/usr/lib/ocaml/zarith/z.mli is in libzarith-ocaml-dev 1.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 | (* This file was automatically generated by z_pp.pl from z.mlip *) (**
Integers.
This modules provides arbitrary-precision integers.
Small integers internally use a regular OCaml [int].
When numbers grow too large, we switch transparently to GMP numbers
([mpn] numbers fully allocated on the OCaml heap).
This interface is rather similar to that of [Int32] and [Int64],
with some additional functions provided natively by GMP
(GCD, square root, pop-count, etc.).
This file is part of the Zarith library
http://forge.ocamlcore.org/projects/zarith .
It is distributed under LGPL 2 licensing, with static linking exception.
See the LICENSE file included in the distribution.
Copyright (c) 2010-2011 Antoine Miné, Abstraction project.
Abstraction is part of the LIENS (Laboratoire d'Informatique de l'ENS),
a joint laboratory by:
CNRS (Centre national de la recherche scientifique, France),
ENS (École normale supérieure, Paris, France),
INRIA Rocquencourt (Institut national de recherche en informatique, France).
*)
(** {1 Toplevel} *)
(** For an optimal experience with the [ocaml] interactive toplevel,
the magic commands are:
{[
#load "zarith.cma";;
#install_printer Z.pp_print;;
]}
*)
(** {1 Types} *)
type t
(** Type of integers of arbitrary length. *)
exception Overflow
(** Raised by conversion functions when the value cannot be represented in
the destination type.
*)
(** {1 Construction} *)
val zero: t
(** The number 0. *)
val one: t
(** The number 1. *)
val minus_one: t
(** The number -1. *)
external of_int: int -> t = "ml_z_of_int" "noalloc"
(** Converts from a base integer. *)
external of_int32: int32 -> t = "ml_z_of_int32"
(** Converts from a 32-bit integer. *)
external of_int64: int64 -> t = "ml_z_of_int64"
(** Converts from a 64-bit integer. *)
external of_nativeint: nativeint -> t = "ml_z_of_nativeint"
(** Converts from a native integer. *)
external of_float: float -> t = "ml_z_of_float"
(** Converts from a floating-point value.
The value is truncated.
Raises [Overflow] on infinity and NaN arguments.
*)
val of_string: string -> t
(** Converts a string to an integer.
An optional [-] prefix indicates a negative number, while a [+]
prefix is ignored.
An optional prefix [0x], [0o], or [0b] (following the optional [-]
or [+] prefix) indicates that the number is,
represented, in hexadecimal, octal, or binary, respectively.
Otherwise, base 10 is assumed.
(Unlike C, a lone [0] prefix does not denote octal.)
*)
val of_substring : string -> pos:int -> len:int -> t
(** [of_substring s ~pos ~len] is the same as [of_string (String.sub s
pos len)]
*)
val of_string_base: int -> string -> t
(** Parses a number represented as a string in the specified base,
with optional [-] or [+] prefix.
The base must be between 2 and 16.
*)
external of_substring_base
: int -> string -> pos:int -> len:int -> t
= "ml_z_of_substring_base"
(** [of_substring_base base s ~pos ~len] is the same as [of_string_base
base (String.sub s pos len)]
*)
(** {1 Basic arithmetic operations} *)
external succ: t -> t = "ml_z_succ" "ml_as_z_succ"
(** Returns its argument plus one. *)
external pred: t -> t = "ml_z_pred" "ml_as_z_pred"
(** Returns its argument minus one. *)
external abs: t -> t = "ml_z_abs" "ml_as_z_abs"
(** Absolute value. *)
external neg: t -> t = "ml_z_neg" "ml_as_z_neg"
(** Unary negation. *)
external add: t -> t -> t = "ml_z_add" "ml_as_z_add"
(** Addition. *)
external sub: t -> t -> t = "ml_z_sub" "ml_as_z_sub"
(** Subtraction. *)
external mul: t -> t -> t = "ml_z_mul" "ml_as_z_mul"
(** Multiplication. *)
external div: t -> t -> t = "ml_z_div" "ml_as_z_div"
(** Integer division. The result is truncated towards zero
and obeys the rule of signs.
Raises [Division_by_zero] if the divisor (second argument) is 0.
*)
external rem: t -> t -> t = "ml_z_rem" "ml_as_z_rem"
(** Integer remainder. Can raise a [Division_by_zero].
The result of [rem a b] has the sign of [a], and its absolute value is
strictly smaller than the absolute value of [b].
The result satisfies the equality [a = b * div a b + rem a b].
*)
external div_rem: t -> t -> (t * t) = "ml_z_div_rem"
(** Computes both the integer quotient and the remainder.
[div_rem a b] is equal to [(div a b, rem a b)].
Raises [Division_by_zero] if [b = 0].
*)
external cdiv: t -> t -> t = "ml_z_cdiv"
(** Integer division with rounding towards +oo (ceiling).
Can raise a [Division_by_zero].
*)
external fdiv: t -> t -> t = "ml_z_fdiv"
(** Integer division with rounding towards -oo (floor).
Can raise a [Division_by_zero].
*)
val ediv_rem: t -> t -> (t * t)
(** Euclidean division and remainder. [ediv_rem a b] returns a pair [(q, r)]
such that [a = b * q + r] and [0 <= r < |b|].
Raises [Division_by_zero] if [b = 0].
*)
val ediv: t -> t -> t
(** Euclidean division. [ediv a b] is equal to [fst (ediv_rem a b)].
The result satisfies [0 <= a - b * ediv a b < |b|].
Raises [Division_by_zero] if [b = 0].
*)
val erem: t -> t -> t
(** Euclidean remainder. [erem a b] is equal to [snd (ediv_rem a b)].
The result satisfies [0 <= erem a b < |b|] and
[a = b * ediv a b + erem a b]. Raises [Division_by_zero] if [b = 0].
*)
external divexact: t -> t -> t = "ml_z_divexact" "ml_as_z_divexact"
(** [divexact a b] divides [a] by [b], only producing correct result when the
division is exact, i.e., when [b] evenly divides [a].
It should be faster than general division.
Can raise a [Division_by_zero].
*)
(** {1 Bit-level operations} *)
(** For all bit-level operations, negative numbers are considered in 2's
complement representation, starting with a virtual infinite number of
1s.
*)
external logand: t -> t -> t = "ml_z_logand" "ml_as_z_logand"
(** Bitwise logical and. *)
external logor: t -> t -> t = "ml_z_logor" "ml_as_z_logor"
(** Bitwise logical or. *)
external logxor: t -> t -> t = "ml_z_logxor" "ml_as_z_logxor"
(** Bitwise logical exclusive or. *)
external lognot: t -> t = "ml_z_lognot" "ml_as_z_lognot"
(** Bitwise logical negation.
The identity [lognot a]=[-a-1] always hold.
*)
external shift_left: t -> int -> t = "ml_z_shift_left" "ml_as_z_shift_left"
(** Shifts to the left.
Equivalent to a multiplication by a power of 2.
The second argument must be non-negative.
*)
external shift_right: t -> int -> t = "ml_z_shift_right" "ml_as_z_shift_right"
(** Shifts to the right.
This is an arithmetic shift,
equivalent to a division by a power of 2 with rounding towards -oo.
The second argument must be non-negative.
*)
external shift_right_trunc: t -> int -> t = "ml_z_shift_right_trunc"
(** Shifts to the right, rounding towards 0.
This is equivalent to a division by a power of 2, with truncation.
The second argument must be non-negative.
*)
external numbits: t -> int = "ml_z_numbits" "noalloc"
(** Returns the number of significant bits in the given number.
If [x] is zero, [numbits x] returns 0. Otherwise,
[numbits x] returns a positive integer [n] such that
[2^{n-1} <= |x| < 2^n]. Note that [numbits] is defined
for negative arguments, and that [numbits (-x) = numbits x]. *)
external trailing_zeros: t -> int = "ml_z_trailing_zeros" "noalloc"
(** Returns the number of trailing 0 bits in the given number.
If [x] is zero, [trailing_zeros x] returns [max_int].
Otherwise, [trailing_zeros x] returns a nonnegative integer [n]
which is the largest [n] such that [2^n] divides [x] evenly.
Note that [trailing_zeros] is defined for negative arguments,
and that [trailing_zeros (-x) = trailing_zeros x]. *)
val testbit: t -> int -> bool
(** [testbit x n] return the value of bit number [n] in [x]:
[true] if the bit is 1, [false] if the bit is 0.
Bits are numbered from 0. Raise [Invalid_argument] if [n]
is negative. *)
external popcount: t -> int = "ml_z_popcount"
(** Counts the number of bits set.
Raises [Overflow] for negative arguments, as those have an infinite
number of bits set.
*)
external hamdist: t -> t -> int = "ml_z_hamdist"
(** Counts the number of different bits.
Raises [Overflow] if the arguments have different signs
(in which case the distance is infinite).
*)
(** {1 Conversions} *)
(** Note that, when converting to an integer type that cannot represent the
converted value, an [Overflow] exception is raised.
*)
external to_int: t -> int = "ml_z_to_int"
(** Converts to a base integer. May raise an [Overflow]. *)
external to_int32: t -> int32 = "ml_z_to_int32"
(** Converts to a 32-bit integer. May raise an [Overflow]. *)
external to_int64: t -> int64 = "ml_z_to_int64"
(** Converts to a 64-bit integer. May raise [Overflow]. *)
external to_nativeint: t -> nativeint = "ml_z_to_nativeint"
(** Converts to a native integer. May raise an [Overflow]. *)
val to_float: t -> float
(** Converts to a floating-point value.
This function rounds the given integer according to the current
rounding mode of the processor. In default mode, it returns
the floating-point number nearest to the given integer,
breaking ties by rounding to even. *)
val to_string: t -> string
(** Gives a human-readable, decimal string representation of the argument. *)
external format: string -> t -> string = "ml_z_format"
(** Gives a string representation of the argument in the specified
printf-like format.
The general specification has the following form:
[% \[flags\] \[width\] type]
Where the type actually indicates the base:
- [i], [d], [u]: decimal
- [b]: binary
- [o]: octal
- [x]: lowercase hexadecimal
- [X]: uppercase hexadecimal
Supported flags are:
- [+]: prefix positive numbers with a [+] sign
- space: prefix positive numbers with a space
- [-]: left-justify (default is right justification)
- [0]: pad with zeroes (instead of spaces)
- [#]: alternate formatting (actually, simply output a literal-like prefix: [0x], [0b], [0o])
Unlike the classic [printf], all numbers are signed (even hexadecimal ones),
there is no precision field, and characters that are not part of the format
are simply ignored (and not copied in the output).
*)
external fits_int: t -> bool = "ml_z_fits_int" "noalloc"
(** Whether the argument fits in a regular [int]. *)
external fits_int32: t -> bool = "ml_z_fits_int32" "noalloc"
(** Whether the argument fits in an [int32]. *)
external fits_int64: t -> bool = "ml_z_fits_int64" "noalloc"
(** Whether the argument fits in an [int64]. *)
external fits_nativeint: t -> bool = "ml_z_fits_nativeint" "noalloc"
(** Whether the argument fits in a [nativeint]. *)
(** {1 Printing} *)
val print: t -> unit
(** Prints the argument on the standard output. *)
val output: out_channel -> t -> unit
(** Prints the argument on the specified channel.
Also intended to be used as [%a] format printer in [Printf.printf].
*)
val sprint: unit -> t -> string
(** To be used as [%a] format printer in [Printf.sprintf]. *)
val bprint: Buffer.t -> t -> unit
(** To be used as [%a] format printer in [Printf.bprintf]. *)
val pp_print: Format.formatter -> t -> unit
(** Prints the argument on the specified formatter.
Can be used as [%a] format printer in [Format.printf] and as
argument to [#install_printer] in the top-level.
*)
(** {1 Ordering} *)
external compare: t -> t -> int = "ml_z_compare" "noalloc"
(** Comparison. [compare x y] returns 0 if [x] equals [y],
-1 if [x] is smaller than [y], and 1 if [x] is greater than [y].
Note that Pervasive.compare can be used to compare reliably two integers
only on OCaml 3.12.1 and later versions.
*)
external equal: t -> t -> bool = "ml_z_equal" "noalloc"
(** Equality test. *)
val leq: t -> t -> bool
(** Less than or equal. *)
val geq: t -> t -> bool
(** Greater than or equal. *)
val lt: t -> t -> bool
(** Less than (and not equal). *)
val gt: t -> t -> bool
(** Greater than (and not equal). *)
external sign: t -> int = "ml_z_sign" "noalloc"
(** Returns -1, 0, or 1 when the argument is respectively negative, null, or
positive.
*)
val min: t -> t -> t
(** Returns the minimum of its arguments. *)
val max: t -> t -> t
(** Returns the maximum of its arguments. *)
val is_even: t -> bool
(** Returns true if the argument is even (divisible by 2), false if odd. *)
val is_odd: t -> bool
(** Returns true if the argument is odd, false if even. *)
external hash: t -> int = "ml_z_hash" "noalloc"
(** Hashes a number.
This functions gives the same result as OCaml's polymorphic hashing
function.
The result is consistent with equality: if [a] = [b], then [hash a] =
[hash b].
*)
(** {1 Elementary number theory} *)
external gcd: t -> t -> t = "ml_z_gcd"
(** Greatest common divisor.
The result is always positive.
Raises a [Division_by_zero] is either argument is null.
*)
val gcdext: t -> t -> (t * t * t)
(** [gcd_ext u v] returns [(g,s,t)] where [g] is the greatest common divisor
and [g=us+vt].
[g] is always positive.
Raises a [Division_by_zero] is either argument is null.
*)
val lcm: t -> t -> t
(**
Least common multiple.
The result is always positive.
Raises a [Division_by_zero] is either argument is null.
*)
external powm: t -> t -> t -> t = "ml_z_powm"
(** [powm base exp mod] computes [base]^[exp] modulo [mod].
Negative [exp] are supported, in which case ([base]^-1)^(-[exp]) modulo
[mod] is computed.
However, if [exp] is negative but [base] has no inverse modulo [mod], then
a [Division_by_zero] is raised.
*)
external powm_sec: t -> t -> t -> t = "ml_z_powm_sec"
(** [powm_sec base exp mod] computes [base]^[exp] modulo [mod].
Unlike [Z.powm], this function is designed to take the same time
and have the same cache access patterns for any two same-size
arguments. Used in cryptographic applications, it provides better
resistance to side-channel attacks than [Z.powm].
The exponent [exp] must be positive, and the modulus [mod]
must be odd. Otherwise, [Invalid_arg] is raised. *)
external invert: t -> t -> t = "ml_z_invert"
(** [invert base mod] returns the inverse of [base] modulo [mod].
Raises a [Division_by_zero] if [base] is not invertible modulo [mod].
*)
external probab_prime: t -> int -> int = "ml_z_probab_prime"
(** [probab_prime x r] returns 0 if [x] is definitely composite,
1 if [x] is probably prime, and 2 if [x] is definitely prime.
The [r] argument controls how many Miller-Rabin probabilistic
primality tests are performed (5 to 10 is a reasonable value).
*)
external nextprime: t -> t = "ml_z_nextprime"
(** Returns the next prime greater than the argument.
The result is only prime with very high probability.
*)
(** {1 Powers} *)
external pow: t -> int -> t = "ml_z_pow"
(** [pow base exp] raises [base] to the [exp] power.
[exp] must be non-negative.
Note that only exponents fitting in a machine integer are supported, as
larger exponents would surely make the result's size overflow the
address space.
*)
external sqrt: t -> t = "ml_z_sqrt"
(** Returns the square root. The result is truncated.
Raises an [Invalid_argument] on negative arguments.
*)
external sqrt_rem: t -> (t * t) = "ml_z_sqrt_rem"
(** Returns the square root truncated, and the remainder.
Raises an [Invalid_argument] on negative arguments.
*)
external root: t -> int -> t = "ml_z_root"
(** [root base n] computes the [n]-th root of [exp].
[n] must be non-negative.
*)
external perfect_power: t -> bool = "ml_z_perfect_power"
(** True if the argument has the form [a^b], with [b>1] *)
external perfect_square: t -> bool = "ml_z_perfect_square"
(** True if the argument has the form [a^2]. *)
val log2: t -> int
(** Returns the base-2 logarithm of its argument, rounded down to
an integer. If [x] is positive, [log2 x] returns the largest [n]
such that [2^n <= x]. If [x] is negative or zero, [log2 x] raise
the [Invalid_argument] exception. *)
val log2up: t -> int
(** Returns the base-2 logarithm of its argument, rounded up to
an integer. If [x] is positive, [log2up x] returns the smallest [n]
such that [x <= 2^n]. If [x] is negative or zero, [log2up x] raise
the [Invalid_argument] exception. *)
(** {1 Representation} *)
external size: t -> int = "ml_z_size" "noalloc"
(** Returns the number of machine words used to represent the number. *)
external extract: t -> int -> int -> t = "ml_z_extract"
(** [extract a off len] returns a non-negative number corresponding to bits
[off] to [off]+[len]-1 of [b].
Negative [a] are considered in infinite-length 2's complement
representation.
*)
val signed_extract: t -> int -> int -> t
(** [signed_extract a off len] extracts bits [off] to [off]+[len]-1 of [b],
as [extract] does, then sign-extends bit [len-1] of the result
(that is, bit [off + len - 1] of [a]). The result is between
[- 2{^[len]-1}] (included) and [2{^[len]-1}] excluded,
and equal to [extract a off len] modulo [2{^len}].
*)
external to_bits: t -> string = "ml_z_to_bits"
(** Returns a binary representation of the argument.
The string result should be interpreted as a sequence of bytes,
corresponding to the binary representation of the absolute value of
the argument in little endian ordering.
The sign is not stored in the string.
*)
external of_bits: string -> t = "ml_z_of_bits"
(** Constructs a number from a binary string representation.
The string is interpreted as a sequence of bytes in little endian order,
and the result is always positive.
We have the identity: [of_bits (to_bits x) = abs x].
However, we can have [to_bits (of_bits s) <> s] due to the presence of
trailing zeros in s.
*)
(** {1 Prefix and infix operators} *)
(**
Classic (and less classic) prefix and infix [int] operators are
redefined on [t].
This makes it easy to typeset expressions.
Using OCaml 3.12's local open, you can simply write
[Z.(~$2 + ~$5 * ~$10)].
*)
external (~-): t -> t = "ml_z_neg" "ml_as_z_neg"
(** Negation [neg]. *)
val (~+): t -> t
(** Identity. *)
external (+): t -> t -> t = "ml_z_add" "ml_as_z_add"
(** Addition [add]. *)
external (-): t -> t -> t = "ml_z_sub" "ml_as_z_sub"
(** Subtraction [sub]. *)
external ( * ): t -> t -> t = "ml_z_mul" "ml_as_z_mul"
(** Multiplication [mul]. *)
external (/): t -> t -> t = "ml_z_div" "ml_as_z_div"
(** Truncated division [div]. *)
external (/>): t -> t -> t = "ml_z_cdiv"
(** Ceiling division [cdiv]. *)
external (/<): t -> t -> t = "ml_z_fdiv"
(** Flooring division [fdiv]. *)
external (/|): t -> t -> t = "ml_z_divexact" "ml_as_z_divexact"
(** Exact division [div_exact]. *)
external (mod): t -> t -> t = "ml_z_rem" "ml_as_z_rem"
(** Remainder [rem]. *)
external (land): t -> t -> t = "ml_z_logand" "ml_as_z_logand"
(** Bit-wise logical and [logand]. *)
external (lor): t -> t -> t = "ml_z_logor" "ml_as_z_logor"
(** Bit-wise logical inclusive or [logor]. *)
external (lxor): t -> t -> t = "ml_z_logxor" "ml_as_z_logxor"
(** Bit-wise logical exclusive or [logxor]. *)
external (~!): t -> t = "ml_z_lognot" "ml_as_z_lognot"
(** Bit-wise logical negation [lognot]. *)
external (lsl): t -> int -> t = "ml_z_shift_left" "ml_as_z_shift_left"
(** Bit-wise shift to the left [shift_left]. *)
external (asr): t -> int -> t = "ml_z_shift_right" "ml_as_z_shift_right"
(** Bit-wise shift to the right [shift_right]. *)
external (~$): int -> t = "ml_z_of_int" "noalloc"
(** Conversion from [int] [of_int]. *)
external ( ** ): t -> int -> t = "ml_z_pow"
(** Power [pow]. *)
(** {1 Miscellaneous} *)
val version: string
(** Library version (this file refers to version ["1.4.1"]). *)
|