x) (z3obj_gno x)

    let get_size ( x : ast_map ) =
      Z3native.ast_map_size (z3obj_gnc x) (z3obj_gno x)
	
    let get_keys ( x : ast_map ) =
      let av = ASTVector.create (z3obj_gc x) (Z3native.ast_map_keys (z3obj_gnc x) (z3obj_gno x)) in
      (ASTVector.to_expr_list av)

    let to_string ( x : ast_map ) =
      Z3native.ast_map_to_string (z3obj_gnc x) (z3obj_gno x)
  end

  let hash ( x : ast ) = Z3native.get_ast_hash (z3obj_gnc x) (z3obj_gno x)
  let get_id ( x : ast ) = Z3native.get_ast_id (z3obj_gnc x) (z3obj_gno x)
  let get_ast_kind ( x : ast ) = (ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc x) (z3obj_gno x)))
    
  let is_expr ( x : ast ) = 
    match get_ast_kind ( x : ast ) with
      | APP_AST
      | NUMERAL_AST
      | QUANTIFIER_AST
      | VAR_AST -> true
      | _ -> false
	
  let is_app ( x : ast ) = (get_ast_kind x) == APP_AST
  let is_var ( x : ast ) = (get_ast_kind x) == VAR_AST   
  let is_quantifier ( x : ast ) = (get_ast_kind x) == QUANTIFIER_AST
  let is_sort ( x : ast ) = (get_ast_kind x) == SORT_AST
  let is_func_decl ( x : ast ) = (get_ast_kind x) == FUNC_DECL_AST

  let to_string ( x : ast ) = Z3native.ast_to_string (z3obj_gnc x) (z3obj_gno x)
  let to_sexpr ( x : ast ) = Z3native.ast_to_string (z3obj_gnc x) (z3obj_gno x)


  let equal ( a : ast ) ( b : ast ) = (a == b) ||
    if (z3obj_gnc a) != (z3obj_gnc b) then 
      false 
    else 
      Z3native.is_eq_ast (z3obj_gnc a) (z3obj_gno a) (z3obj_gno b)
	
  let compare a b = 
    if (get_id a) < (get_id b) then -1 else
      if (get_id a) > (get_id b) then 1 else
	0
	  
  let translate ( x : ast ) ( to_ctx : context ) = 
    if (z3obj_gnc x) == (context_gno to_ctx) then 
      x
    else
      ast_of_ptr to_ctx (Z3native.translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx))

  let unwrap_ast ( x : ast ) = (z3obj_gno x)
  let wrap_ast ( ctx : context ) ( ptr : Z3native.ptr ) = ast_of_ptr ctx ptr
end

and Sort :
sig
  type sort = Sort of AST.ast
  val ast_of_sort : Sort.sort -> AST.ast
  val sort_of_ptr : context -> Z3native.ptr -> sort
  val gc : sort -> context
  val gnc : sort -> Z3native.ptr
  val gno : sort -> Z3native.ptr
  val sort_lton : sort list -> Z3native.ptr array
  val sort_option_lton : sort option list -> Z3native.ptr array
  val equal : sort -> sort -> bool
  val get_id : sort -> int
  val get_sort_kind : sort -> Z3enums.sort_kind
  val get_name : sort -> Symbol.symbol
  val to_string : sort -> string
  val mk_uninterpreted : context -> Symbol.symbol -> sort
  val mk_uninterpreted_s : context -> string -> sort
end = struct
  type sort = Sort of AST.ast

  let sort_of_ptr : context -> Z3native.ptr -> sort = fun ctx no ->
    if ((Z3enums.ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) != Z3enums.SORT_AST) then
      raise (Z3native.Exception "Invalid coercion")
    else
      match (sort_kind_of_int (Z3native.get_sort_kind (context_gno ctx) no)) with
        | ARRAY_SORT
        | BOOL_SORT
        | BV_SORT 
        | DATATYPE_SORT 
        | INT_SORT 
        | REAL_SORT 
        | UNINTERPRETED_SORT 
        | FINITE_DOMAIN_SORT 
        | RELATION_SORT 
        | FLOATING_POINT_SORT
        | ROUNDING_MODE_SORT -> Sort(z3_native_object_of_ast_ptr ctx no)
        | UNKNOWN_SORT -> raise (Z3native.Exception "Unknown sort kind encountered")

  let ast_of_sort s = match s with Sort(x) -> x
    
  let gc ( x : sort ) = (match x with Sort(a) -> (z3obj_gc a))
  let gnc ( x : sort ) = (match x with Sort(a) -> (z3obj_gnc a))
  let gno ( x : sort ) = (match x with Sort(a) -> (z3obj_gno a))

  let sort_lton ( a : sort list ) =
    let f ( e : sort ) = match e with Sort(a) -> (AST.ptr_of_ast a) in 
    Array.of_list (List.map f a)

  let sort_option_lton ( a : sort option list ) =
    let f ( e : sort option ) = match e with None -> null | Some(Sort(a)) -> (AST.ptr_of_ast a) in 
    Array.of_list (List.map f a)
      
  let equal : sort -> sort -> bool = fun a b ->
    (a == b) ||
      if (gnc a) != (gnc b) then 
	false 
      else 
	(Z3native.is_eq_sort (gnc a) (gno a) (gno b))
 
	  
  let get_id ( x : sort ) = Z3native.get_sort_id (gnc x) (gno x)
  let get_sort_kind ( x : sort ) = (sort_kind_of_int (Z3native.get_sort_kind (gnc x) (gno x)))
  let get_name ( x : sort ) = (Symbol.create (gc x) (Z3native.get_sort_name (gnc x) (gno x)))    
  let to_string ( x : sort ) = Z3native.sort_to_string (gnc x) (gno x)

  let mk_uninterpreted ( ctx : context ) ( s : Symbol.symbol ) =
    let res = { m_ctx = ctx ;
		m_n_obj = null ;
		inc_ref = Z3native.inc_ref ;
		dec_ref = Z3native.dec_ref } in
    (z3obj_sno res ctx (Z3native.mk_uninterpreted_sort (context_gno ctx) (Symbol.gno s))) ;
    (z3obj_create res) ;
    Sort(res)

  let mk_uninterpreted_s ( ctx : context ) ( s : string ) =
    mk_uninterpreted ctx (Symbol.mk_string ( ctx : context ) s)
end 

and FuncDecl :
sig 
  type func_decl = FuncDecl of AST.ast
  val ast_of_func_decl : FuncDecl.func_decl -> AST.ast
  val func_decl_of_ptr : context -> Z3native.ptr -> func_decl
  val gc : func_decl -> context
  val gnc : func_decl -> Z3native.ptr
  val gno : func_decl -> Z3native.ptr
  module Parameter :
  sig
    type parameter =
	P_Int of int
      | P_Dbl of float
      | P_Sym of Symbol.symbol
      | P_Srt of Sort.sort
      | P_Ast of AST.ast
      | P_Fdl of func_decl
      | P_Rat of string
	  
    val get_kind : parameter -> Z3enums.parameter_kind
    val get_int : parameter -> int
    val get_float : parameter -> float
    val get_symbol : parameter -> Symbol.symbol
    val get_sort : parameter -> Sort.sort
    val get_ast : parameter -> AST.ast
    val get_func_decl : parameter -> func_decl
    val get_rational : parameter -> string
  end
  val mk_func_decl : context -> Symbol.symbol -> Sort.sort list -> Sort.sort -> func_decl
  val mk_func_decl_s : context -> string -> Sort.sort list -> Sort.sort -> func_decl
  val mk_fresh_func_decl : context -> string -> Sort.sort list -> Sort.sort -> func_decl
  val mk_const_decl : context -> Symbol.symbol -> Sort.sort -> func_decl
  val mk_const_decl_s : context -> string -> Sort.sort -> func_decl
  val mk_fresh_const_decl : context -> string -> Sort.sort -> func_decl
  val equal : func_decl -> func_decl -> bool
  val to_string : func_decl -> string
  val get_id : func_decl -> int
  val get_arity : func_decl -> int
  val get_domain_size : func_decl -> int
  val get_domain : func_decl -> Sort.sort list
  val get_range : func_decl -> Sort.sort
  val get_decl_kind : func_decl -> Z3enums.decl_kind
  val get_name : func_decl -> Symbol.symbol
  val get_num_parameters : func_decl -> int
  val get_parameters : func_decl -> Parameter.parameter list
  val apply : func_decl -> Expr.expr list -> Expr.expr
end = struct
  type func_decl = FuncDecl of AST.ast

  let func_decl_of_ptr : context -> Z3native.ptr -> func_decl = fun ctx no ->
    if ((Z3enums.ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) != Z3enums.FUNC_DECL_AST) then
      raise (Z3native.Exception "Invalid coercion")
    else
      FuncDecl(z3_native_object_of_ast_ptr ctx no)

  let ast_of_func_decl f = match f with FuncDecl(x) -> x

  let create_ndr ( ctx : context ) ( name : Symbol.symbol ) ( domain : Sort.sort list ) ( range : Sort.sort )  = 
    let res = { m_ctx = ctx ;
		m_n_obj = null ;
		inc_ref = Z3native.inc_ref ;
		dec_ref = Z3native.dec_ref } in
    (z3obj_sno res ctx (Z3native.mk_func_decl (context_gno ctx) (Symbol.gno name) (List.length domain) (Sort.sort_lton domain) (Sort.gno range))) ;
    (z3obj_create res) ;
    FuncDecl(res)
      
  let create_pdr ( ctx : context) ( prefix : string ) ( domain : Sort.sort list ) ( range : Sort.sort ) = 
    let res = { m_ctx = ctx ;
		m_n_obj = null ;
		inc_ref = Z3native.inc_ref ;
		dec_ref = Z3native.dec_ref } in
    (z3obj_sno res ctx (Z3native.mk_fresh_func_decl (context_gno ctx) prefix (List.length domain) (Sort.sort_lton domain) (Sort.gno range))) ;
    (z3obj_create res) ;
    FuncDecl(res)

  let gc ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gc a)
  let gnc ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gnc a)
  let gno ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gno a)     

  module Parameter =
  struct       
    type parameter = 
      | P_Int of int
      | P_Dbl of float
      | P_Sym of Symbol.symbol
      | P_Srt of Sort.sort
      | P_Ast of AST.ast
      | P_Fdl of func_decl
      | P_Rat of string
	  
    let get_kind ( x : parameter ) =
      (match x with
	| P_Int(_) -> PARAMETER_INT
	| P_Dbl(_) -> PARAMETER_DOUBLE
	| P_Sym(_) -> PARAMETER_SYMBOL
	| P_Srt(_) -> PARAMETER_SORT
	| P_Ast(_) -> PARAMETER_AST
	| P_Fdl(_) -> PARAMETER_FUNC_DECL
	| P_Rat(_) -> PARAMETER_RATIONAL)
	
    let get_int ( x : parameter ) =
      match x with
	| P_Int(x) -> x
	| _ -> raise (Z3native.Exception "parameter is not an int")
	  
    let get_float ( x : parameter ) = 
      match x with
	| P_Dbl(x) -> x
	| _ -> raise (Z3native.Exception "parameter is not a float")
          
    let get_symbol ( x : parameter ) =
      match x with
	| P_Sym(x) -> x
	| _ -> raise (Z3native.Exception "parameter is not a symbol")
	  
    let get_sort ( x : parameter ) =
      match x with
	| P_Srt(x) -> x
	| _ -> raise (Z3native.Exception "parameter is not a sort")

    let get_ast ( x : parameter ) =
      match x with
	| P_Ast(x) -> x
	| _ -> raise (Z3native.Exception "parameter is not an ast")

    let get_func_decl ( x : parameter ) =
      match x with
	| P_Fdl(x) -> x
	| _ -> raise (Z3native.Exception "parameter is not a func_decl")

    let get_rational ( x : parameter ) =
      match x with
	| P_Rat(x) -> x
	| _ -> raise (Z3native.Exception "parameter is not a rational string")
  end

  let mk_func_decl ( ctx : context ) ( name : Symbol.symbol ) ( domain : Sort.sort list ) ( range : Sort.sort ) =
    create_ndr ctx name domain range

  let mk_func_decl_s ( ctx : context ) ( name : string ) ( domain : Sort.sort list ) ( range : Sort.sort ) =
    mk_func_decl ctx (Symbol.mk_string ctx name) domain range

  let mk_fresh_func_decl ( ctx : context ) ( prefix : string ) ( domain : Sort.sort list ) ( range : Sort.sort ) =
    create_pdr ctx prefix domain range

  let mk_const_decl ( ctx : context ) ( name : Symbol.symbol ) ( range : Sort.sort ) =
    create_ndr ctx name [] range

  let mk_const_decl_s ( ctx : context ) ( name : string ) ( range : Sort.sort ) =
    create_ndr ctx (Symbol.mk_string ctx name) []  range

  let mk_fresh_const_decl ( ctx : context ) ( prefix : string ) ( range : Sort.sort ) =
    create_pdr ctx prefix [] range


  let equal ( a : func_decl ) ( b : func_decl ) = (a == b) ||
    if (gnc a) != (gnc b) then 
      false 
    else 
      (Z3native.is_eq_func_decl (gnc a) (gno a) (gno b))

  let to_string ( x : func_decl ) = Z3native.func_decl_to_string (gnc x) (gno x)
    
  let get_id ( x : func_decl ) = Z3native.get_func_decl_id (gnc x) (gno x)
    
  let get_arity ( x : func_decl ) = Z3native.get_arity (gnc x) (gno x)
    
  let get_domain_size ( x : func_decl ) = Z3native.get_domain_size (gnc x) (gno x)
    
  let get_domain ( x : func_decl ) = 
    let n = (get_domain_size x) in
    let f i = Sort.sort_of_ptr (gc x) (Z3native.get_domain (gnc x) (gno x) i) in
    mk_list f n
      
  let get_range ( x : func_decl ) = 
    Sort.sort_of_ptr (gc x) (Z3native.get_range (gnc x) (gno x))
      
  let get_decl_kind ( x : func_decl ) = (decl_kind_of_int (Z3native.get_decl_kind (gnc x) (gno x)))

  let get_name ( x : func_decl ) = (Symbol.create (gc x) (Z3native.get_decl_name (gnc x) (gno x)))

  let get_num_parameters ( x : func_decl ) = (Z3native.get_decl_num_parameters (gnc x) (gno x))    

  let get_parameters ( x : func_decl ) =
    let n = (get_num_parameters x) in
    let f i = (match (parameter_kind_of_int (Z3native.get_decl_parameter_kind (gnc x) (gno x) i)) with
      | PARAMETER_INT -> Parameter.P_Int (Z3native.get_decl_int_parameter (gnc x) (gno x) i)
      | PARAMETER_DOUBLE -> Parameter.P_Dbl (Z3native.get_decl_double_parameter (gnc x) (gno x) i)
      | PARAMETER_SYMBOL-> Parameter.P_Sym (Symbol.create (gc x) (Z3native.get_decl_symbol_parameter (gnc x) (gno x) i))
      | PARAMETER_SORT -> Parameter.P_Srt (Sort.sort_of_ptr (gc x) (Z3native.get_decl_sort_parameter (gnc x) (gno x) i))
      | PARAMETER_AST -> Parameter.P_Ast (AST.ast_of_ptr (gc x) (Z3native.get_decl_ast_parameter (gnc x) (gno x) i))
      | PARAMETER_FUNC_DECL -> Parameter.P_Fdl (func_decl_of_ptr (gc x) (Z3native.get_decl_func_decl_parameter (gnc x) (gno x) i))
      | PARAMETER_RATIONAL -> Parameter.P_Rat (Z3native.get_decl_rational_parameter (gnc x) (gno x) i)
    ) in
    mk_list f n

  let apply ( x : func_decl ) ( args : Expr.expr list ) = Expr.expr_of_func_app (gc x) x args 
end


and Params : 
sig
  type params = z3_native_object
  module ParamDescrs :
  sig
    type param_descrs 
    val param_descrs_of_ptr : context -> Z3native.ptr -> param_descrs
    val validate : param_descrs -> params -> unit
    val get_kind : param_descrs -> Symbol.symbol -> Z3enums.param_kind
    val get_names : param_descrs -> Symbol.symbol list
    val get_size : param_descrs -> int
    val to_string : param_descrs -> string
  end
  val add_bool : params -> Symbol.symbol -> bool -> unit
  val add_int : params -> Symbol.symbol -> int -> unit
  val add_float : params -> Symbol.symbol -> float -> unit
  val add_symbol : params -> Symbol.symbol -> Symbol.symbol -> unit
  val mk_params : context -> params
  val to_string : params -> string

  val update_param_value : context -> string -> string -> unit
  val set_print_mode : context -> Z3enums.ast_print_mode -> unit
end = struct
  type params = z3_native_object

  module ParamDescrs = 
  struct    
    type param_descrs = z3_native_object

    let param_descrs_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = 
      let res : param_descrs = { m_ctx = ctx ;
				 m_n_obj = null ;
				 inc_ref = Z3native.param_descrs_inc_ref ;
				 dec_ref = Z3native.param_descrs_dec_ref } in
      (z3obj_sno res ctx no) ;
      (z3obj_create res) ;
      res
	
    let validate ( x : param_descrs ) ( p : params ) = 
      Z3native.params_validate (z3obj_gnc x) (z3obj_gno p) (z3obj_gno x)
	
    let get_kind ( x : param_descrs ) ( name : Symbol.symbol ) = 
      (param_kind_of_int (Z3native.param_descrs_get_kind (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name)))
	
    let get_names ( x : param_descrs ) =
      let n = Z3native.param_descrs_size (z3obj_gnc x) (z3obj_gno x) in
      let f i = Symbol.create (z3obj_gc x) (Z3native.param_descrs_get_name (z3obj_gnc x) (z3obj_gno x) i) in
      mk_list f n

    let get_size ( x : param_descrs ) = Z3native.param_descrs_size (z3obj_gnc x) (z3obj_gno x)    
    let to_string ( x : param_descrs ) = Z3native.param_descrs_to_string (z3obj_gnc x) (z3obj_gno x) 
  end

  let add_bool ( x : params ) ( name : Symbol.symbol ) ( value : bool ) =
    Z3native.params_set_bool (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value
      
  let add_int ( x : params )  (name : Symbol.symbol ) ( value : int ) =
    Z3native.params_set_uint (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value
      
  let add_float ( x : params ) ( name : Symbol.symbol ) ( value : float ) =
    Z3native.params_set_double (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value

  let add_symbol ( x : params ) ( name : Symbol.symbol ) ( value : Symbol.symbol ) =
    Z3native.params_set_symbol (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) (Symbol.gno value)

  let mk_params ( ctx : context ) =
    let res : params = { m_ctx = ctx ;
			 m_n_obj = null ;
			 inc_ref = Z3native.params_inc_ref ;
			 dec_ref = Z3native.params_dec_ref } in
    (z3obj_sno res ctx (Z3native.mk_params (context_gno ctx))) ;
    (z3obj_create res) ;
    res

  let to_string ( x : params ) = Z3native.params_to_string (z3obj_gnc x) (z3obj_gno x)

  let update_param_value ( ctx : context ) ( id : string) ( value : string )=
    Z3native.update_param_value (context_gno ctx) id value

  let set_print_mode ( ctx : context ) ( value : ast_print_mode ) =
    Z3native.set_ast_print_mode (context_gno ctx) (int_of_ast_print_mode value)
end

(** General expressions (terms) *)
and Expr :
sig
  type expr = Expr of AST.ast
  val expr_of_ptr : context -> Z3native.ptr -> expr
  val gc : expr -> context
  val gnc : expr -> Z3native.ptr
  val gno : expr -> Z3native.ptr
  val expr_lton : expr list -> Z3native.ptr array
  val ast_of_expr : expr -> AST.ast
  val expr_of_ast : AST.ast -> expr
  val expr_of_func_app : context -> FuncDecl.func_decl -> expr list -> expr
  val simplify : expr -> Params.params option -> expr
  val get_simplify_help : context -> string
  val get_simplify_parameter_descrs : context -> Params.ParamDescrs.param_descrs
  val get_func_decl : expr -> FuncDecl.func_decl
  val get_num_args : expr -> int
  val get_args : expr -> expr list
  val update : expr -> expr list -> expr
  val substitute : expr -> expr list -> expr list -> expr
  val substitute_one : expr -> expr -> expr -> expr
  val substitute_vars : expr -> expr list -> expr
  val translate : expr -> context -> expr
  val to_string : expr -> string
  val is_numeral : expr -> bool
  val is_well_sorted : expr -> bool
  val get_sort : expr -> Sort.sort
  val is_const : expr -> bool
  val mk_const : context -> Symbol.symbol -> Sort.sort -> expr
  val mk_const_s : context -> string -> Sort.sort -> expr
  val mk_const_f : context -> FuncDecl.func_decl -> expr
  val mk_fresh_const : context -> string -> Sort.sort -> expr
  val mk_app : context -> FuncDecl.func_decl -> expr list -> expr
  val mk_numeral_string : context -> string -> Sort.sort -> expr
  val mk_numeral_int : context -> int -> Sort.sort -> expr
  val equal : expr -> expr -> bool
  val compare : expr -> expr -> int
end = struct  
  type expr = Expr of AST.ast
      
  let gc e = match e with Expr(a) -> (z3obj_gc a)
  let gnc e = match e with Expr(a) -> (z3obj_gnc a)
  let gno e = match e with Expr(a) -> (z3obj_gno a)

  let expr_of_ptr : context -> Z3native.ptr -> expr = fun ctx no -> 
    if ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no) == QUANTIFIER_AST then
      Expr(z3_native_object_of_ast_ptr ctx no)
    else
      let s = Z3native.get_sort (context_gno ctx) no in
      let sk = (sort_kind_of_int (Z3native.get_sort_kind (context_gno ctx) s)) in
      if (Z3native.is_algebraic_number (context_gno ctx) no) then
	Expr(z3_native_object_of_ast_ptr ctx no)
      else
	if (Z3native.is_numeral_ast (context_gno ctx) no) then
	  if (sk == INT_SORT || sk == REAL_SORT || sk == BV_SORT || 
			sk == FLOATING_POINT_SORT || sk == ROUNDING_MODE_SORT) then
	    Expr(z3_native_object_of_ast_ptr ctx no)
	  else
	    raise (Z3native.Exception "Unsupported numeral object")
	else	  
	  Expr(z3_native_object_of_ast_ptr ctx no)

  let expr_of_ast a = 
    let q = (Z3enums.ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc a) (z3obj_gno a))) in
    if (q != Z3enums.APP_AST && q != VAR_AST && q != QUANTIFIER_AST && q != NUMERAL_AST) then
      raise (Z3native.Exception "Invalid coercion")
    else
      Expr(a)

  let ast_of_expr e = match e with Expr(a) -> a

  let expr_lton ( a : expr list ) =
    let f ( e : expr ) = match e with Expr(a) -> (AST.ptr_of_ast a) in 
    Array.of_list (List.map f a)

  let expr_of_func_app : context -> FuncDecl.func_decl -> expr list -> expr = fun ctx f args ->
    match f with FuncDecl.FuncDecl(fa) ->
      let o = Z3native.mk_app (context_gno ctx) (AST.ptr_of_ast fa) (List.length args) (expr_lton args) in
      expr_of_ptr ctx o

  let simplify ( x : expr ) ( p : Params.params option ) = match p with 
    | None -> expr_of_ptr (Expr.gc x) (Z3native.simplify (gnc x) (gno x))
    | Some pp -> expr_of_ptr (Expr.gc x) (Z3native.simplify_ex (gnc x) (gno x) (z3obj_gno pp))
      
  let get_simplify_help ( ctx : context ) =
    Z3native.simplify_get_help (context_gno ctx)

  let get_simplify_parameter_descrs ( ctx : context ) = 
    Params.ParamDescrs.param_descrs_of_ptr ctx (Z3native.simplify_get_param_descrs (context_gno ctx))
  let get_func_decl ( x : expr ) = FuncDecl.func_decl_of_ptr (Expr.gc x) (Z3native.get_app_decl (gnc x) (gno x))    

  let get_num_args ( x : expr ) = Z3native.get_app_num_args (gnc x) (gno x)
    
  let get_args ( x : expr ) = let n = (get_num_args x) in
			      let f i = expr_of_ptr (Expr.gc x) (Z3native.get_app_arg (gnc x) (gno x) i) in
			      mk_list f n
				
  let update ( x : expr ) ( args : expr list ) =
    if ((AST.is_app (ast_of_expr x)) && (List.length args <> (get_num_args x))) then
      raise (Z3native.Exception "Number of arguments does not match")
    else
      expr_of_ptr (Expr.gc x) (Z3native.update_term (gnc x) (gno x) (List.length args) (expr_lton args))

  let substitute ( x : expr ) from to_ = 
    if (List.length from) <> (List.length to_) then
      raise (Z3native.Exception "Argument sizes do not match")
    else
      expr_of_ptr (Expr.gc x) (Z3native.substitute (gnc x) (gno x) (List.length from) (expr_lton from) (expr_lton to_))
	
  let substitute_one ( x : expr ) from to_ =
    substitute ( x : expr ) [ from ] [ to_ ]
      
  let substitute_vars ( x : expr ) to_ =
    expr_of_ptr (Expr.gc x) (Z3native.substitute_vars (gnc x) (gno x) (List.length to_) (expr_lton to_))
      
  let translate ( x : expr ) to_ctx =
    if (Expr.gc x) == to_ctx then
      x
    else
      expr_of_ptr to_ctx (Z3native.translate (gnc x) (gno x) (context_gno to_ctx))

  let to_string ( x : expr ) = Z3native.ast_to_string (gnc x) (gno x)

  let is_numeral ( x : expr ) = (Z3native.is_numeral_ast (gnc x) (gno x))
    
  let is_well_sorted ( x : expr ) = Z3native.is_well_sorted (gnc x) (gno x)

  let get_sort ( x : expr ) = Sort.sort_of_ptr (Expr.gc x) (Z3native.get_sort (gnc x) (gno x))
    
  let is_const ( x : expr ) = (match x with Expr(a) -> (AST.is_app a)) &&
    (get_num_args x) == 0 &&
    (FuncDecl.get_domain_size (get_func_decl x)) == 0
    
  let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( range : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_const (context_gno ctx) (Symbol.gno name) (Sort.gno range))
      
  let mk_const_s ( ctx : context ) ( name : string ) ( range : Sort.sort ) =
    mk_const ctx (Symbol.mk_string ctx name) range

  let mk_const_f ( ctx : context ) ( f : FuncDecl.func_decl ) = Expr.expr_of_func_app ctx f []

  let mk_fresh_const ( ctx : context ) ( prefix : string ) ( range : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_fresh_const (context_gno ctx) prefix (Sort.gno range))

  let mk_app ( ctx : context ) ( f : FuncDecl.func_decl ) ( args : expr list ) = expr_of_func_app ctx f args

  let mk_numeral_string ( ctx : context ) ( v : string ) ( ty : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno ty))

  let mk_numeral_int ( ctx : context ) ( v : int ) ( ty : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (Sort.gno ty))

  let equal ( a : expr ) ( b : expr ) = AST.equal (ast_of_expr a) (ast_of_expr b)
    
  let compare a b = AST.compare (ast_of_expr a) (ast_of_expr b)
end

open FuncDecl
open Expr

module Boolean = 
struct      
  let mk_sort ( ctx : context ) =
    (Sort.sort_of_ptr ctx (Z3native.mk_bool_sort (context_gno ctx)))

  let mk_const ( ctx : context ) ( name : Symbol.symbol ) =
    (Expr.mk_const ctx name (mk_sort ctx))
      
  let mk_const_s ( ctx : context ) ( name : string ) =
    mk_const ctx (Symbol.mk_string ctx name)

  let mk_true ( ctx : context ) =
    expr_of_ptr ctx (Z3native.mk_true (context_gno ctx))

  let mk_false ( ctx : context ) =
    expr_of_ptr ctx (Z3native.mk_false (context_gno ctx))

  let mk_val ( ctx : context ) ( value : bool ) =
    if value then mk_true ctx else mk_false ctx
      
  let mk_not ( ctx : context ) ( a : expr ) =
    expr_of_ptr ctx (Z3native.mk_not (context_gno ctx) (gno a))

  let mk_ite ( ctx : context ) ( t1 : expr ) ( t2 : expr ) ( t3 : expr ) =
    expr_of_ptr ctx (Z3native.mk_ite (context_gno ctx) (gno t1) (gno t2) (gno t3))
      
  let mk_iff ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_iff (context_gno ctx) (gno t1) (gno t2))

  let mk_implies ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_implies (context_gno ctx) (gno t1) (gno t2))

  let mk_xor ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_xor (context_gno ctx) (gno t1) (gno t2))

  let mk_and ( ctx : context ) ( args : expr list ) =
    let f x = (Expr.gno (x)) in
    expr_of_ptr ctx (Z3native.mk_and (context_gno ctx) (List.length args) (Array.of_list (List.map f args)))

  let mk_or ( ctx : context ) ( args : expr list ) =
    let f x = (Expr.gno (x)) in
    expr_of_ptr ctx (Z3native.mk_or (context_gno ctx) (List.length args) (Array.of_list(List.map f args)))

  let mk_eq ( ctx : context ) ( x : expr ) ( y : expr ) =
    expr_of_ptr ctx (Z3native.mk_eq (context_gno ctx) (Expr.gno x) (Expr.gno y))

  let mk_distinct ( ctx : context ) ( args : expr list ) =
    expr_of_ptr ctx (Z3native.mk_distinct (context_gno ctx) (List.length args) (expr_lton args))

  let get_bool_value ( x : expr ) = lbool_of_int (Z3native.get_bool_value (gnc x) (gno x))

  let is_bool ( x : expr ) = (match x with Expr(a) -> (AST.is_expr a)) &&
    (Z3native.is_eq_sort (gnc x) 
       (Z3native.mk_bool_sort (gnc x))
       (Z3native.get_sort (gnc x) (gno x)))

  let is_true ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_TRUE)
  let is_false ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_FALSE)
  let is_eq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_EQ)
  let is_distinct ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_DISTINCT)
  let is_ite ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_ITE)
  let is_and ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_AND)
  let is_or ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_OR)
  let is_iff ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_IFF)
  let is_xor ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_XOR)
  let is_not ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_NOT)
  let is_implies ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (get_func_decl x) == OP_IMPLIES)
end


module Quantifier = 
struct 
  type quantifier = Quantifier of expr

  let expr_of_quantifier e = match e with Quantifier(x) -> x

  let quantifier_of_expr e =
    match e with Expr.Expr(a) ->
      let q = (Z3enums.ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc a) (z3obj_gno a))) in
      if (q != Z3enums.QUANTIFIER_AST) then
	raise (Z3native.Exception "Invalid coercion")
      else
	Quantifier(e)
	  
  let gc ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gc e)
  let gnc ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gnc e)
  let gno ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gno e)
    
  module Pattern = 
  struct
    type pattern = Pattern of AST.ast
	
    let ast_of_pattern e = match e with Pattern(x) -> x
      
    let pattern_of_ast a =
      (* CMW: Unchecked ok? *)
      Pattern(a)
	
    let gc ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gc a)
    let gnc ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gnc a)
    let gno ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gno a)

    let get_num_terms ( x : pattern ) =
      Z3native.get_pattern_num_terms (gnc x) (gno x)	

    let get_terms ( x : pattern ) =
      let n = (get_num_terms x) in
      let f i = (expr_of_ptr (gc x) (Z3native.get_pattern (gnc x) (gno x) i)) in
      mk_list f n
	
    let to_string ( x : pattern ) = Z3native.pattern_to_string (gnc x) (gno x)
  end

  let get_index ( x : expr ) = 
    if not (AST.is_var (match x with Expr.Expr(a) -> a)) then
      raise (Z3native.Exception "Term is not a bound variable.")
    else
      Z3native.get_index_value (Expr.gnc x) (Expr.gno x)

  let is_universal ( x : quantifier ) =
    Z3native.is_quantifier_forall (gnc x) (gno x)
      
  let is_existential ( x : quantifier ) = not (is_universal x)

  let get_weight ( x : quantifier ) = Z3native.get_quantifier_weight (gnc x) (gno x)
    
  let get_num_patterns ( x : quantifier ) = Z3native.get_quantifier_num_patterns (gnc x) (gno x)
    
  let get_patterns ( x : quantifier ) =
    let n = (get_num_patterns x) in
    let f i = Pattern.Pattern (z3_native_object_of_ast_ptr (gc x) (Z3native.get_quantifier_pattern_ast (gnc x) (gno x) i)) in
    mk_list f n
      
  let get_num_no_patterns ( x : quantifier ) = Z3native.get_quantifier_num_no_patterns (gnc x) (gno x)
    
  let get_no_patterns ( x : quantifier ) =
    let n = (get_num_patterns x) in
    let f i = Pattern.Pattern (z3_native_object_of_ast_ptr (gc x) (Z3native.get_quantifier_no_pattern_ast (gnc x) (gno x) i)) in
    mk_list f n
      
  let get_num_bound ( x : quantifier ) = Z3native.get_quantifier_num_bound (gnc x) (gno x)
    
  let get_bound_variable_names ( x : quantifier ) =
    let n = (get_num_bound x) in
    let f i = (Symbol.create (gc x) (Z3native.get_quantifier_bound_name (gnc x) (gno x) i)) in
    mk_list f n
      
  let get_bound_variable_sorts ( x : quantifier ) =
    let n = (get_num_bound x) in
    let f i = (Sort.sort_of_ptr (gc x) (Z3native.get_quantifier_bound_sort (gnc x) (gno x) i)) in
    mk_list f n
      
  let get_body ( x : quantifier ) =
    expr_of_ptr (gc x) (Z3native.get_quantifier_body (gnc x) (gno x))  

  let mk_bound ( ctx : context ) ( index : int ) ( ty : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_bound (context_gno ctx) index (Sort.gno ty))

  let mk_pattern ( ctx : context ) ( terms : expr list ) =
    if (List.length terms) == 0 then
      raise (Z3native.Exception "Cannot create a pattern from zero terms")
    else
      Pattern.Pattern(z3_native_object_of_ast_ptr ctx (Z3native.mk_pattern (context_gno ctx) (List.length terms) (expr_lton terms)))

  let mk_forall ( ctx : context ) ( sorts : Sort.sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
    if (List.length sorts) != (List.length names) then
      raise (Z3native.Exception "Number of sorts does not match number of names")
    else if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
      Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier (context_gno ctx) true 
				    (match weight with | None -> 1 | Some(x) -> x)
				    (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
				    (List.length sorts) (Sort.sort_lton sorts)
				    (Symbol.symbol_lton names)
				    (Expr.gno body)))
    else
      Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_ex (context_gno ctx) true
				    (match weight with | None -> 1 | Some(x) -> x)
				    (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
				    (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
				    (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
				    (List.length nopatterns) (expr_lton nopatterns)
				    (List.length sorts) (Sort.sort_lton sorts)
				    (Symbol.symbol_lton names)
				    (Expr.gno body)))
	
  let mk_forall_const ( ctx : context ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
    if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
      Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const (context_gno ctx) true
				    (match weight with | None -> 1 | Some(x) -> x)
				    (List.length bound_constants) (expr_lton bound_constants)
				    (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
				    (Expr.gno body)))
    else
      Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const_ex (context_gno ctx) true
				    (match weight with | None -> 1 | Some(x) -> x)
				    (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
				    (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
				    (List.length bound_constants) (expr_lton bound_constants)
				    (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
				    (List.length nopatterns) (expr_lton nopatterns)
				    (Expr.gno body)))

  let mk_exists ( ctx : context ) ( sorts : Sort.sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
    if (List.length sorts) != (List.length names) then
      raise (Z3native.Exception "Number of sorts does not match number of names")
    else if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
      Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier (context_gno ctx) false
				    (match weight with | None -> 1 | Some(x) -> x)
				    (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
				    (List.length sorts) (Sort.sort_lton sorts)
				    (Symbol.symbol_lton names)
				    (Expr.gno body)))
    else
      Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_ex (context_gno ctx) false
				    (match weight with | None -> 1 | Some(x) -> x)
				    (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
				    (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
				    (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
				    (List.length nopatterns) (expr_lton nopatterns)
				    (List.length sorts) (Sort.sort_lton sorts)
				    (Symbol.symbol_lton names)
				    (Expr.gno body)))
	
  let mk_exists_const ( ctx : context ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
    if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
      Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const (context_gno ctx) false
				    (match weight with | None -> 1 | Some(x) -> x)
				    (List.length bound_constants) (expr_lton bound_constants)
				    (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
				    (Expr.gno body)))
    else
      Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const_ex (context_gno ctx) false
				    (match weight with | None -> 1 | Some(x) -> x)
				    (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
				    (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
				    (List.length bound_constants) (expr_lton bound_constants)
				    (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
				    (List.length nopatterns) (expr_lton nopatterns)
				    (Expr.gno body)))

  let mk_quantifier ( ctx : context ) ( universal : bool ) ( sorts : Sort.sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
    if (universal) then
      (mk_forall ctx sorts names body weight patterns nopatterns quantifier_id skolem_id)
    else
      (mk_exists ctx sorts names body weight patterns nopatterns quantifier_id skolem_id)

  let mk_quantifier ( ctx : context ) ( universal : bool ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
    if (universal) then
      mk_forall_const ctx bound_constants body weight patterns nopatterns quantifier_id skolem_id
    else
      mk_exists_const ctx bound_constants body weight patterns nopatterns quantifier_id skolem_id

  let to_string ( x : quantifier ) = (Expr.to_string (expr_of_quantifier x))
end


module Z3Array = 
struct
  let mk_sort ( ctx : context ) ( domain : Sort.sort ) ( range : Sort.sort ) =
    Sort.sort_of_ptr ctx (Z3native.mk_array_sort (context_gno ctx) (Sort.gno domain) (Sort.gno range))

  let is_store ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_STORE)
  let is_select ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SELECT)
  let is_constant_array ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CONST_ARRAY)
  let is_default_array ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ARRAY_DEFAULT)
  let is_array_map ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ARRAY_MAP)
  let is_as_array ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_AS_ARRAY)       
  let is_array ( x : expr ) =
    (Z3native.is_app (Expr.gnc x) (Expr.gno x)) &&
      ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == ARRAY_SORT)      

  let get_domain ( x : Sort.sort ) = Sort.sort_of_ptr (Sort.gc x) (Z3native.get_array_sort_domain (Sort.gnc x) (Sort.gno x))
  let get_range ( x : Sort.sort ) = Sort.sort_of_ptr (Sort.gc x) (Z3native.get_array_sort_range (Sort.gnc x) (Sort.gno x))

  let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( domain : Sort.sort ) ( range : Sort.sort ) = 
    (Expr.mk_const ctx name (mk_sort ctx domain range))
      
  let mk_const_s ( ctx : context ) ( name : string ) ( domain : Sort.sort ) ( range : Sort.sort ) =	
    mk_const ctx (Symbol.mk_string ctx name) domain range
      
  let mk_select ( ctx : context ) ( a : expr ) ( i : expr ) =
    expr_of_ptr ctx (Z3native.mk_select (context_gno ctx) (Expr.gno a) (Expr.gno i))      

  let mk_store ( ctx : context ) ( a : expr ) ( i : expr ) ( v : expr ) =
    expr_of_ptr ctx (Z3native.mk_store (context_gno ctx) (Expr.gno a) (Expr.gno i) (Expr.gno v))

  let mk_const_array ( ctx : context ) ( domain : Sort.sort ) ( v : expr ) =
    expr_of_ptr ctx (Z3native.mk_const_array (context_gno ctx) (Sort.gno domain) (Expr.gno v))

  let mk_map ( ctx : context ) ( f : func_decl ) ( args : expr list ) =
    let m x = (Expr.gno x) in    
    expr_of_ptr ctx (Z3native.mk_map (context_gno ctx) (FuncDecl.gno f) (List.length args) (Array.of_list (List.map m args)))

  let mk_term_array  ( ctx : context ) ( arg : expr ) =
    expr_of_ptr ctx (Z3native.mk_array_default (context_gno ctx) (Expr.gno arg))
end


module Set = 
struct     
  let mk_sort  ( ctx : context ) ( ty : Sort.sort ) =
    Sort.sort_of_ptr ctx (Z3native.mk_set_sort (context_gno ctx) (Sort.gno ty))

  let is_union ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_UNION)
  let is_intersect ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_INTERSECT)
  let is_difference ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_DIFFERENCE)
  let is_complement ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_COMPLEMENT)
  let is_subset ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_SUBSET)


  let mk_empty ( ctx : context ) ( domain : Sort.sort ) =
    (expr_of_ptr ctx (Z3native.mk_empty_set (context_gno ctx) (Sort.gno domain)))
      
  let mk_full ( ctx : context ) ( domain : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_full_set (context_gno ctx) (Sort.gno domain))

  let mk_set_add  ( ctx : context ) ( set : expr ) ( element : expr ) =
    expr_of_ptr ctx (Z3native.mk_set_add (context_gno ctx) (Expr.gno set) (Expr.gno element))
      
  let mk_del  ( ctx : context ) ( set : expr ) ( element : expr ) =
    expr_of_ptr ctx (Z3native.mk_set_del (context_gno ctx) (Expr.gno set) (Expr.gno element))
      
  let mk_union  ( ctx : context ) ( args : expr list ) =
    expr_of_ptr ctx (Z3native.mk_set_union (context_gno ctx) (List.length args) (expr_lton args))
      
  let mk_intersection  ( ctx : context ) ( args : expr list ) =
    expr_of_ptr ctx (Z3native.mk_set_intersect (context_gno ctx) (List.length args) (expr_lton args))

  let mk_difference  ( ctx : context ) ( arg1 : expr ) ( arg2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_set_difference (context_gno ctx) (Expr.gno arg1) (Expr.gno arg2))

  let mk_complement  ( ctx : context ) ( arg : expr ) =
    expr_of_ptr ctx (Z3native.mk_set_complement (context_gno ctx) (Expr.gno arg))

  let mk_membership  ( ctx : context ) ( elem : expr ) ( set : expr ) =
    expr_of_ptr ctx (Z3native.mk_set_member (context_gno ctx) (Expr.gno elem) (Expr.gno set))

  let mk_subset  ( ctx : context ) ( arg1 : expr ) ( arg2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_set_subset (context_gno ctx) (Expr.gno arg1) (Expr.gno arg2))

end


module FiniteDomain = 
struct  
  let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( size : int ) =
    Sort.sort_of_ptr ctx (Z3native.mk_finite_domain_sort (context_gno ctx) (Symbol.gno name) size)
      
  let mk_sort_s ( ctx : context ) ( name : string ) ( size : int ) =
    mk_sort ctx (Symbol.mk_string ctx name) size

  let is_finite_domain ( x : expr ) =
    let nc = (Expr.gnc x) in
    (Z3native.is_app (Expr.gnc x) (Expr.gno x)) &&
      (sort_kind_of_int (Z3native.get_sort_kind nc (Z3native.get_sort nc (Expr.gno x))) == FINITE_DOMAIN_SORT)

  let is_lt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FD_LT)

  let get_size ( x : Sort.sort ) = 
    let (r, v) = (Z3native.get_finite_domain_sort_size (Sort.gnc x) (Sort.gno x)) in
    if r then v
    else raise (Z3native.Exception "Conversion failed.")
end


module Relation = 
struct
  let is_relation ( x : expr ) =
    let nc = (Expr.gnc x) in
    ((Z3native.is_app (Expr.gnc x) (Expr.gno x)) &&
	(sort_kind_of_int (Z3native.get_sort_kind nc (Z3native.get_sort nc (Expr.gno x))) == RELATION_SORT))

  let is_store ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_STORE)
  let is_empty ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_EMPTY)
  let is_is_empty ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_IS_EMPTY)
  let is_join ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_JOIN)
  let is_union ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_UNION)
  let is_widen ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_WIDEN)
  let is_project ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_PROJECT)
  let is_filter ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_FILTER)
  let is_negation_filter ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_NEGATION_FILTER)
  let is_rename ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_RENAME)
  let is_complement ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_COMPLEMENT)
  let is_select ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_SELECT)
  let is_clone ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_CLONE)

  let get_arity ( x : Sort.sort ) = Z3native.get_relation_arity (Sort.gnc x) (Sort.gno x)

  let get_column_sorts ( x : Sort.sort ) = 
    let n = get_arity x in
    let f i = (Sort.sort_of_ptr (Sort.gc x) (Z3native.get_relation_column (Sort.gnc x) (Sort.gno x) i)) in
    mk_list f n
end
  

module Datatype = 
struct
  module Constructor = 
  struct
    type constructor = z3_native_object
	
    module FieldNumTable = Hashtbl.Make(struct 
      type t = AST.ast
      let equal x y = AST.compare x y = 0
      let hash = AST.hash
    end)

    let _field_nums = FieldNumTable.create 0

    let create ( ctx : context ) ( name : Symbol.symbol ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : Sort.sort option list ) ( sort_refs : int list ) =
      let n = (List.length field_names) in
      if n != (List.length sorts) then
	raise (Z3native.Exception "Number of field names does not match number of sorts")
      else
	if n != (List.length sort_refs) then
	  raise (Z3native.Exception "Number of field names does not match number of sort refs")
	else
          let ptr = (Z3native.mk_constructor (context_gno ctx) (Symbol.gno name) 
		       (Symbol.gno recognizer) 
		       n
		       (Symbol.symbol_lton field_names)
		       (Sort.sort_option_lton sorts)
		       (Array.of_list sort_refs)) in
	  let no : constructor = { m_ctx = ctx ;
				   m_n_obj = null ;
				   inc_ref = z3obj_nil_ref ;
				   dec_ref = z3obj_nil_ref} in
	  (z3obj_sno no ctx ptr) ;
	  (z3obj_create no) ;
	  let f = fun o -> Z3native.del_constructor (z3obj_gnc o) (z3obj_gno o) in
	  Gc.finalise f no ;
	  FieldNumTable.add _field_nums no n ;
	  no    	  
	    
    let get_num_fields ( x : constructor ) = FieldNumTable.find _field_nums x

    let get_constructor_decl ( x : constructor ) = 
      let (a, _, _) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in
      func_decl_of_ptr (z3obj_gc x) a

    let get_tester_decl ( x : constructor ) =
      let (_, b, _) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in
      func_decl_of_ptr (z3obj_gc x) b	

    let get_accessor_decls ( x : constructor ) = 
      let (_, _, c) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in
      let f i = func_decl_of_ptr (z3obj_gc x) (Array.get c i) in
      mk_list f (Array.length c)
	
  end

  module ConstructorList =
  struct
    type constructor_list = z3_native_object 

    let create ( ctx : context ) ( c : Constructor.constructor list ) =
      let res : constructor_list = { m_ctx = ctx ;
				     m_n_obj = null ;
				     inc_ref = z3obj_nil_ref ;
				     dec_ref = z3obj_nil_ref} in
      let f x =(z3obj_gno x) in 
      (z3obj_sno res ctx (Z3native.mk_constructor_list (context_gno ctx) (List.length c) (Array.of_list (List.map f c)))) ;
      (z3obj_create res) ;
      let f = fun o -> Z3native.del_constructor_list (z3obj_gnc o) (z3obj_gno o) in      
      Gc.finalise f res;
      res       
  end
    
  let mk_constructor ( ctx : context ) ( name : Symbol.symbol ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : Sort.sort option list ) ( sort_refs : int list ) =
    Constructor.create ctx name recognizer field_names sorts sort_refs


  let mk_constructor_s ( ctx : context ) ( name : string ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : Sort.sort option list ) ( sort_refs : int list ) =
    mk_constructor ctx (Symbol.mk_string ctx name) recognizer field_names sorts sort_refs

  let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( constructors : Constructor.constructor list ) =
    let f x = (z3obj_gno x) in 
    let (x,_) = (Z3native.mk_datatype (context_gno ctx) (Symbol.gno name) (List.length constructors) (Array.of_list (List.map f constructors))) in
    Sort.sort_of_ptr ctx x

  let mk_sort_s ( ctx : context ) ( name : string ) ( constructors : Constructor.constructor list ) =
    mk_sort ctx (Symbol.mk_string ctx name) constructors
      
  let mk_sorts ( ctx : context ) ( names : Symbol.symbol list ) ( c : Constructor.constructor list list ) =
    let n = (List.length names) in
    let f e = (AST.ptr_of_ast (ConstructorList.create ctx e)) in
    let cla = (Array.of_list (List.map f c)) in
    let (r, a) = (Z3native.mk_datatypes (context_gno ctx) n (Symbol.symbol_lton names) cla) in
    let g i = (Sort.sort_of_ptr ctx (Array.get r i)) in
    mk_list g (Array.length r)

  let mk_sorts_s ( ctx : context ) ( names : string list ) ( c : Constructor.constructor list list ) =
    mk_sorts ctx 
      ( 
	let f e = (Symbol.mk_string ctx e) in
	List.map f names 
      )
      c

  let get_num_constructors ( x : Sort.sort ) = Z3native.get_datatype_sort_num_constructors (Sort.gnc x) (Sort.gno x)

  let get_constructors ( x : Sort.sort ) = 
    let n = (get_num_constructors x) in
    let f i = func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x) i) in
    mk_list f n

  let get_recognizers ( x : Sort.sort ) = 
    let n = (get_num_constructors x) in
    let f i = func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_recognizer (Sort.gnc x) (Sort.gno x) i) in
    mk_list f n
      
  let get_accessors ( x : Sort.sort ) =
    let n = (get_num_constructors x) in
    let f i = (
      let fd = func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x) i) in
      let ds = Z3native.get_domain_size (FuncDecl.gnc fd) (FuncDecl.gno fd) in
      let g j = func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor_accessor (Sort.gnc x) (Sort.gno x) i j) in
      mk_list g ds
    ) in
    mk_list f n
end


module Enumeration = 
struct 
  let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( enum_names : Symbol.symbol list ) =
    let (a, _, _) = (Z3native.mk_enumeration_sort (context_gno ctx) (Symbol.gno name) (List.length enum_names) (Symbol.symbol_lton enum_names)) in
    Sort.sort_of_ptr ctx a

  let mk_sort_s ( ctx : context ) ( name : string ) ( enum_names : string list ) =
    mk_sort ctx (Symbol.mk_string ctx name) (Symbol.mk_strings ctx enum_names)

  let get_const_decls ( x : Sort.sort ) =
    let n = Z3native.get_datatype_sort_num_constructors (Sort.gnc x) (Sort.gno x)  in
    let f i = (func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x)  i)) in
    mk_list f n

  let get_const_decl ( x : Sort.sort ) ( inx : int ) =
    func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x) inx)

  let get_consts ( x : Sort.sort ) =
    let n = Z3native.get_datatype_sort_num_constructors (Sort.gnc x) (Sort.gno x)  in
    let f i = (Expr.mk_const_f (Sort.gc x) (get_const_decl x i)) in
    mk_list f n

  let get_const ( x : Sort.sort ) ( inx : int ) =
    Expr.mk_const_f (Sort.gc x) (get_const_decl x inx)

  let get_tester_decls ( x : Sort.sort ) = 
    let n = Z3native.get_datatype_sort_num_constructors (Sort.gnc x) (Sort.gno x)  in
    let f i = (func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_recognizer (Sort.gnc x) (Sort.gno x) i)) in
    mk_list f n
      
  let get_tester_decl ( x : Sort.sort ) ( inx : int ) = 
    func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_recognizer (Sort.gnc x) (Sort.gno x) inx)
end


module Z3List = 
struct     
  let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( elem_sort : Sort.sort ) =
    let (r, _, _, _, _, _, _) = (Z3native.mk_list_sort (context_gno ctx) (Symbol.gno name) (Sort.gno elem_sort)) in
    Sort.sort_of_ptr ctx r 
      
  let mk_list_s ( ctx : context ) ( name : string ) elem_sort =
    mk_sort ctx (Symbol.mk_string ctx name) elem_sort

  let get_nil_decl ( x : Sort.sort ) = 
    func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x)  0)

  let get_is_nil_decl ( x : Sort.sort ) = 
    func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_recognizer (Sort.gnc x) (Sort.gno x)  0)

  let get_cons_decl ( x : Sort.sort ) = 
    func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor (Sort.gnc x) (Sort.gno x)  1)

  let get_is_cons_decl ( x : Sort.sort ) =
    func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_recognizer (Sort.gnc x) (Sort.gno x)  1)

  let get_head_decl ( x : Sort.sort )  = 
    func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor_accessor (Sort.gnc x) (Sort.gno x) 1 0)

  let get_tail_decl ( x : Sort.sort ) =
    func_decl_of_ptr (Sort.gc x) (Z3native.get_datatype_sort_constructor_accessor (Sort.gnc x) (Sort.gno x) 1 1)

  let nil ( x : Sort.sort ) = expr_of_func_app (Sort.gc x) (get_nil_decl x) []
end


module Tuple = 
struct
  let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( field_sorts : Sort.sort list ) =
    let (r, _, _) = (Z3native.mk_tuple_sort (context_gno ctx) (Symbol.gno name) (List.length field_names) (Symbol.symbol_lton field_names) (Sort.sort_lton field_sorts)) in 
    Sort.sort_of_ptr ctx r

  let get_mk_decl ( x : Sort.sort ) =
    func_decl_of_ptr (Sort.gc x) (Z3native.get_tuple_sort_mk_decl (Sort.gnc x) (Sort.gno x))

  let get_num_fields ( x : Sort.sort ) = Z3native.get_tuple_sort_num_fields (Sort.gnc x) (Sort.gno x)
    
  let get_field_decls ( x : Sort.sort ) = 
    let n = get_num_fields x in
    let f i = func_decl_of_ptr (Sort.gc x) (Z3native.get_tuple_sort_field_decl (Sort.gnc x) (Sort.gno x) i) in
    mk_list f n
end


module Arithmetic =
struct
  let is_int ( x : expr ) =
    (Z3native.is_numeral_ast (Expr.gnc x) (Expr.gno x)) &&
      ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == INT_SORT)
      
  let is_arithmetic_numeral ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ANUM)

  let is_le ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_LE)

  let is_ge ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_GE)

  let is_lt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_LT)

  let is_gt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_GT)

  let is_add ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ADD)

  let is_sub ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SUB)

  let is_uminus ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UMINUS)

  let is_mul ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_MUL)

  let is_div ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_DIV)

  let is_idiv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_IDIV)

  let is_remainder ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_REM)

  let is_modulus ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_MOD)

  let is_int2real ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_TO_REAL)

  let is_real2int ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_TO_INT)

  let is_real_is_int ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_IS_INT)

  let is_real ( x : expr ) =
    ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == REAL_SORT)
      
  let is_int_numeral ( x : expr ) = (Expr.is_numeral x) && (is_int x)

  let is_rat_numeral ( x : expr ) = (Expr.is_numeral x) && (is_real x)
    
  let is_algebraic_number ( x : expr ) = Z3native.is_algebraic_number (Expr.gnc x) (Expr.gno x)

  module Integer =
  struct     
    let mk_sort ( ctx : context ) =
      Sort.sort_of_ptr ctx (Z3native.mk_int_sort (context_gno ctx))

    let get_int ( x : expr ) = 
      let (r, v) = Z3native.get_numeral_int (Expr.gnc x) (Expr.gno x) in
      if r then v
      else raise (Z3native.Exception "Conversion failed.")

    let get_big_int ( x : expr ) = 
      if (is_int_numeral x) then 
	let s = (Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)) in
	(Big_int.big_int_of_string s)
      else raise (Z3native.Exception "Conversion failed.")
	
    let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)

    let mk_const ( ctx : context ) ( name : Symbol.symbol ) =
      Expr.mk_const ctx name (mk_sort ctx) 
	
    let mk_const_s ( ctx : context ) ( name : string )  =
      mk_const ctx (Symbol.mk_string ctx name)
	
    let mk_mod ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =    
      expr_of_ptr ctx (Z3native.mk_mod (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
	
    let mk_rem ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
      expr_of_ptr  ctx (Z3native.mk_rem (context_gno ctx) (Expr.gno t1) (Expr.gno t2))

    let mk_numeral_s ( ctx : context ) ( v : string ) =
      expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno (mk_sort ctx)))
	
    let mk_numeral_i ( ctx : context ) ( v : int ) =
      expr_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (Sort.gno (mk_sort ctx)))

    let mk_int2real ( ctx : context ) ( t : expr ) =
      (Expr.expr_of_ptr ctx (Z3native.mk_int2real (context_gno ctx) (Expr.gno t)))

    let mk_int2bv ( ctx : context ) ( n : int ) ( t : expr ) =
      (Expr.expr_of_ptr ctx (Z3native.mk_int2bv (context_gno ctx) n (Expr.gno t)))
  end

  module Real =
  struct  
    let mk_sort ( ctx : context ) =
      Sort.sort_of_ptr ctx (Z3native.mk_real_sort (context_gno ctx))	

    let get_numerator ( x : expr ) =
      expr_of_ptr (Expr.gc x) (Z3native.get_numerator (Expr.gnc x) (Expr.gno x))
	
    let get_denominator ( x : expr ) =
      expr_of_ptr (Expr.gc x) (Z3native.get_denominator (Expr.gnc x) (Expr.gno x))
	
    let get_ratio ( x : expr ) = 
      if (is_rat_numeral x)  then
	let s = (Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)) in
	(Ratio.ratio_of_string s)
      else raise (Z3native.Exception "Conversion failed.")

    let to_decimal_string ( x : expr ) ( precision : int ) = 
      Z3native.get_numeral_decimal_string (Expr.gnc x) (Expr.gno x) precision
	
    let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)

    let mk_const ( ctx : context ) ( name : Symbol.symbol )  =
      Expr.mk_const ctx name (mk_sort ctx)
	
    let mk_const_s ( ctx : context ) ( name : string )  =
      mk_const ctx (Symbol.mk_string ctx name)

    let mk_numeral_nd ( ctx : context ) ( num : int ) ( den : int ) =
      if (den == 0) then 
	raise (Z3native.Exception "Denominator is zero")
      else      
	expr_of_ptr ctx (Z3native.mk_real (context_gno ctx) num den)
	  
    let mk_numeral_s ( ctx : context ) ( v : string ) =
      expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno (mk_sort ctx)))
	
    let mk_numeral_i ( ctx : context ) ( v : int ) =
      expr_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (Sort.gno (mk_sort ctx)))
	
    let mk_is_integer ( ctx : context ) ( t : expr ) =
      (expr_of_ptr ctx (Z3native.mk_is_int (context_gno ctx) (Expr.gno t)))
	
    let mk_real2int ( ctx : context ) ( t : expr ) =
      (expr_of_ptr ctx (Z3native.mk_real2int (context_gno ctx) (Expr.gno t)))

    module AlgebraicNumber =
    struct    
      let to_upper ( x : expr ) ( precision : int ) =
	    expr_of_ptr (Expr.gc x) (Z3native.get_algebraic_number_upper (Expr.gnc x) (Expr.gno x) precision)
	      
      let to_lower ( x : expr ) precision =
	    expr_of_ptr (Expr.gc x) (Z3native.get_algebraic_number_lower (Expr.gnc x) (Expr.gno x) precision)
	      
      let to_decimal_string ( x : expr ) ( precision : int ) = 
	    Z3native.get_numeral_decimal_string (Expr.gnc x) (Expr.gno x) precision	
	      
      let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)      
    end
  end

  let mk_add ( ctx : context ) ( t : expr list ) =
    let f x = (Expr.gno x) in
    (expr_of_ptr ctx (Z3native.mk_add (context_gno ctx) (List.length t) (Array.of_list (List.map f t))))

  let mk_mul ( ctx : context ) ( t : expr list ) =
    let f x = (Expr.gno x) in
    (expr_of_ptr ctx (Z3native.mk_mul (context_gno ctx) (List.length t) (Array.of_list (List.map f t))))

  let mk_sub ( ctx : context ) ( t : expr list ) =
    let f x = (Expr.gno x) in
    (expr_of_ptr ctx (Z3native.mk_sub (context_gno ctx) (List.length t) (Array.of_list (List.map f t))))
      
  let mk_unary_minus ( ctx : context ) ( t : expr ) =     
    (expr_of_ptr ctx (Z3native.mk_unary_minus (context_gno ctx) (Expr.gno t)))

  let mk_div ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_div (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))

  let mk_power ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =     
    (expr_of_ptr ctx (Z3native.mk_power (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))

  let mk_lt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_lt (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))

  let mk_le ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_le (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
      
  let mk_gt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_gt (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))

  let mk_ge ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_ge (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
end


module BitVector =
struct  
  let mk_sort ( ctx : context ) size =
    Sort.sort_of_ptr ctx (Z3native.mk_bv_sort (context_gno ctx) size)
  let is_bv ( x : expr ) =
    ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == BV_SORT)
  let is_bv_numeral ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNUM)
  let is_bv_bit1 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BIT1)
  let is_bv_bit0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BIT0)
  let is_bv_uminus ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNEG)
  let is_bv_add ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BADD)
  let is_bv_sub ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSUB)
  let is_bv_mul ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BMUL)
  let is_bv_sdiv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSDIV)
  let is_bv_udiv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUDIV)
  let is_bv_SRem ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSREM)
  let is_bv_urem ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUREM)
  let is_bv_smod ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSMOD)
  let is_bv_sdiv0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSDIV0)
  let is_bv_udiv0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUDIV0)
  let is_bv_srem0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSREM0)
  let is_bv_urem0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUREM0)
  let is_bv_smod0 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSMOD0)
  let is_bv_ule ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ULEQ)
  let is_bv_sle ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SLEQ)
  let is_bv_uge ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UGEQ)
  let is_bv_sge ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SGEQ)
  let is_bv_ult ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ULT)
  let is_bv_slt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SLT)
  let is_bv_ugt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UGT)
  let is_bv_sgt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SGT)
  let is_bv_and ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BAND)
  let is_bv_or ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BOR)
  let is_bv_not ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNOT)
  let is_bv_xor ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BXOR)
  let is_bv_nand ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNAND)
  let is_bv_nor ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNOR)
  let is_bv_xnor ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BXNOR)
  let is_bv_concat ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CONCAT)
  let is_bv_signextension ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SIGN_EXT)
  let is_bv_zeroextension ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ZERO_EXT)
  let is_bv_extract ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXTRACT)
  let is_bv_repeat ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_REPEAT)
  let is_bv_reduceor ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BREDOR)
  let is_bv_reduceand ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BREDAND)
  let is_bv_comp ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BCOMP)
  let is_bv_shiftleft ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSHL)
  let is_bv_shiftrightlogical ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BLSHR)
  let is_bv_shiftrightarithmetic ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BASHR)
  let is_bv_rotateleft ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ROTATE_LEFT)
  let is_bv_rotateright ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ROTATE_RIGHT)
  let is_bv_rotateleftextended ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXT_ROTATE_LEFT)
  let is_bv_rotaterightextended ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXT_ROTATE_RIGHT) 
  let is_int2bv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_INT2BV)
  let is_bv2int ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BV2INT)
  let is_bv_carry ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CARRY)
  let is_bv_xor3 ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_XOR3)
  let get_size (x : Sort.sort ) = Z3native.get_bv_sort_size (Sort.gnc x) (Sort.gno x)
  let get_int ( x : expr ) = 
    let (r, v) = Z3native.get_numeral_int (Expr.gnc x) (Expr.gno x) in
    if r then v
    else raise (Z3native.Exception "Conversion failed.")
  let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)
  let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( size : int ) =
    Expr.mk_const ctx name (mk_sort ctx size) 
  let mk_const_s ( ctx : context ) ( name : string ) ( size : int ) =
    mk_const ctx (Symbol.mk_string ctx name) size
  let mk_not  ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvnot (context_gno ctx) (Expr.gno t))
  let mk_redand  ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvredand (context_gno ctx) (Expr.gno t))
  let mk_redor  ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvredor (context_gno ctx) (Expr.gno t))
  let mk_and  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvand (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_or  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvor (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_xor  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvxor (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_nand  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvnand (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_nor  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvnor (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_xnor  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvxnor (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_neg  ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvneg (context_gno ctx) (Expr.gno t))
  let mk_add  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvadd (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_sub  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvsub (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_mul  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvmul (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_udiv  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvudiv (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_sdiv  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvsdiv (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_urem  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvurem (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_srem  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvsrem (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_smod  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvsmod (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_ult  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvult (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))  
  let mk_slt  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvslt (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
  let mk_ule  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvule (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
  let mk_sle  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvsle (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
  let mk_uge  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvuge (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
  let mk_sge  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvsge (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
  let mk_ugt  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvugt (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))   		  
  let mk_sgt  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvsgt (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))   		  
  let mk_concat ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_concat (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_extract ( ctx : context ) ( high : int ) ( low : int ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_extract (context_gno ctx) high low (Expr.gno t))
  let mk_sign_ext  ( ctx : context ) ( i : int ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_sign_ext (context_gno ctx) i (Expr.gno t))
  let mk_zero_ext  ( ctx : context ) ( i : int ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_zero_ext (context_gno ctx) i (Expr.gno t))
  let mk_repeat  ( ctx : context ) ( i : int ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_repeat (context_gno ctx) i (Expr.gno t))
  let mk_shl  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvshl (context_gno ctx) (Expr.gno t1) (Expr.gno t2))	  
  let mk_lshr  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_bvlshr (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_ashr  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =    
    expr_of_ptr ctx  (Z3native.mk_bvashr (context_gno ctx) (Expr.gno t1) (Expr.gno t2))  
  let mk_rotate_left  ( ctx : context ) ( i : int ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_rotate_left (context_gno ctx) i (Expr.gno t))
  let mk_rotate_right ( ctx : context ) ( i : int ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_rotate_right (context_gno ctx) i (Expr.gno t))
  let mk_ext_rotate_left ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_ext_rotate_left (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_ext_rotate_right ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_ext_rotate_right (context_gno ctx) (Expr.gno t1) (Expr.gno t2))	  
  let mk_bv2int ( ctx : context ) ( t : expr ) ( signed : bool ) =
    expr_of_ptr ctx (Z3native.mk_bv2int (context_gno ctx) (Expr.gno t) signed)
  let mk_add_no_overflow  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) ( signed : bool) =
    (expr_of_ptr ctx (Z3native.mk_bvadd_no_overflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2) signed))
  let mk_add_no_underflow  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvadd_no_underflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))	  
  let mk_sub_no_overflow  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvsub_no_overflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))		  
  let mk_sub_no_underflow  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) ( signed : bool) =
    (expr_of_ptr ctx (Z3native.mk_bvsub_no_underflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2) signed))
  let mk_sdiv_no_overflow  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvsdiv_no_overflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))
  let mk_neg_no_overflow  ( ctx : context ) ( t : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvneg_no_overflow (context_gno ctx) (Expr.gno t)))
  let mk_mul_no_overflow  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) ( signed : bool) =
    (expr_of_ptr ctx (Z3native.mk_bvmul_no_overflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2) signed))
  let mk_mul_no_underflow  ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    (expr_of_ptr ctx (Z3native.mk_bvmul_no_underflow (context_gno ctx) (Expr.gno t1) (Expr.gno t2)))	  
  let mk_numeral ( ctx : context ) ( v : string ) ( size : int ) =
    expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno (mk_sort ctx size)))
end


module FloatingPoint = 
struct
  module RoundingMode = 
  struct
	let mk_sort ( ctx : context ) =
	  (Sort.sort_of_ptr ctx (Z3native.mk_fpa_rounding_mode_sort (context_gno ctx)))
	let is_fprm ( x : expr ) =
	  (Sort.get_sort_kind (Expr.get_sort(x))) == ROUNDING_MODE_SORT
	let mk_round_nearest_ties_to_even ( ctx : context ) = 
	  (expr_of_ptr ctx (Z3native.mk_fpa_round_nearest_ties_to_even (context_gno ctx)))
	let mk_rne ( ctx : context ) =
	  (expr_of_ptr ctx (Z3native.mk_fpa_rne (context_gno ctx)))
	let mk_round_nearest_ties_to_away ( ctx : context ) = 
	  (expr_of_ptr ctx (Z3native.mk_fpa_round_nearest_ties_to_away (context_gno ctx)))
	let mk_rna ( ctx : context ) =
	  (expr_of_ptr ctx (Z3native.mk_fpa_rna (context_gno ctx)))
	let mk_round_toward_positive ( ctx : context ) = 
	  (expr_of_ptr ctx (Z3native.mk_fpa_round_toward_positive (context_gno ctx)))
	let mk_rtp ( ctx : context ) =
	  (expr_of_ptr ctx (Z3native.mk_fpa_rtp (context_gno ctx)))
	let mk_round_toward_negative ( ctx : context ) = 
	  (expr_of_ptr ctx (Z3native.mk_fpa_round_toward_negative  (context_gno ctx)))
	let mk_rtn ( ctx : context ) =
	  (expr_of_ptr ctx (Z3native.mk_fpa_rtn (context_gno ctx)))
	let mk_round_toward_zero ( ctx : context ) = 
	  (expr_of_ptr ctx (Z3native.mk_fpa_round_toward_zero (context_gno ctx)))
	let mk_rtz ( ctx : context ) =
	  (expr_of_ptr ctx (Z3native.mk_fpa_rtz (context_gno ctx)))		
  end
	
  let mk_sort ( ctx : context ) ( ebits : int ) ( sbits : int ) =
	(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort (context_gno ctx) ebits sbits))
  let mk_sort_half ( ctx : context ) =
	(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_half (context_gno ctx)))
  let mk_sort_16 ( ctx : context ) =
	(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_16 (context_gno ctx)))
  let mk_sort_single ( ctx : context ) =
	(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_single (context_gno ctx)))
  let mk_sort_32 ( ctx : context ) =
	(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_32 (context_gno ctx)))
  let mk_sort_double ( ctx : context ) =
	(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_double (context_gno ctx)))
  let mk_sort_64 ( ctx : context ) =
	(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_64 (context_gno ctx)))
  let mk_sort_quadruple ( ctx : context ) =
	(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_quadruple (context_gno ctx)))
  let mk_sort_128 ( ctx : context ) =
	(Sort.sort_of_ptr ctx (Z3native.mk_fpa_sort_128 (context_gno ctx)))

  let mk_nan ( ctx : context ) ( s : Sort.sort ) =
	(expr_of_ptr ctx (Z3native.mk_fpa_nan (context_gno ctx) (Sort.gno s)))
  let mk_inf ( ctx : context ) ( s : Sort.sort ) ( negative : bool ) =
	(expr_of_ptr ctx (Z3native.mk_fpa_inf (context_gno ctx) (Sort.gno s) negative))
  let mk_zero ( ctx : context ) ( s : Sort.sort ) ( negative : bool ) =
	(expr_of_ptr ctx (Z3native.mk_fpa_zero (context_gno ctx) (Sort.gno s) negative))

  let mk_fp ( ctx : context ) ( sign : expr ) ( exponent : expr ) ( significand : expr ) =
	(expr_of_ptr ctx (Z3native.mk_fpa_fp (context_gno ctx) (Expr.gno sign) (Expr.gno exponent) (Expr.gno significand)))
  let mk_numeral_f ( ctx : context ) ( value : float ) ( s : Sort.sort ) =
	(expr_of_ptr ctx (Z3native.mk_fpa_numeral_double (context_gno ctx) value (Sort.gno s)))
  let mk_numeral_i ( ctx : context ) ( value : int ) ( s : Sort.sort ) =
	(expr_of_ptr ctx (Z3native.mk_fpa_numeral_int (context_gno ctx) value (Sort.gno s)))
  let mk_numeral_i_u ( ctx : context ) ( sign : bool ) ( exponent : int ) ( significand : int ) ( s : Sort.sort ) =
	(expr_of_ptr ctx (Z3native.mk_fpa_numeral_int64_uint64 (context_gno ctx) sign exponent significand (Sort.gno s)))
  let mk_numeral_s ( ctx : context ) ( v : string ) ( s : Sort.sort ) =
    (expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno s)))

  let is_fp ( x : expr ) = (Sort.get_sort_kind (Expr.get_sort x)) == FLOATING_POINT_SORT
  let is_abs ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_ABS)
  let is_neg ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_NEG)
  let is_add ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_ADD)
  let is_sub ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_SUB)
  let is_mul ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_MUL)
  let is_div ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_DIV)
  let is_fma ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_FMA)
  let is_sqrt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_SQRT)
  let is_rem ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_REM)
  let is_round_to_integral ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_ROUND_TO_INTEGRAL)
  let is_min ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_MIN)
  let is_max ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_MAX)
  let is_leq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_LE)
  let is_lt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_LT)
  let is_geq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_GE)
  let is_gt ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_GT)
  let is_eq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_EQ)
  let is_is_normal ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_NORMAL)
  let is_is_subnormal ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_SUBNORMAL)
  let is_is_zero ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_ZERO)
  let is_is_infinite ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_INF)
  let is_is_nan ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_NAN)
  let is_is_negative ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_NEGATIVE)
  let is_is_positive ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_IS_POSITIVE)
  let is_to_fp ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_FP)
  let is_to_fp_unsigned ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_FP_UNSIGNED)
  let is_to_ubv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_UBV)
  let is_to_sbv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_SBV)
  let is_to_real ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_REAL)
  let is_to_ieee_bv ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FPA_TO_IEEE_BV)
	
  let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)
  let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( s : Sort.sort ) =
    Expr.mk_const ctx name s
  let mk_const_s ( ctx : context ) ( name : string ) ( s : Sort.sort ) =
    mk_const ctx (Symbol.mk_string ctx name) s

  let mk_abs ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_abs (context_gno ctx) (Expr.gno t))
  let mk_neg ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_neg (context_gno ctx) (Expr.gno t))
  let mk_add ( ctx : context ) ( rm : expr ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_add (context_gno ctx) (Expr.gno rm) (Expr.gno t1) (Expr.gno t2))
  let mk_sub ( ctx : context ) ( rm : expr ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_sub (context_gno ctx) (Expr.gno rm) (Expr.gno t1) (Expr.gno t2))
  let mk_mul ( ctx : context ) ( rm : expr ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_mul (context_gno ctx) (Expr.gno rm) (Expr.gno t1) (Expr.gno t2))
  let mk_div ( ctx : context ) ( rm : expr ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_div (context_gno ctx) (Expr.gno rm) (Expr.gno t1) (Expr.gno t2))
  let mk_fma ( ctx : context ) ( rm : expr ) ( t1 : expr ) ( t2 : expr ) ( t3 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_fma (context_gno ctx) (Expr.gno rm) (Expr.gno t1) (Expr.gno t2) (Expr.gno t3))
  let mk_sqrt ( ctx : context ) ( rm : expr ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_sqrt (context_gno ctx) (Expr.gno rm) (Expr.gno t))
  let mk_rem ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_rem (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_round_to_integral  ( ctx : context ) ( rm : expr ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_round_to_integral (context_gno ctx) (Expr.gno rm) (Expr.gno t))
  let mk_min ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_min (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_max ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_max (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_leq ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_leq (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_lt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_lt (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_geq ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_geq (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_gt ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_gt (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_eq ( ctx : context ) ( t1 : expr ) ( t2 : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_eq (context_gno ctx) (Expr.gno t1) (Expr.gno t2))
  let mk_is_normal ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_is_normal (context_gno ctx) (Expr.gno t))
  let mk_is_subnormal ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_is_subnormal (context_gno ctx) (Expr.gno t))
  let mk_is_zero ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_is_zero (context_gno ctx) (Expr.gno t))
  let mk_is_infinite  ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_is_infinite (context_gno ctx) (Expr.gno t))
  let mk_is_nan ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_is_nan (context_gno ctx) (Expr.gno t))
  let mk_is_negative  ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_is_negative (context_gno ctx) (Expr.gno t))
  let mk_is_positive ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_is_positive (context_gno ctx) (Expr.gno t))
  let mk_to_fp_bv ( ctx : context ) ( t : expr ) ( s : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_fpa_to_fp_bv (context_gno ctx) (Expr.gno t) (Sort.gno s))
  let mk_to_fp_float ( ctx : context ) ( rm : expr) ( t : expr ) ( s : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_fpa_to_fp_float (context_gno ctx) (Expr.gno rm) (Expr.gno t) (Sort.gno s))
  let mk_to_fp_real ( ctx : context ) ( rm : expr ) ( t : expr ) ( s : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_fpa_to_fp_real (context_gno ctx) (Expr.gno rm) (Expr.gno t) (Sort.gno s))
  let mk_to_fp_signed  ( ctx : context ) ( rm : expr) ( t : expr ) ( s : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_fpa_to_fp_signed (context_gno ctx) (Expr.gno rm) (Expr.gno t) (Sort.gno s))
  let mk_to_fp_unsigned  ( ctx : context ) ( rm : expr) ( t : expr ) ( s : Sort.sort ) =
    expr_of_ptr ctx (Z3native.mk_fpa_to_fp_unsigned (context_gno ctx) (Expr.gno rm) (Expr.gno t) (Sort.gno s))
  let mk_to_ubv ( ctx : context ) ( rm : expr) ( t : expr ) ( size : int ) =
    expr_of_ptr ctx (Z3native.mk_fpa_to_ubv (context_gno ctx) (Expr.gno rm) (Expr.gno t) size)
  let mk_to_sbv ( ctx : context ) ( rm : expr) ( t : expr ) ( size : int ) =
    expr_of_ptr ctx (Z3native.mk_fpa_to_sbv (context_gno ctx) (Expr.gno rm) (Expr.gno t) size)
  let mk_to_real ( ctx : context ) ( t : expr ) =
    expr_of_ptr ctx (Z3native.mk_fpa_to_real (context_gno ctx) (Expr.gno t))

  let get_ebits ( ctx : context ) ( s : Sort.sort ) =
	(Z3native.fpa_get_ebits (context_gno ctx) (Sort.gno s))
  let get_sbits ( ctx : context ) ( s : Sort.sort ) =
	(Z3native.fpa_get_sbits (context_gno ctx) (Sort.gno s))
  let get_numeral_sign ( ctx : context ) ( t : expr ) =
	(Z3native.fpa_get_numeral_sign (context_gno ctx) (Expr.gno t))
  let get_numeral_significand_string ( ctx : context ) ( t : expr ) =
	(Z3native.fpa_get_numeral_significand_string (context_gno ctx) (Expr.gno t))
  let get_numeral_significand_uint ( ctx : context ) ( t : expr ) =
	(Z3native.fpa_get_numeral_significand_uint64 (context_gno ctx) (Expr.gno t))
  let get_numeral_exponent_string ( ctx : context ) ( t : expr ) =
	(Z3native.fpa_get_numeral_exponent_string (context_gno ctx) (Expr.gno t))
  let get_numeral_exponent_int ( ctx : context ) ( t : expr ) =
	(Z3native.fpa_get_numeral_exponent_int64 (context_gno ctx) (Expr.gno t))

  let mk_to_ieee_bv ( ctx : context ) ( t : expr ) =
	(expr_of_ptr ctx (Z3native.mk_fpa_to_ieee_bv (context_gno ctx) (Expr.gno t)))
  let mk_to_fp_int_real ( ctx : context ) ( rm : expr ) ( exponent : expr ) ( significand : expr ) ( s : Sort.sort ) =
	(expr_of_ptr ctx (Z3native.mk_fpa_to_fp_int_real (context_gno ctx) (Expr.gno rm) (Expr.gno exponent) (Expr.gno significand) (Sort.gno s)))

  let numeral_to_string ( x : expr ) = Z3native.get_numeral_string (Expr.gnc x) (Expr.gno x)
end


module Proof = 
struct
  let is_true ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRUE)
  let is_asserted ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_ASSERTED)
  let is_goal ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_GOAL)
  let is_oeq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_OEQ)
  let is_modus_ponens ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MODUS_PONENS)
  let is_reflexivity ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REFLEXIVITY)
  let is_symmetry ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_SYMMETRY)
  let is_transitivity ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRANSITIVITY)
  let is_Transitivity_star ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRANSITIVITY_STAR)
  let is_monotonicity ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MONOTONICITY)
  let is_quant_intro ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_QUANT_INTRO)
  let is_distributivity ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DISTRIBUTIVITY)
  let is_and_elimination ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_AND_ELIM)
  let is_or_elimination ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NOT_OR_ELIM)
  let is_rewrite ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REWRITE)
  let is_rewrite_star ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REWRITE_STAR)
  let is_pull_quant ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PULL_QUANT)
  let is_pull_quant_star ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PULL_QUANT_STAR)
  let is_push_quant ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PUSH_QUANT)
  let is_elim_unused_vars ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_ELIM_UNUSED_VARS)
  let is_der ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DER)
  let is_quant_inst ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_QUANT_INST)
  let is_hypothesis ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_HYPOTHESIS)
  let is_lemma ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_LEMMA)
  let is_unit_resolution ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_UNIT_RESOLUTION)
  let is_iff_true ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_TRUE)
  let is_iff_false ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_FALSE)
  let is_commutativity ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_COMMUTATIVITY) (*  *)
  let is_def_axiom ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DEF_AXIOM)
  let is_def_intro ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DEF_INTRO)
  let is_apply_def ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_APPLY_DEF)
  let is_iff_oeq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_OEQ)
  let is_nnf_pos ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_POS)
  let is_nnf_neg ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_NEG)
  let is_nnf_star ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_STAR)
  let is_cnf_star ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_CNF_STAR)
  let is_skolemize ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_SKOLEMIZE)
  let is_modus_ponens_oeq ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MODUS_PONENS_OEQ)
  let is_theory_lemma ( x : expr ) = (AST.is_app (Expr.ast_of_expr x)) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TH_LEMMA)
end


module Goal =
struct      
  type goal = z3_native_object

  let create ( ctx : context ) ( no : Z3native.ptr ) = 
    let res : goal = { m_ctx = ctx ;
		       m_n_obj = null ;
		       inc_ref = Z3native.goal_inc_ref ;
		       dec_ref = Z3native.goal_dec_ref } in
    (z3obj_sno res ctx no) ;
    (z3obj_create res) ;
    res
      
  let get_precision ( x : goal ) =
    goal_prec_of_int (Z3native.goal_precision (z3obj_gnc x) (z3obj_gno x))
      
  let is_precise ( x : goal ) =
    (get_precision x) == GOAL_PRECISE
      
  let is_underapproximation ( x : goal ) =
    (get_precision x) == GOAL_UNDER

  let is_overapproximation ( x : goal ) =
    (get_precision x) == GOAL_OVER
      
  let is_garbage ( x : goal ) = 
    (get_precision x) == GOAL_UNDER_OVER
      
  let add ( x : goal ) ( constraints : expr list ) =
    let f e = Z3native.goal_assert (z3obj_gnc x) (z3obj_gno x) (Expr.gno e) in
    ignore (List.map f constraints) ;
    ()
      
  let is_inconsistent ( x : goal ) =
    Z3native.goal_inconsistent (z3obj_gnc x) (z3obj_gno x)

  let get_depth ( x : goal ) = Z3native.goal_depth (z3obj_gnc x) (z3obj_gno x)
    
  let reset ( x : goal ) =  Z3native.goal_reset (z3obj_gnc x) (z3obj_gno x)
    
  let get_size ( x : goal ) = Z3native.goal_size (z3obj_gnc x) (z3obj_gno x)

  let get_formulas ( x : goal ) =
    let n = get_size x in 
    let f i = ((expr_of_ptr (z3obj_gc x) 
		  (Z3native.goal_formula (z3obj_gnc x) (z3obj_gno x) i))) in
    mk_list f n

  let get_num_exprs ( x : goal ) =  Z3native.goal_num_exprs (z3obj_gnc x) (z3obj_gno x)
    
  let is_decided_sat ( x : goal ) = 
    Z3native.goal_is_decided_sat (z3obj_gnc x) (z3obj_gno x)
      
  let is_decided_unsat ( x : goal ) =
    Z3native.goal_is_decided_unsat (z3obj_gnc x) (z3obj_gno x)
      
  let translate ( x : goal ) ( to_ctx : context ) =
    create to_ctx (Z3native.goal_translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx))

  let simplify ( x : goal ) ( p : Params.params option ) =
    let tn = Z3native.mk_tactic (z3obj_gnc x) "simplify" in
    Z3native.tactic_inc_ref (z3obj_gnc x) tn ;
    let arn = match p with
      | None -> Z3native.tactic_apply (z3obj_gnc x) tn (z3obj_gno x) 
      | Some(pn) -> Z3native.tactic_apply_ex (z3obj_gnc x) tn (z3obj_gno x) (z3obj_gno pn)
    in
    Z3native.apply_result_inc_ref (z3obj_gnc x) arn ;
    let sg = Z3native.apply_result_get_num_subgoals (z3obj_gnc x) arn in
    let res = if sg == 0 then 
	raise (Z3native.Exception "No subgoals") 
      else 
	Z3native.apply_result_get_subgoal (z3obj_gnc x) arn 0 in
    Z3native.apply_result_dec_ref (z3obj_gnc x) arn ;
    Z3native.tactic_dec_ref (z3obj_gnc x) tn ;
    create (z3obj_gc x) res

  let mk_goal ( ctx : context ) ( models : bool ) ( unsat_cores : bool ) ( proofs : bool ) = 
    create ctx (Z3native.mk_goal (context_gno ctx) models unsat_cores proofs)

  let to_string ( x : goal ) = Z3native.goal_to_string (z3obj_gnc x) (z3obj_gno x)

  let as_expr ( x : goal ) = 
	let n = get_size x in
	if n = 0 then 
	  (Boolean.mk_true (z3obj_gc x)) 
	else if n = 1 then
	  (List.hd (get_formulas x))
	else
	  (Boolean.mk_and (z3obj_gc x) (get_formulas x))
end  


module Model =
struct
  type model = z3_native_object

  let create ( ctx : context ) ( no : Z3native.ptr ) = 
    let res : model = { m_ctx = ctx ;
			m_n_obj = null ;
			inc_ref = Z3native.model_inc_ref ;
			dec_ref = Z3native.model_dec_ref } in
    (z3obj_sno res ctx no) ;
    (z3obj_create res) ;
    res
      
  module FuncInterp =
  struct
    type func_interp = z3_native_object

    let create ( ctx : context ) ( no : Z3native.ptr ) = 
      let res : func_interp = { m_ctx = ctx ;
				m_n_obj = null ;
				inc_ref = Z3native.func_interp_inc_ref ;
				dec_ref = Z3native.func_interp_dec_ref } in
      (z3obj_sno res ctx no) ;
      (z3obj_create res) ;
      res
	
    module FuncEntry =
    struct	  
      type func_entry = z3_native_object
	  
      let create ( ctx : context ) ( no : Z3native.ptr ) = 
	let res : func_entry = { m_ctx = ctx ;
				 m_n_obj = null ;
				 inc_ref = Z3native.func_entry_inc_ref ;
				 dec_ref = Z3native.func_entry_dec_ref } in
	(z3obj_sno res ctx no) ;
	(z3obj_create res) ;
	res
	  
      let get_value ( x : func_entry ) =
	expr_of_ptr (z3obj_gc x) (Z3native.func_entry_get_value (z3obj_gnc x) (z3obj_gno x))

      let get_num_args ( x : func_entry ) = Z3native.func_entry_get_num_args (z3obj_gnc x) (z3obj_gno x)
	
      let get_args ( x : func_entry ) =
	let n = (get_num_args x) in
	let f i = (expr_of_ptr (z3obj_gc x) (Z3native.func_entry_get_arg (z3obj_gnc x) (z3obj_gno x) i)) in
	mk_list f n
	  
      let to_string ( x : func_entry ) =
	let a = (get_args x) in
	let f c p = (p ^ (Expr.to_string c) ^ ", ") in
	"[" ^ List.fold_right f a ((Expr.to_string (get_value x)) ^ "]")
    end

    let get_num_entries ( x: func_interp ) = Z3native.func_interp_get_num_entries (z3obj_gnc x) (z3obj_gno x)

    let get_entries ( x : func_interp ) =
      let n = (get_num_entries x) in
      let f i = (FuncEntry.create (z3obj_gc x) (Z3native.func_interp_get_entry (z3obj_gnc x) (z3obj_gno x) i)) in
      mk_list f n

    let get_else ( x : func_interp ) = expr_of_ptr (z3obj_gc x) (Z3native.func_interp_get_else (z3obj_gnc x) (z3obj_gno x))

    let get_arity ( x : func_interp ) = Z3native.func_interp_get_arity (z3obj_gnc x) (z3obj_gno x)

    let to_string ( x : func_interp ) =     
      let f c p = (
	let n = (FuncEntry.get_num_args c) in
	p ^ 
	  let g c p = (p ^ (Expr.to_string c) ^ ", ") in
	  (if n > 1 then "[" else "") ^
	    (List.fold_right 
	       g 
	       (FuncEntry.get_args c) 
	       ((if n > 1 then "]" else "") ^ " -> " ^ (Expr.to_string (FuncEntry.get_value c)) ^ ", "))
      ) in
      List.fold_right f (get_entries x) ("else -> " ^ (Expr.to_string (get_else x)) ^ "]")
  end
    
  let get_const_interp ( x : model ) ( f : func_decl ) =
    if (FuncDecl.get_arity f) != 0 ||
      (sort_kind_of_int (Z3native.get_sort_kind (FuncDecl.gnc f) (Z3native.get_range (FuncDecl.gnc f) (FuncDecl.gno f)))) == ARRAY_SORT then
      raise (Z3native.Exception "Non-zero arity functions and arrays have FunctionInterpretations as a model. Use FuncInterp.")
    else
      let np = Z3native.model_get_const_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) in
      if (Z3native.is_null np) then
	None
      else
	Some (expr_of_ptr (z3obj_gc x) np)

  let get_const_interp_e ( x : model ) ( a : expr ) = get_const_interp x (Expr.get_func_decl a)


  let rec get_func_interp ( x : model ) ( f : func_decl ) =
    let sk = (sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc x) (Z3native.get_range (FuncDecl.gnc f) (FuncDecl.gno f)))) in
    if (FuncDecl.get_arity f) == 0 then
      let n = Z3native.model_get_const_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) in      
      if (Z3native.is_null n) then
	None 
      else 
	match sk with
	  | ARRAY_SORT ->	    
	    if not (Z3native.is_as_array (z3obj_gnc x) n) then
	      raise (Z3native.Exception "Argument was not an array constant")
	    else
	      let fd = Z3native.get_as_array_func_decl (z3obj_gnc x) n in
              get_func_interp x (func_decl_of_ptr (z3obj_gc x) fd)
	  | _ -> raise (Z3native.Exception "Constant functions do not have a function interpretation; use ConstInterp");
    else
      let n = (Z3native.model_get_func_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f)) in
      if (Z3native.is_null n) then None else Some (FuncInterp.create (z3obj_gc x) n)
	
  (** The number of constants that have an interpretation in the model. *)
  let get_num_consts ( x : model ) = Z3native.model_get_num_consts (z3obj_gnc x) (z3obj_gno x)
    
  let get_const_decls ( x : model ) = 
    let n = (get_num_consts x) in
    let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_const_decl (z3obj_gnc x) (z3obj_gno x) i) in
    mk_list f n
      
  let get_num_funcs ( x : model ) = Z3native.model_get_num_funcs (z3obj_gnc x) (z3obj_gno x)
    
  let get_func_decls ( x : model ) = 
    let n = (get_num_funcs x) in
    let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_func_decl (z3obj_gnc x) (z3obj_gno x) i) in
    mk_list f n
      
  let get_decls ( x : model ) =
    let n_funcs = (get_num_funcs x) in
    let n_consts = (get_num_consts x ) in
    let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_func_decl (z3obj_gnc x) (z3obj_gno x) i) in
    let g i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_const_decl (z3obj_gnc x) (z3obj_gno x) i) in
    (mk_list f n_funcs) @ (mk_list g n_consts)
      
  let eval ( x : model ) ( t : expr ) ( completion : bool ) =
    let (r, v) = (Z3native.model_eval (z3obj_gnc x) (z3obj_gno x) (Expr.gno t) completion) in
    if not r then
      None
    else
      Some(expr_of_ptr (z3obj_gc x) v)

  let evaluate ( x : model ) ( t : expr ) ( completion : bool ) =
    eval x t completion
      
  let get_num_sorts ( x : model ) = Z3native.model_get_num_sorts (z3obj_gnc x) (z3obj_gno x)
    
  let get_sorts ( x : model ) =
    let n = (get_num_sorts x) in
    let f i = (Sort.sort_of_ptr (z3obj_gc x) (Z3native.model_get_sort (z3obj_gnc x) (z3obj_gno x) i)) in
    mk_list f n

  let sort_universe ( x : model ) ( s : Sort.sort ) =
    let av = AST.ASTVector.create (z3obj_gc x) (Z3native.model_get_sort_universe (z3obj_gnc x) (z3obj_gno x) (Sort.gno s)) in
    (AST.ASTVector.to_expr_list av)

  let to_string ( x : model ) = Z3native.model_to_string (z3obj_gnc x) (z3obj_gno x) 
end


module Probe =
struct
  type probe = z3_native_object     

  let create ( ctx : context ) ( no : Z3native.ptr ) = 
    let res : probe = { m_ctx = ctx ;
			m_n_obj = null ;
			inc_ref = Z3native.probe_inc_ref ;
			dec_ref = Z3native.probe_dec_ref } in
    (z3obj_sno res ctx no) ;
    (z3obj_create res) ;
    res
      

  let apply ( x : probe ) ( g : Goal.goal ) =
    Z3native.probe_apply (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g)

  let get_num_probes ( ctx : context ) =
    Z3native.get_num_probes (context_gno ctx)

  let get_probe_names ( ctx : context ) = 
    let n = (get_num_probes ctx) in
    let f i = (Z3native.get_probe_name (context_gno ctx) i) in
    mk_list f n

  let get_probe_description ( ctx : context ) ( name : string ) =
    Z3native.probe_get_descr (context_gno ctx) name

  let mk_probe ( ctx : context ) ( name : string ) =
    (create ctx (Z3native.mk_probe (context_gno ctx) name))

  let const ( ctx : context ) ( v : float ) = 
    (create ctx (Z3native.probe_const (context_gno ctx) v))

  let lt ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
    (create ctx (Z3native.probe_lt (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))

  let gt ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
    (create ctx (Z3native.probe_gt (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))

  let le ( ctx : context ) ( p1 : probe ) ( p2 : probe ) = 
    (create ctx (Z3native.probe_le (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))

  let ge ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
    (create ctx (Z3native.probe_ge (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))

  let eq ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
    (create ctx (Z3native.probe_eq (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))

  let and_ ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
    (create ctx (Z3native.probe_and (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))

  let or_ ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
    (create ctx (Z3native.probe_or (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))

  let not_ ( ctx : context ) ( p : probe ) =
    (create ctx (Z3native.probe_not (context_gno ctx) (z3obj_gno p)))
end


module Tactic =
struct      
  type tactic = z3_native_object

  let create ( ctx : context ) ( no : Z3native.ptr ) = 
    let res : tactic = { m_ctx = ctx ;
			 m_n_obj = null ;
			 inc_ref = Z3native.tactic_inc_ref ;
			 dec_ref = Z3native.tactic_dec_ref } in
    (z3obj_sno res ctx no) ;
    (z3obj_create res) ;
    res
      
  module ApplyResult =
  struct 
    type apply_result = z3_native_object
	
    let create ( ctx : context ) ( no : Z3native.ptr ) = 
      let res : apply_result = { m_ctx = ctx ;
				 m_n_obj = null ;
				 inc_ref = Z3native.apply_result_inc_ref ;
				 dec_ref = Z3native.apply_result_dec_ref } in
      (z3obj_sno res ctx no) ;
      (z3obj_create res) ;
      res
	
    let get_num_subgoals ( x : apply_result ) =
      Z3native.apply_result_get_num_subgoals (z3obj_gnc x) (z3obj_gno x)
	
    let get_subgoals ( x : apply_result ) =
      let n = (get_num_subgoals x) in
      let f i = Goal.create (z3obj_gc x) (Z3native.apply_result_get_subgoal (z3obj_gnc x) (z3obj_gno x) i) in
      mk_list f n
	
    let get_subgoal ( x : apply_result ) ( i : int ) =
      Goal.create (z3obj_gc x) (Z3native.apply_result_get_subgoal (z3obj_gnc x) (z3obj_gno x) i)
	
    let convert_model ( x : apply_result ) ( i : int ) ( m : Model.model ) =
      Model.create (z3obj_gc x) (Z3native.apply_result_convert_model (z3obj_gnc x) (z3obj_gno x) i (z3obj_gno m))
	
    let to_string ( x : apply_result ) = Z3native.apply_result_to_string (z3obj_gnc x) (z3obj_gno x)
  end

  let get_help ( x : tactic ) = Z3native.tactic_get_help (z3obj_gnc x) (z3obj_gno x)

  let get_param_descrs ( x : tactic ) =
    Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.tactic_get_param_descrs (z3obj_gnc x) (z3obj_gno x))
      
  let apply ( x : tactic ) ( g : Goal.goal ) ( p : Params.params option ) =
    match p with 
      | None -> (ApplyResult.create (z3obj_gc x) (Z3native.tactic_apply (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g)))
      | Some (pn) -> (ApplyResult.create (z3obj_gc x) (Z3native.tactic_apply_ex (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g) (z3obj_gno pn)))

  let get_num_tactics ( ctx : context ) = Z3native.get_num_tactics (context_gno ctx)

  let get_tactic_names ( ctx : context ) =
    let n = (get_num_tactics ctx ) in
    let f i = (Z3native.get_tactic_name (context_gno ctx) i) in
    mk_list f n

  let get_tactic_description ( ctx : context ) ( name : string ) =
    Z3native.tactic_get_descr (context_gno ctx) name

  let mk_tactic ( ctx : context ) ( name : string ) =
    create ctx (Z3native.mk_tactic (context_gno ctx) name)

  let and_then ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) ( ts : tactic list ) =
    let f p c = (match p with 
      | None -> (Some (z3obj_gno c)) 
      | Some(x) -> (Some (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno c) x))) in
    match (List.fold_left f None ts) with
      | None -> 
	create ctx (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2))
      | Some(x) ->
	let o = (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t2) x) in
	create ctx (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t1) o)

  let or_else ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) =
    create ctx (Z3native.tactic_or_else (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2))

  let try_for ( ctx : context ) ( t : tactic ) ( ms : int ) =
    create ctx (Z3native.tactic_try_for (context_gno ctx) (z3obj_gno t) ms)

  let when_ ( ctx : context ) ( p : Probe.probe ) ( t : tactic ) =
    create ctx (Z3native.tactic_when (context_gno ctx) (z3obj_gno p) (z3obj_gno t))

  let cond ( ctx : context ) ( p : Probe.probe ) ( t1 : tactic ) ( t2 : tactic ) =
    create ctx (Z3native.tactic_cond (context_gno ctx) (z3obj_gno p) (z3obj_gno t1) (z3obj_gno t2))

  let repeat ( ctx : context ) ( t : tactic ) ( max : int ) =
    create ctx (Z3native.tactic_repeat (context_gno ctx) (z3obj_gno t) max)

  let skip ( ctx : context ) =
    create ctx (Z3native.tactic_skip (context_gno ctx))

  let fail ( ctx : context ) =
    create ctx (Z3native.tactic_fail (context_gno ctx))

  let fail_if ( ctx : context ) ( p : Probe.probe ) =
    create ctx (Z3native.tactic_fail_if (context_gno ctx) (z3obj_gno p))

  let fail_if_not_decided ( ctx : context ) =
    create ctx (Z3native.tactic_fail_if_not_decided (context_gno ctx))

  let using_params ( ctx : context ) ( t : tactic ) ( p : Params.params ) =
    create ctx (Z3native.tactic_using_params (context_gno ctx) (z3obj_gno t) (z3obj_gno p))

  let with_ ( ctx : context ) ( t : tactic ) ( p : Params.params ) =
    using_params ctx t p

  let par_or ( ctx : context ) ( t : tactic list ) =
    let f e = (z3obj_gno e) in
    create ctx (Z3native.tactic_par_or (context_gno ctx) (List.length t) (Array.of_list (List.map f t)))

  let par_and_then ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) =
    create ctx (Z3native.tactic_par_and_then (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2))

  let interrupt ( ctx : context ) =
    Z3native.interrupt (context_gno ctx)
end


module Statistics =
struct	
  type statistics = z3_native_object

  let create ( ctx : context ) ( no : Z3native.ptr ) = 
    let res : statistics = { m_ctx = ctx ;
			                 m_n_obj = null ;
			                 inc_ref = Z3native.stats_inc_ref ;
			                 dec_ref = Z3native.stats_dec_ref } in
    (z3obj_sno res ctx no) ;
    (z3obj_create res) ;
    res
      

  module Entry =
  struct
    type statistics_entry = { 
	  mutable m_key : string; 
	  mutable m_is_int : bool ; 
	  mutable m_is_float : bool ; 
	  mutable m_int : int ; 
	  mutable m_float : float }
	    
    let create_si k v = 
	  let res : statistics_entry = { 
	    m_key = k ;
	    m_is_int = true ;
	    m_is_float = false ;
	    m_int = v ;
	    m_float = 0.0
	  } in
	  res

    let create_sd k v = 
	  let res : statistics_entry = { 
	    m_key = k ;
	    m_is_int = false ;
	    m_is_float = true ;
	    m_int = 0 ;
	    m_float = v
	  } in
	  res
	    

    let get_key (x : statistics_entry) = x.m_key
    let get_int (x : statistics_entry) = x.m_int	
    let get_float (x : statistics_entry) = x.m_float
    let is_int (x : statistics_entry) = x.m_is_int
    let is_float (x : statistics_entry) = x.m_is_float
    let to_string_value (x : statistics_entry) = 
	  if (is_int x) then
	    string_of_int (get_int x)
	  else if (is_float x) then 
	    string_of_float (get_float x)
	  else
        raise (Z3native.Exception "Unknown statistical entry type")
    let to_string ( x : statistics_entry ) = (get_key x) ^ ": " ^ (to_string_value x)
  end

  let to_string ( x : statistics ) = Z3native.stats_to_string (z3obj_gnc x) (z3obj_gno x)
    
  let get_size ( x : statistics ) = Z3native.stats_size (z3obj_gnc x) (z3obj_gno x)
    
  let get_entries ( x : statistics ) =
    let n = (get_size x ) in
    let f i = (
	  let k = Z3native.stats_get_key (z3obj_gnc x) (z3obj_gno x) i in
	  if (Z3native.stats_is_uint (z3obj_gnc x) (z3obj_gno x) i) then
	    (Entry.create_si k (Z3native.stats_get_uint_value (z3obj_gnc x) (z3obj_gno x) i))
	  else 
	    (Entry.create_sd k (Z3native.stats_get_double_value (z3obj_gnc x) (z3obj_gno x) i))
    ) in
    mk_list f n

  let get_keys ( x : statistics ) =
    let n = (get_size x) in
    let f i = (Z3native.stats_get_key (z3obj_gnc x) (z3obj_gno x) i) in
    mk_list f n
	  
  let get ( x : statistics ) ( key : string ) =
    let f p c = (if ((Entry.get_key c) == key) then (Some c) else p) in
    List.fold_left f None (get_entries x)
end


module Solver =
struct      
  type solver = z3_native_object
  type status = UNSATISFIABLE | UNKNOWN | SATISFIABLE

  let create ( ctx : context ) ( no : Z3native.ptr ) = 
    let res : solver = { m_ctx = ctx ;
			 m_n_obj = null ;
			 inc_ref = Z3native.solver_inc_ref ;
			 dec_ref = Z3native.solver_dec_ref } in
    (z3obj_sno res ctx no) ;
    (z3obj_create res) ;
    res
      
  let string_of_status ( s : status) = match s with
    | UNSATISFIABLE -> "unsatisfiable"
    | SATISFIABLE -> "satisfiable" 
    | _ -> "unknown"

  let get_help ( x : solver ) = Z3native.solver_get_help (z3obj_gnc x) (z3obj_gno x)

  let set_parameters ( x : solver ) ( p : Params.params )=
    Z3native.solver_set_params (z3obj_gnc x) (z3obj_gno x) (z3obj_gno p)

  let get_param_descrs ( x : solver ) =
    Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.solver_get_param_descrs (z3obj_gnc x) (z3obj_gno x))

  let get_num_scopes ( x : solver ) = Z3native.solver_get_num_scopes (z3obj_gnc x) (z3obj_gno x)

  let push ( x : solver ) = Z3native.solver_push (z3obj_gnc x) (z3obj_gno x)

  let pop ( x : solver ) ( n : int ) = Z3native.solver_pop (z3obj_gnc x) (z3obj_gno x) n

  let reset ( x : solver ) = Z3native.solver_reset (z3obj_gnc x) (z3obj_gno x)

  let add ( x : solver ) ( constraints : expr list ) =
    let f e = (Z3native.solver_assert (z3obj_gnc x) (z3obj_gno x) (Expr.gno e)) in
    ignore (List.map f constraints)

  let assert_and_track_l ( x : solver ) ( cs : expr list ) ( ps : expr list ) =
    if ((List.length cs) != (List.length ps)) then
      raise (Z3native.Exception "Argument size mismatch")
    else
      let f a b = (Z3native.solver_assert_and_track (z3obj_gnc x) (z3obj_gno x) (Expr.gno a) (Expr.gno b)) in
      ignore (List.iter2 f cs ps)
	
  let assert_and_track ( x : solver ) ( c : expr ) ( p : expr ) =    
    Z3native.solver_assert_and_track (z3obj_gnc x) (z3obj_gno x) (Expr.gno c) (Expr.gno p)

  let get_num_assertions ( x : solver ) =
    let a = AST.ASTVector.create (z3obj_gc x) (Z3native.solver_get_assertions (z3obj_gnc x) (z3obj_gno x)) in
    (AST.ASTVector.get_size a)

  let get_assertions ( x : solver ) =
    let av = AST.ASTVector.create (z3obj_gc x) (Z3native.solver_get_assertions (z3obj_gnc x) (z3obj_gno x)) in
    (AST.ASTVector.to_expr_list av)

  let check ( x : solver ) ( assumptions : expr list ) =
    let r = 
      if ((List.length assumptions) == 0) then
	lbool_of_int (Z3native.solver_check (z3obj_gnc x) (z3obj_gno x))
      else
	let f x = (Expr.gno x) in
	lbool_of_int (Z3native.solver_check_assumptions (z3obj_gnc x) (z3obj_gno x) (List.length assumptions) (Array.of_list (List.map f assumptions)))
    in
    match r with 
      | L_TRUE -> SATISFIABLE
      | L_FALSE -> UNSATISFIABLE
      | _ -> UNKNOWN
	
  let get_model ( x : solver ) =
    let q = Z3native.solver_get_model (z3obj_gnc x) (z3obj_gno x) in
    if (Z3native.is_null q) then
      None
    else 
      Some (Model.create (z3obj_gc x) q)
	
  let get_proof ( x : solver ) =
    let q = Z3native.solver_get_proof (z3obj_gnc x) (z3obj_gno x) in
    if (Z3native.is_null q) then
      None
    else
      Some (expr_of_ptr (z3obj_gc x) q)
	
  let get_unsat_core ( x : solver ) =
    let av = AST.ASTVector.create (z3obj_gc x) (Z3native.solver_get_unsat_core (z3obj_gnc x) (z3obj_gno x)) in 
    (AST.ASTVector.to_expr_list av)

  let get_reason_unknown ( x : solver ) =  Z3native.solver_get_reason_unknown (z3obj_gnc x) (z3obj_gno x)

  let get_statistics ( x : solver ) =
    (Statistics.create (z3obj_gc x) (Z3native.solver_get_statistics (z3obj_gnc x) (z3obj_gno x)))

  let mk_solver ( ctx : context ) ( logic : Symbol.symbol option ) =
    match logic with
      | None -> (create ctx (Z3native.mk_solver (context_gno ctx)))
      | Some (x) -> (create ctx (Z3native.mk_solver_for_logic (context_gno ctx) (Symbol.gno x)))

  let mk_solver_s ( ctx : context ) ( logic : string ) =
    mk_solver ctx (Some (Symbol.mk_string ctx logic))

  let mk_simple_solver ( ctx : context ) =
    (create ctx (Z3native.mk_simple_solver (context_gno ctx)))

  let mk_solver_t ( ctx : context ) ( t : Tactic.tactic ) = 
    (create ctx (Z3native.mk_solver_from_tactic (context_gno ctx) (z3obj_gno t)))

  let to_string ( x : solver ) = Z3native.solver_to_string (z3obj_gnc x) (z3obj_gno x)
end


module Fixedpoint =
struct
  type fixedpoint = z3_native_object
      
  let create ( ctx : context ) = 
    let res : fixedpoint = { m_ctx = ctx ;
			     m_n_obj = null ;
			     inc_ref = Z3native.fixedpoint_inc_ref ;
			     dec_ref = Z3native.fixedpoint_dec_ref } in
    (z3obj_sno res ctx (Z3native.mk_fixedpoint (context_gno ctx))) ;
    (z3obj_create res) ;
    res
      

  let get_help ( x : fixedpoint ) =
    Z3native.fixedpoint_get_help (z3obj_gnc x) (z3obj_gno x)
      
  let set_params ( x : fixedpoint ) ( p : Params.params )=
    Z3native.fixedpoint_set_params (z3obj_gnc x) (z3obj_gno x) (z3obj_gno p)
      
  let get_param_descrs ( x : fixedpoint ) =
    Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.fixedpoint_get_param_descrs (z3obj_gnc x) (z3obj_gno x))
      
  let add ( x : fixedpoint ) ( constraints : expr list ) =
    let f e = (Z3native.fixedpoint_assert (z3obj_gnc x) (z3obj_gno x) (Expr.gno e)) in
    ignore (List.map f constraints) ;
    ()

  let register_relation ( x : fixedpoint ) ( f : func_decl ) =
    Z3native.fixedpoint_register_relation (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f)
      
  let add_rule ( x : fixedpoint ) ( rule : expr ) ( name : Symbol.symbol option ) =
    match name with 
      | None -> Z3native.fixedpoint_add_rule (z3obj_gnc x) (z3obj_gno x) (Expr.gno rule) null
      | Some(y) -> Z3native.fixedpoint_add_rule (z3obj_gnc x) (z3obj_gno x) (Expr.gno rule) (Symbol.gno y)

  let add_fact ( x : fixedpoint ) ( pred : func_decl ) ( args : int list ) =
    Z3native.fixedpoint_add_fact (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno pred) (List.length args) (Array.of_list args)

  let query ( x : fixedpoint ) ( query : expr ) =
    match (lbool_of_int (Z3native.fixedpoint_query (z3obj_gnc x) (z3obj_gno x) (Expr.gno query))) with
      | L_TRUE -> Solver.SATISFIABLE
      | L_FALSE -> Solver.UNSATISFIABLE
      | _ -> Solver.UNKNOWN

  let query_r ( x : fixedpoint ) ( relations : func_decl list ) =
    let f x = AST.ptr_of_ast (ast_of_func_decl x) in
    match (lbool_of_int (Z3native.fixedpoint_query_relations (z3obj_gnc x) (z3obj_gno x) (List.length relations) (Array.of_list (List.map f relations)))) with
      | L_TRUE -> Solver.SATISFIABLE
      | L_FALSE -> Solver.UNSATISFIABLE
      | _ -> Solver.UNKNOWN
	
  let push ( x : fixedpoint ) =
    Z3native.fixedpoint_push (z3obj_gnc x) (z3obj_gno x)
      
  let pop ( x : fixedpoint ) =
    Z3native.fixedpoint_pop (z3obj_gnc x) (z3obj_gno x)

  let update_rule ( x : fixedpoint ) ( rule : expr ) ( name : Symbol.symbol ) =
    Z3native.fixedpoint_update_rule (z3obj_gnc x) (z3obj_gno x) (Expr.gno rule) (Symbol.gno name)

  let get_answer ( x : fixedpoint ) =
    let q = (Z3native.fixedpoint_get_answer (z3obj_gnc x) (z3obj_gno x)) in
    if (Z3native.is_null q) then
      None
    else
      Some (expr_of_ptr (z3obj_gc x) q)

  let get_reason_unknown ( x : fixedpoint ) =
    Z3native.fixedpoint_get_reason_unknown (z3obj_gnc x) (z3obj_gno x)

  let get_num_levels ( x : fixedpoint ) ( predicate : func_decl ) =
    Z3native.fixedpoint_get_num_levels (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno predicate)

  let get_cover_delta ( x : fixedpoint ) ( level : int ) ( predicate : func_decl ) =
    let q = (Z3native.fixedpoint_get_cover_delta (z3obj_gnc x) (z3obj_gno x) level (FuncDecl.gno predicate)) in
    if (Z3native.is_null q) then
      None
    else
      Some (expr_of_ptr (z3obj_gc x) q)
	
  let add_cover ( x : fixedpoint ) ( level : int ) ( predicate : func_decl ) ( property : expr ) =
    Z3native.fixedpoint_add_cover (z3obj_gnc x) (z3obj_gno x) level (FuncDecl.gno predicate) (Expr.gno property)
      
  let to_string ( x : fixedpoint ) = Z3native.fixedpoint_to_string (z3obj_gnc x) (z3obj_gno x) 0 [||]
    
  let set_predicate_representation ( x : fixedpoint ) ( f : func_decl ) ( kinds : Symbol.symbol list ) =
    Z3native.fixedpoint_set_predicate_representation (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) (List.length kinds) (Symbol.symbol_lton kinds)

  let to_string_q ( x : fixedpoint ) ( queries : expr list ) =
    let f x = Expr.gno x in
    Z3native.fixedpoint_to_string (z3obj_gnc x) (z3obj_gno x) (List.length queries) (Array.of_list (List.map f queries))

  let get_rules ( x : fixedpoint ) = 
    let av = (AST.ASTVector.create (z3obj_gc x) (Z3native.fixedpoint_get_rules (z3obj_gnc x) (z3obj_gno x))) in
    (AST.ASTVector.to_expr_list av)

  let get_assertions ( x : fixedpoint ) = 
    let av = (AST.ASTVector.create (z3obj_gc x) (Z3native.fixedpoint_get_assertions (z3obj_gnc x) (z3obj_gno x))) in
    (AST.ASTVector.to_expr_list av)

  let mk_fixedpoint ( ctx : context ) = create ctx

  let get_statistics ( x : fixedpoint ) =
    let s = Z3native.fixedpoint_get_statistics (z3obj_gnc x) (z3obj_gno x) in
    (Statistics.create (z3obj_gc x) s)

  let parse_string ( x : fixedpoint ) ( s : string ) =
    let av = (AST.ASTVector.create (z3obj_gc x) (Z3native.fixedpoint_from_string (z3obj_gnc x) (z3obj_gno x) s)) in
    (AST.ASTVector.to_expr_list av)

  let parse_file ( x : fixedpoint ) ( filename : string ) =
    let av = (AST.ASTVector.create (z3obj_gc x) (Z3native.fixedpoint_from_file (z3obj_gnc x) (z3obj_gno x) filename)) in
    (AST.ASTVector.to_expr_list av)
end


module SMT =
struct
  let benchmark_to_smtstring ( ctx : context ) ( name : string ) ( logic : string ) ( status : string ) ( attributes : string ) ( assumptions : expr list ) ( formula : expr ) =
    Z3native.benchmark_to_smtlib_string (context_gno ctx) name logic status attributes
      (List.length assumptions) (let f x = Expr.gno (x) in (Array.of_list (List.map f assumptions)))
      (Expr.gno formula)

  let parse_smtlib_string ( ctx : context ) ( str : string ) ( sort_names : Symbol.symbol list ) ( sorts : Sort.sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
    let csn = (List.length sort_names) in
    let cs = (List.length sorts) in
    let cdn = (List.length decl_names) in
    let cd = (List.length decls) in
    if (csn != cs || cdn != cd) then 
      raise (Z3native.Exception "Argument size mismatch")
    else
      Z3native.parse_smtlib_string (context_gno ctx) str 
	    cs 
	    (Symbol.symbol_lton sort_names)
	    (Sort.sort_lton sorts)
	    cd 
	    (Symbol.symbol_lton decl_names)
	    (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))
	
  let parse_smtlib_file ( ctx : context ) ( file_name : string ) ( sort_names : Symbol.symbol list ) ( sorts : Sort.sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
    let csn = (List.length sort_names) in
    let cs = (List.length sorts) in
    let cdn = (List.length decl_names) in
    let cd = (List.length decls) in
    if (csn != cs || cdn != cd) then 
      raise (Z3native.Exception "Argument size mismatch")
    else
      Z3native.parse_smtlib_file (context_gno ctx) file_name
	    cs 
	    (Symbol.symbol_lton sort_names)
	    (Sort.sort_lton sorts)
	    cd 
	    (Symbol.symbol_lton decl_names)
	    (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))
        
  let get_num_smtlib_formulas ( ctx : context ) = Z3native.get_smtlib_num_formulas (context_gno ctx)

  let get_smtlib_formulas ( ctx : context ) =
    let n = (get_num_smtlib_formulas ctx ) in
    let f i =(expr_of_ptr ctx (Z3native.get_smtlib_formula (context_gno ctx) i)) in
    mk_list f n 

  let get_num_smtlib_assumptions ( ctx : context ) = Z3native.get_smtlib_num_assumptions (context_gno ctx)

  let get_smtlib_assumptions ( ctx : context ) =
    let n = (get_num_smtlib_assumptions ctx ) in
    let f i = (expr_of_ptr ctx (Z3native.get_smtlib_assumption (context_gno ctx) i)) in
    mk_list f n

  let get_num_smtlib_decls ( ctx : context ) = Z3native.get_smtlib_num_decls (context_gno ctx)

  let get_smtlib_decls ( ctx : context ) = 
    let n = (get_num_smtlib_decls ctx) in
    let f i = func_decl_of_ptr ctx (Z3native.get_smtlib_decl (context_gno ctx) i) in
    mk_list f n

  let get_num_smtlib_sorts ( ctx : context )  = Z3native.get_smtlib_num_sorts (context_gno ctx)
    
  let get_smtlib_sorts ( ctx : context ) = 
    let n = (get_num_smtlib_sorts ctx) in
    let f i = (Sort.sort_of_ptr ctx (Z3native.get_smtlib_sort (context_gno ctx) i)) in
    mk_list f n

  let parse_smtlib2_string ( ctx : context ) ( str : string ) ( sort_names : Symbol.symbol list ) ( sorts : Sort.sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
    let csn = (List.length sort_names) in
    let cs = (List.length sorts) in
    let cdn = (List.length decl_names) in
    let cd = (List.length decls) in
    if (csn != cs || cdn != cd) then 
      raise (Z3native.Exception "Argument size mismatch")
    else
      (expr_of_ptr ctx (Z3native.parse_smtlib2_string (context_gno ctx) str 
			              cs 
			              (Symbol.symbol_lton sort_names)
			              (Sort.sort_lton sorts)
			              cd 
			              (Symbol.symbol_lton decl_names)
			              (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))))
	    
  let parse_smtlib2_file ( ctx : context ) ( file_name : string ) ( sort_names : Symbol.symbol list ) ( sorts : Sort.sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
    let csn = (List.length sort_names) in
    let cs = (List.length sorts) in
    let cdn = (List.length decl_names) in
    let cd = (List.length decls) in
    if (csn != cs || cdn != cd) then 
      raise (Z3native.Exception "Argument size mismatch")
    else
      (expr_of_ptr ctx (Z3native.parse_smtlib2_string (context_gno ctx) file_name
			              cs 
			              (Symbol.symbol_lton sort_names)
			              (Sort.sort_lton sorts)
			              cd 
			              (Symbol.symbol_lton decl_names)
			              (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))))
end

module Interpolation = 
struct
  let mk_interpolant ( ctx : context ) ( a : expr ) =
    (expr_of_ptr ctx (Z3native.mk_interpolant (context_gno ctx) (Expr.gno a)))
    
  let mk_interpolation_context ( settings : ( string * string ) list ) =
    let cfg = Z3native.mk_config () in
    let f e = (Z3native.set_param_value cfg (fst e) (snd e)) in
    (List.iter f settings) ;
    let v = Z3native.mk_interpolation_context cfg in
    Z3native.del_config(cfg) ;
    Z3native.set_ast_print_mode v (int_of_ast_print_mode PRINT_SMTLIB2_COMPLIANT) ;
    Z3native.set_internal_error_handler v ;
    let res = { m_n_ctx = v; m_n_obj_cnt = 0 } in
    let f = fun o -> dispose_context o in
    Gc.finalise f res;
    res

  let get_interpolant ( ctx : context ) ( pf : expr ) ( pat: expr ) ( p : Params.params ) =
    let av = (AST.ASTVector.create ctx (Z3native.get_interpolant (context_gno ctx) (Expr.gno pf) (Expr.gno pat) (z3obj_gno p))) in
    AST.ASTVector.to_expr_list av
      
  let compute_interpolant ( ctx : context ) ( pat : expr ) ( p : Params.params ) =
    let (r, interp, model) = (Z3native.compute_interpolant (context_gno ctx) (Expr.gno pat) (z3obj_gno p)) in
    let res = (lbool_of_int r) in
    match res with
      | L_TRUE -> (res, None, Some(Model.create ctx model))
      | L_FALSE -> (res, Some((AST.ASTVector.to_expr_list (AST.ASTVector.create ctx interp))), None)
      | _ -> (res, None, None)
       
  let get_interpolation_profile ( ctx : context ) =
    (Z3native.interpolation_profile (context_gno ctx))
      
  let read_interpolation_problem ( ctx : context ) ( filename : string ) =
    let (r, num, cnsts, parents, error, num_theory, theory) = (Z3native.read_interpolation_problem (context_gno ctx) filename) in
    match r with 
      | 0 -> raise (Z3native.Exception "Interpolation problem could not be read.")
      | _ ->
	let f1 i = (expr_of_ptr ctx (Array.get cnsts i)) in
	let f2 i = (Array.get parents i) in
	let f3 i = (expr_of_ptr ctx (Array.get theory i)) in 
	((mk_list f1 num),
	 (mk_list f2 num),
	 (mk_list f3 num_theory))
          
  let check_interpolant ( ctx : context ) ( num : int ) ( cnsts : Expr.expr list ) ( parents : int list ) ( interps : Expr.expr list ) ( num_theory : int ) ( theory : Expr.expr list ) =
    let (r, str) = (Z3native.check_interpolant (context_gno ctx) 
		      num
		      (let f x = Expr.gno x in (Array.of_list (List.map f cnsts)))
		      (Array.of_list parents)
		      (let f x = Expr.gno x in (Array.of_list (List.map f interps)))
		      num_theory
		      (let f x = Expr.gno x in (Array.of_list (List.map f theory)))) in
    match (lbool_of_int r) with
      | L_UNDEF -> raise (Z3native.Exception "Interpolant could not be verified.")
      | L_FALSE -> raise (Z3native.Exception "Interpolant could not be verified.")
      | _ -> ()

  let write_interpolation_problem ( ctx : context ) ( num : int ) ( cnsts : Expr.expr list ) ( parents : int list ) ( filename : string ) ( num_theory : int ) ( theory : Expr.expr list ) =
    (Z3native.write_interpolation_problem (context_gno ctx) num (expr_lton cnsts) (Array.of_list parents) filename num_theory (expr_lton theory)) ;
    ()
end

let set_global_param ( id : string ) ( value : string ) =
  (Z3native.global_param_set id value)

let get_global_param ( id : string ) =
  let (r, v) = (Z3native.global_param_get id) in
  if not r then
    None
  else 
    Some v

let global_param_reset_all =
  Z3native.global_param_reset_all

let toggle_warning_messages ( enabled : bool ) =
  Z3native.toggle_warning_messages enabled

let enable_trace ( tag : string ) =
  (Z3native.enable_trace tag)

let disable_trace ( tag : string ) =
  (Z3native.enable_trace tag)