This file is indexed.

/usr/include/llvm-3.5/llvm/ADT/FoldingSet.h is in llvm-3.5-dev 1:3.5.2-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
//===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a hash set that can be used to remove duplication of nodes
// in a graph.  This code was originally created by Chris Lattner for use with
// SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_FOLDINGSET_H
#define LLVM_ADT_FOLDINGSET_H

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"

namespace llvm {
  class APFloat;
  class APInt;

/// This folding set used for two purposes:
///   1. Given information about a node we want to create, look up the unique
///      instance of the node in the set.  If the node already exists, return
///      it, otherwise return the bucket it should be inserted into.
///   2. Given a node that has already been created, remove it from the set.
///
/// This class is implemented as a single-link chained hash table, where the
/// "buckets" are actually the nodes themselves (the next pointer is in the
/// node).  The last node points back to the bucket to simplify node removal.
///
/// Any node that is to be included in the folding set must be a subclass of
/// FoldingSetNode.  The node class must also define a Profile method used to
/// establish the unique bits of data for the node.  The Profile method is
/// passed a FoldingSetNodeID object which is used to gather the bits.  Just
/// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
/// NOTE: That the folding set does not own the nodes and it is the
/// responsibility of the user to dispose of the nodes.
///
/// Eg.
///    class MyNode : public FoldingSetNode {
///    private:
///      std::string Name;
///      unsigned Value;
///    public:
///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
///       ...
///      void Profile(FoldingSetNodeID &ID) const {
///        ID.AddString(Name);
///        ID.AddInteger(Value);
///      }
///      ...
///    };
///
/// To define the folding set itself use the FoldingSet template;
///
/// Eg.
///    FoldingSet<MyNode> MyFoldingSet;
///
/// Four public methods are available to manipulate the folding set;
///
/// 1) If you have an existing node that you want add to the set but unsure
/// that the node might already exist then call;
///
///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
///
/// If The result is equal to the input then the node has been inserted.
/// Otherwise, the result is the node existing in the folding set, and the
/// input can be discarded (use the result instead.)
///
/// 2) If you are ready to construct a node but want to check if it already
/// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
/// check;
///
///   FoldingSetNodeID ID;
///   ID.AddString(Name);
///   ID.AddInteger(Value);
///   void *InsertPoint;
///
///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
///
/// If found then M with be non-NULL, else InsertPoint will point to where it
/// should be inserted using InsertNode.
///
/// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
/// node with FindNodeOrInsertPos;
///
///    InsertNode(N, InsertPoint);
///
/// 4) Finally, if you want to remove a node from the folding set call;
///
///    bool WasRemoved = RemoveNode(N);
///
/// The result indicates whether the node existed in the folding set.

class FoldingSetNodeID;

//===----------------------------------------------------------------------===//
/// FoldingSetImpl - Implements the folding set functionality.  The main
/// structure is an array of buckets.  Each bucket is indexed by the hash of
/// the nodes it contains.  The bucket itself points to the nodes contained
/// in the bucket via a singly linked list.  The last node in the list points
/// back to the bucket to facilitate node removal.
///
class FoldingSetImpl {
protected:
  /// Buckets - Array of bucket chains.
  ///
  void **Buckets;

  /// NumBuckets - Length of the Buckets array.  Always a power of 2.
  ///
  unsigned NumBuckets;

  /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
  /// is greater than twice the number of buckets.
  unsigned NumNodes;

public:
  explicit FoldingSetImpl(unsigned Log2InitSize = 6);
  virtual ~FoldingSetImpl();

  //===--------------------------------------------------------------------===//
  /// Node - This class is used to maintain the singly linked bucket list in
  /// a folding set.
  ///
  class Node {
  private:
    // NextInFoldingSetBucket - next link in the bucket list.
    void *NextInFoldingSetBucket;

  public:

    Node() : NextInFoldingSetBucket(nullptr) {}

    // Accessors
    void *getNextInBucket() const { return NextInFoldingSetBucket; }
    void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
  };

  /// clear - Remove all nodes from the folding set.
  void clear();

  /// RemoveNode - Remove a node from the folding set, returning true if one
  /// was removed or false if the node was not in the folding set.
  bool RemoveNode(Node *N);

  /// GetOrInsertNode - If there is an existing simple Node exactly
  /// equal to the specified node, return it.  Otherwise, insert 'N' and return
  /// it instead.
  Node *GetOrInsertNode(Node *N);

  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
  /// return it.  If not, return the insertion token that will make insertion
  /// faster.
  Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);

  /// InsertNode - Insert the specified node into the folding set, knowing that
  /// it is not already in the folding set.  InsertPos must be obtained from
  /// FindNodeOrInsertPos.
  void InsertNode(Node *N, void *InsertPos);

  /// InsertNode - Insert the specified node into the folding set, knowing that
  /// it is not already in the folding set.
  void InsertNode(Node *N) {
    Node *Inserted = GetOrInsertNode(N);
    (void)Inserted;
    assert(Inserted == N && "Node already inserted!");
  }

  /// size - Returns the number of nodes in the folding set.
  unsigned size() const { return NumNodes; }

  /// empty - Returns true if there are no nodes in the folding set.
  bool empty() const { return NumNodes == 0; }

private:

  /// GrowHashTable - Double the size of the hash table and rehash everything.
  ///
  void GrowHashTable();

protected:

  /// GetNodeProfile - Instantiations of the FoldingSet template implement
  /// this function to gather data bits for the given node.
  virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
  /// NodeEquals - Instantiations of the FoldingSet template implement
  /// this function to compare the given node with the given ID.
  virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
                          FoldingSetNodeID &TempID) const=0;
  /// ComputeNodeHash - Instantiations of the FoldingSet template implement
  /// this function to compute a hash value for the given node.
  virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
};

//===----------------------------------------------------------------------===//

template<typename T> struct FoldingSetTrait;

/// DefaultFoldingSetTrait - This class provides default implementations
/// for FoldingSetTrait implementations.
///
template<typename T> struct DefaultFoldingSetTrait {
  static void Profile(const T &X, FoldingSetNodeID &ID) {
    X.Profile(ID);
  }
  static void Profile(T &X, FoldingSetNodeID &ID) {
    X.Profile(ID);
  }

  // Equals - Test if the profile for X would match ID, using TempID
  // to compute a temporary ID if necessary. The default implementation
  // just calls Profile and does a regular comparison. Implementations
  // can override this to provide more efficient implementations.
  static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
                            FoldingSetNodeID &TempID);

  // ComputeHash - Compute a hash value for X, using TempID to
  // compute a temporary ID if necessary. The default implementation
  // just calls Profile and does a regular hash computation.
  // Implementations can override this to provide more efficient
  // implementations.
  static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
};

/// FoldingSetTrait - This trait class is used to define behavior of how
/// to "profile" (in the FoldingSet parlance) an object of a given type.
/// The default behavior is to invoke a 'Profile' method on an object, but
/// through template specialization the behavior can be tailored for specific
/// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
/// to FoldingSets that were not originally designed to have that behavior.
template<typename T> struct FoldingSetTrait
  : public DefaultFoldingSetTrait<T> {};

template<typename T, typename Ctx> struct ContextualFoldingSetTrait;

/// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
/// for ContextualFoldingSets.
template<typename T, typename Ctx>
struct DefaultContextualFoldingSetTrait {
  static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
    X.Profile(ID, Context);
  }
  static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
                            FoldingSetNodeID &TempID, Ctx Context);
  static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
                                     Ctx Context);
};

/// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
/// ContextualFoldingSets.
template<typename T, typename Ctx> struct ContextualFoldingSetTrait
  : public DefaultContextualFoldingSetTrait<T, Ctx> {};

//===--------------------------------------------------------------------===//
/// FoldingSetNodeIDRef - This class describes a reference to an interned
/// FoldingSetNodeID, which can be a useful to store node id data rather
/// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
/// is often much larger than necessary, and the possibility of heap
/// allocation means it requires a non-trivial destructor call.
class FoldingSetNodeIDRef {
  const unsigned *Data;
  size_t Size;
public:
  FoldingSetNodeIDRef() : Data(nullptr), Size(0) {}
  FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}

  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
  /// used to lookup the node in the FoldingSetImpl.
  unsigned ComputeHash() const;

  bool operator==(FoldingSetNodeIDRef) const;

  bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }

  /// Used to compare the "ordering" of two nodes as defined by the
  /// profiled bits and their ordering defined by memcmp().
  bool operator<(FoldingSetNodeIDRef) const;

  const unsigned *getData() const { return Data; }
  size_t getSize() const { return Size; }
};

//===--------------------------------------------------------------------===//
/// FoldingSetNodeID - This class is used to gather all the unique data bits of
/// a node.  When all the bits are gathered this class is used to produce a
/// hash value for the node.
///
class FoldingSetNodeID {
  /// Bits - Vector of all the data bits that make the node unique.
  /// Use a SmallVector to avoid a heap allocation in the common case.
  SmallVector<unsigned, 32> Bits;

public:
  FoldingSetNodeID() {}

  FoldingSetNodeID(FoldingSetNodeIDRef Ref)
    : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}

  /// Add* - Add various data types to Bit data.
  ///
  void AddPointer(const void *Ptr);
  void AddInteger(signed I);
  void AddInteger(unsigned I);
  void AddInteger(long I);
  void AddInteger(unsigned long I);
  void AddInteger(long long I);
  void AddInteger(unsigned long long I);
  void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
  void AddString(StringRef String);
  void AddNodeID(const FoldingSetNodeID &ID);

  template <typename T>
  inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }

  /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
  /// object to be used to compute a new profile.
  inline void clear() { Bits.clear(); }

  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
  /// to lookup the node in the FoldingSetImpl.
  unsigned ComputeHash() const;

  /// operator== - Used to compare two nodes to each other.
  ///
  bool operator==(const FoldingSetNodeID &RHS) const;
  bool operator==(const FoldingSetNodeIDRef RHS) const;

  bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
  bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}

  /// Used to compare the "ordering" of two nodes as defined by the
  /// profiled bits and their ordering defined by memcmp().
  bool operator<(const FoldingSetNodeID &RHS) const;
  bool operator<(const FoldingSetNodeIDRef RHS) const;

  /// Intern - Copy this node's data to a memory region allocated from the
  /// given allocator and return a FoldingSetNodeIDRef describing the
  /// interned data.
  FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
};

// Convenience type to hide the implementation of the folding set.
typedef FoldingSetImpl::Node FoldingSetNode;
template<class T> class FoldingSetIterator;
template<class T> class FoldingSetBucketIterator;

// Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
// require the definition of FoldingSetNodeID.
template<typename T>
inline bool
DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
                                  unsigned /*IDHash*/,
                                  FoldingSetNodeID &TempID) {
  FoldingSetTrait<T>::Profile(X, TempID);
  return TempID == ID;
}
template<typename T>
inline unsigned
DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
  FoldingSetTrait<T>::Profile(X, TempID);
  return TempID.ComputeHash();
}
template<typename T, typename Ctx>
inline bool
DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
                                                 const FoldingSetNodeID &ID,
                                                 unsigned /*IDHash*/,
                                                 FoldingSetNodeID &TempID,
                                                 Ctx Context) {
  ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
  return TempID == ID;
}
template<typename T, typename Ctx>
inline unsigned
DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
                                                      FoldingSetNodeID &TempID,
                                                      Ctx Context) {
  ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
  return TempID.ComputeHash();
}

//===----------------------------------------------------------------------===//
/// FoldingSet - This template class is used to instantiate a specialized
/// implementation of the folding set to the node class T.  T must be a
/// subclass of FoldingSetNode and implement a Profile function.
///
template<class T> class FoldingSet : public FoldingSetImpl {
private:
  /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
  /// way to convert nodes into a unique specifier.
  void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
    T *TN = static_cast<T *>(N);
    FoldingSetTrait<T>::Profile(*TN, ID);
  }
  /// NodeEquals - Instantiations may optionally provide a way to compare a
  /// node with a specified ID.
  bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
                  FoldingSetNodeID &TempID) const override {
    T *TN = static_cast<T *>(N);
    return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
  }
  /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
  /// hash value directly from a node.
  unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
    T *TN = static_cast<T *>(N);
    return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
  }

public:
  explicit FoldingSet(unsigned Log2InitSize = 6)
  : FoldingSetImpl(Log2InitSize)
  {}

  typedef FoldingSetIterator<T> iterator;
  iterator begin() { return iterator(Buckets); }
  iterator end() { return iterator(Buckets+NumBuckets); }

  typedef FoldingSetIterator<const T> const_iterator;
  const_iterator begin() const { return const_iterator(Buckets); }
  const_iterator end() const { return const_iterator(Buckets+NumBuckets); }

  typedef FoldingSetBucketIterator<T> bucket_iterator;

  bucket_iterator bucket_begin(unsigned hash) {
    return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
  }

  bucket_iterator bucket_end(unsigned hash) {
    return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
  }

  /// GetOrInsertNode - If there is an existing simple Node exactly
  /// equal to the specified node, return it.  Otherwise, insert 'N' and
  /// return it instead.
  T *GetOrInsertNode(Node *N) {
    return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
  }

  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
  /// return it.  If not, return the insertion token that will make insertion
  /// faster.
  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
  }
};

//===----------------------------------------------------------------------===//
/// ContextualFoldingSet - This template class is a further refinement
/// of FoldingSet which provides a context argument when calling
/// Profile on its nodes.  Currently, that argument is fixed at
/// initialization time.
///
/// T must be a subclass of FoldingSetNode and implement a Profile
/// function with signature
///   void Profile(llvm::FoldingSetNodeID &, Ctx);
template <class T, class Ctx>
class ContextualFoldingSet : public FoldingSetImpl {
  // Unfortunately, this can't derive from FoldingSet<T> because the
  // construction vtable for FoldingSet<T> requires
  // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
  // requires a single-argument T::Profile().

private:
  Ctx Context;

  /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
  /// way to convert nodes into a unique specifier.
  void GetNodeProfile(FoldingSetImpl::Node *N,
                      FoldingSetNodeID &ID) const override {
    T *TN = static_cast<T *>(N);
    ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
  }
  bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID,
                  unsigned IDHash, FoldingSetNodeID &TempID) const override {
    T *TN = static_cast<T *>(N);
    return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
                                                     Context);
  }
  unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
                           FoldingSetNodeID &TempID) const override {
    T *TN = static_cast<T *>(N);
    return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
  }

public:
  explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
  : FoldingSetImpl(Log2InitSize), Context(Context)
  {}

  Ctx getContext() const { return Context; }


  typedef FoldingSetIterator<T> iterator;
  iterator begin() { return iterator(Buckets); }
  iterator end() { return iterator(Buckets+NumBuckets); }

  typedef FoldingSetIterator<const T> const_iterator;
  const_iterator begin() const { return const_iterator(Buckets); }
  const_iterator end() const { return const_iterator(Buckets+NumBuckets); }

  typedef FoldingSetBucketIterator<T> bucket_iterator;

  bucket_iterator bucket_begin(unsigned hash) {
    return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
  }

  bucket_iterator bucket_end(unsigned hash) {
    return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
  }

  /// GetOrInsertNode - If there is an existing simple Node exactly
  /// equal to the specified node, return it.  Otherwise, insert 'N'
  /// and return it instead.
  T *GetOrInsertNode(Node *N) {
    return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
  }

  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it
  /// exists, return it.  If not, return the insertion token that will
  /// make insertion faster.
  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
  }
};

//===----------------------------------------------------------------------===//
/// FoldingSetVectorIterator - This implements an iterator for
/// FoldingSetVector. It is only necessary because FoldingSetIterator provides
/// a value_type of T, while the vector in FoldingSetVector exposes
/// a value_type of T*. Fortunately, FoldingSetIterator doesn't expose very
/// much besides operator* and operator->, so we just wrap the inner vector
/// iterator and perform the extra dereference.
template <class T, class VectorIteratorT>
class FoldingSetVectorIterator {
  // Provide a typedef to workaround the lack of correct injected class name
  // support in older GCCs.
  typedef FoldingSetVectorIterator<T, VectorIteratorT> SelfT;

  VectorIteratorT Iterator;

public:
  FoldingSetVectorIterator(VectorIteratorT I) : Iterator(I) {}

  bool operator==(const SelfT &RHS) const {
    return Iterator == RHS.Iterator;
  }
  bool operator!=(const SelfT &RHS) const {
    return Iterator != RHS.Iterator;
  }

  T &operator*() const { return **Iterator; }

  T *operator->() const { return *Iterator; }

  inline SelfT &operator++() {
    ++Iterator;
    return *this;
  }
  SelfT operator++(int) {
    SelfT tmp = *this;
    ++*this;
    return tmp;
  }
};

//===----------------------------------------------------------------------===//
/// FoldingSetVector - This template class combines a FoldingSet and a vector
/// to provide the interface of FoldingSet but with deterministic iteration
/// order based on the insertion order. T must be a subclass of FoldingSetNode
/// and implement a Profile function.
template <class T, class VectorT = SmallVector<T*, 8> >
class FoldingSetVector {
  FoldingSet<T> Set;
  VectorT Vector;

public:
  explicit FoldingSetVector(unsigned Log2InitSize = 6)
      : Set(Log2InitSize) {
  }

  typedef FoldingSetVectorIterator<T, typename VectorT::iterator> iterator;
  iterator begin() { return Vector.begin(); }
  iterator end()   { return Vector.end(); }

  typedef FoldingSetVectorIterator<const T, typename VectorT::const_iterator>
    const_iterator;
  const_iterator begin() const { return Vector.begin(); }
  const_iterator end()   const { return Vector.end(); }

  /// clear - Remove all nodes from the folding set.
  void clear() { Set.clear(); Vector.clear(); }

  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
  /// return it.  If not, return the insertion token that will make insertion
  /// faster.
  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    return Set.FindNodeOrInsertPos(ID, InsertPos);
  }

  /// GetOrInsertNode - If there is an existing simple Node exactly
  /// equal to the specified node, return it.  Otherwise, insert 'N' and
  /// return it instead.
  T *GetOrInsertNode(T *N) {
    T *Result = Set.GetOrInsertNode(N);
    if (Result == N) Vector.push_back(N);
    return Result;
  }

  /// InsertNode - Insert the specified node into the folding set, knowing that
  /// it is not already in the folding set.  InsertPos must be obtained from
  /// FindNodeOrInsertPos.
  void InsertNode(T *N, void *InsertPos) {
    Set.InsertNode(N, InsertPos);
    Vector.push_back(N);
  }

  /// InsertNode - Insert the specified node into the folding set, knowing that
  /// it is not already in the folding set.
  void InsertNode(T *N) {
    Set.InsertNode(N);
    Vector.push_back(N);
  }

  /// size - Returns the number of nodes in the folding set.
  unsigned size() const { return Set.size(); }

  /// empty - Returns true if there are no nodes in the folding set.
  bool empty() const { return Set.empty(); }
};

//===----------------------------------------------------------------------===//
/// FoldingSetIteratorImpl - This is the common iterator support shared by all
/// folding sets, which knows how to walk the folding set hash table.
class FoldingSetIteratorImpl {
protected:
  FoldingSetNode *NodePtr;
  FoldingSetIteratorImpl(void **Bucket);
  void advance();

public:
  bool operator==(const FoldingSetIteratorImpl &RHS) const {
    return NodePtr == RHS.NodePtr;
  }
  bool operator!=(const FoldingSetIteratorImpl &RHS) const {
    return NodePtr != RHS.NodePtr;
  }
};


template<class T>
class FoldingSetIterator : public FoldingSetIteratorImpl {
public:
  explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}

  T &operator*() const {
    return *static_cast<T*>(NodePtr);
  }

  T *operator->() const {
    return static_cast<T*>(NodePtr);
  }

  inline FoldingSetIterator &operator++() {          // Preincrement
    advance();
    return *this;
  }
  FoldingSetIterator operator++(int) {        // Postincrement
    FoldingSetIterator tmp = *this; ++*this; return tmp;
  }
};

//===----------------------------------------------------------------------===//
/// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
/// shared by all folding sets, which knows how to walk a particular bucket
/// of a folding set hash table.

class FoldingSetBucketIteratorImpl {
protected:
  void *Ptr;

  explicit FoldingSetBucketIteratorImpl(void **Bucket);

  FoldingSetBucketIteratorImpl(void **Bucket, bool)
    : Ptr(Bucket) {}

  void advance() {
    void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
    uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
    Ptr = reinterpret_cast<void*>(x);
  }

public:
  bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
    return Ptr == RHS.Ptr;
  }
  bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
    return Ptr != RHS.Ptr;
  }
};


template<class T>
class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
public:
  explicit FoldingSetBucketIterator(void **Bucket) :
    FoldingSetBucketIteratorImpl(Bucket) {}

  FoldingSetBucketIterator(void **Bucket, bool) :
    FoldingSetBucketIteratorImpl(Bucket, true) {}

  T &operator*() const { return *static_cast<T*>(Ptr); }
  T *operator->() const { return static_cast<T*>(Ptr); }

  inline FoldingSetBucketIterator &operator++() { // Preincrement
    advance();
    return *this;
  }
  FoldingSetBucketIterator operator++(int) {      // Postincrement
    FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
  }
};

//===----------------------------------------------------------------------===//
/// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
/// types in an enclosing object so that they can be inserted into FoldingSets.
template <typename T>
class FoldingSetNodeWrapper : public FoldingSetNode {
  T data;
public:
  explicit FoldingSetNodeWrapper(const T &x) : data(x) {}
  virtual ~FoldingSetNodeWrapper() {}

  template<typename A1>
  explicit FoldingSetNodeWrapper(const A1 &a1)
    : data(a1) {}

  template <typename A1, typename A2>
  explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2)
    : data(a1,a2) {}

  template <typename A1, typename A2, typename A3>
  explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3)
    : data(a1,a2,a3) {}

  template <typename A1, typename A2, typename A3, typename A4>
  explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
                                 const A4 &a4)
    : data(a1,a2,a3,a4) {}

  template <typename A1, typename A2, typename A3, typename A4, typename A5>
  explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
                                 const A4 &a4, const A5 &a5)
  : data(a1,a2,a3,a4,a5) {}


  void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }

  T &getValue() { return data; }
  const T &getValue() const { return data; }

  operator T&() { return data; }
  operator const T&() const { return data; }
};

//===----------------------------------------------------------------------===//
/// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
/// a FoldingSetNodeID value rather than requiring the node to recompute it
/// each time it is needed. This trades space for speed (which can be
/// significant if the ID is long), and it also permits nodes to drop
/// information that would otherwise only be required for recomputing an ID.
class FastFoldingSetNode : public FoldingSetNode {
  FoldingSetNodeID FastID;
protected:
  explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
public:
  void Profile(FoldingSetNodeID &ID) const { 
    ID.AddNodeID(FastID); 
  }
};

//===----------------------------------------------------------------------===//
// Partial specializations of FoldingSetTrait.

template<typename T> struct FoldingSetTrait<T*> {
  static inline void Profile(T *X, FoldingSetNodeID &ID) {
    ID.AddPointer(X);
  }
};
template <typename T1, typename T2>
struct FoldingSetTrait<std::pair<T1, T2>> {
  static inline void Profile(const std::pair<T1, T2> &P,
                             llvm::FoldingSetNodeID &ID) {
    ID.Add(P.first);
    ID.Add(P.second);
  }
};
} // End of namespace llvm.

#endif