This file is indexed.

/usr/include/llvm-3.5/llvm/Analysis/BlockFrequencyInfoImpl.h is in llvm-3.5-dev 1:3.5.2-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Shared implementation of BlockFrequency for IR and Machine Instructions.
// See the documentation below for BlockFrequencyInfoImpl for details.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ScaledNumber.h"
#include "llvm/Support/raw_ostream.h"
#include <deque>
#include <list>
#include <string>
#include <vector>

#define DEBUG_TYPE "block-freq"

namespace llvm {

class BasicBlock;
class BranchProbabilityInfo;
class Function;
class Loop;
class LoopInfo;
class MachineBasicBlock;
class MachineBranchProbabilityInfo;
class MachineFunction;
class MachineLoop;
class MachineLoopInfo;

namespace bfi_detail {

struct IrreducibleGraph;

// This is part of a workaround for a GCC 4.7 crash on lambdas.
template <class BT> struct BlockEdgesAdder;

/// \brief Mass of a block.
///
/// This class implements a sort of fixed-point fraction always between 0.0 and
/// 1.0.  getMass() == UINT64_MAX indicates a value of 1.0.
///
/// Masses can be added and subtracted.  Simple saturation arithmetic is used,
/// so arithmetic operations never overflow or underflow.
///
/// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
/// quite, maximum precision).
///
/// Masses can be scaled by \a BranchProbability at maximum precision.
class BlockMass {
  uint64_t Mass;

public:
  BlockMass() : Mass(0) {}
  explicit BlockMass(uint64_t Mass) : Mass(Mass) {}

  static BlockMass getEmpty() { return BlockMass(); }
  static BlockMass getFull() { return BlockMass(UINT64_MAX); }

  uint64_t getMass() const { return Mass; }

  bool isFull() const { return Mass == UINT64_MAX; }
  bool isEmpty() const { return !Mass; }

  bool operator!() const { return isEmpty(); }

  /// \brief Add another mass.
  ///
  /// Adds another mass, saturating at \a isFull() rather than overflowing.
  BlockMass &operator+=(const BlockMass &X) {
    uint64_t Sum = Mass + X.Mass;
    Mass = Sum < Mass ? UINT64_MAX : Sum;
    return *this;
  }

  /// \brief Subtract another mass.
  ///
  /// Subtracts another mass, saturating at \a isEmpty() rather than
  /// undeflowing.
  BlockMass &operator-=(const BlockMass &X) {
    uint64_t Diff = Mass - X.Mass;
    Mass = Diff > Mass ? 0 : Diff;
    return *this;
  }

  BlockMass &operator*=(const BranchProbability &P) {
    Mass = P.scale(Mass);
    return *this;
  }

  bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
  bool operator!=(const BlockMass &X) const { return Mass != X.Mass; }
  bool operator<=(const BlockMass &X) const { return Mass <= X.Mass; }
  bool operator>=(const BlockMass &X) const { return Mass >= X.Mass; }
  bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
  bool operator>(const BlockMass &X) const { return Mass > X.Mass; }

  /// \brief Convert to scaled number.
  ///
  /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
  /// gives slightly above 0.0.
  ScaledNumber<uint64_t> toScaled() const;

  void dump() const;
  raw_ostream &print(raw_ostream &OS) const;
};

inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
  return BlockMass(L) += R;
}
inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
  return BlockMass(L) -= R;
}
inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
  return BlockMass(L) *= R;
}
inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
  return BlockMass(R) *= L;
}

inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
  return X.print(OS);
}

} // end namespace bfi_detail

template <> struct isPodLike<bfi_detail::BlockMass> {
  static const bool value = true;
};

/// \brief Base class for BlockFrequencyInfoImpl
///
/// BlockFrequencyInfoImplBase has supporting data structures and some
/// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
/// the block type (or that call such algorithms) are skipped here.
///
/// Nevertheless, the majority of the overall algorithm documention lives with
/// BlockFrequencyInfoImpl.  See there for details.
class BlockFrequencyInfoImplBase {
public:
  typedef ScaledNumber<uint64_t> Scaled64;
  typedef bfi_detail::BlockMass BlockMass;

  /// \brief Representative of a block.
  ///
  /// This is a simple wrapper around an index into the reverse-post-order
  /// traversal of the blocks.
  ///
  /// Unlike a block pointer, its order has meaning (location in the
  /// topological sort) and it's class is the same regardless of block type.
  struct BlockNode {
    typedef uint32_t IndexType;
    IndexType Index;

    bool operator==(const BlockNode &X) const { return Index == X.Index; }
    bool operator!=(const BlockNode &X) const { return Index != X.Index; }
    bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
    bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
    bool operator<(const BlockNode &X) const { return Index < X.Index; }
    bool operator>(const BlockNode &X) const { return Index > X.Index; }

    BlockNode() : Index(UINT32_MAX) {}
    BlockNode(IndexType Index) : Index(Index) {}

    bool isValid() const { return Index <= getMaxIndex(); }
    static size_t getMaxIndex() { return UINT32_MAX - 1; }
  };

  /// \brief Stats about a block itself.
  struct FrequencyData {
    Scaled64 Scaled;
    uint64_t Integer;
  };

  /// \brief Data about a loop.
  ///
  /// Contains the data necessary to represent represent a loop as a
  /// pseudo-node once it's packaged.
  struct LoopData {
    typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
    typedef SmallVector<BlockNode, 4> NodeList;
    LoopData *Parent;       ///< The parent loop.
    bool IsPackaged;        ///< Whether this has been packaged.
    uint32_t NumHeaders;    ///< Number of headers.
    ExitMap Exits;          ///< Successor edges (and weights).
    NodeList Nodes;         ///< Header and the members of the loop.
    BlockMass BackedgeMass; ///< Mass returned to loop header.
    BlockMass Mass;
    Scaled64 Scale;

    LoopData(LoopData *Parent, const BlockNode &Header)
        : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header) {}
    template <class It1, class It2>
    LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
             It2 LastOther)
        : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
      NumHeaders = Nodes.size();
      Nodes.insert(Nodes.end(), FirstOther, LastOther);
    }
    bool isHeader(const BlockNode &Node) const {
      if (isIrreducible())
        return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
                                  Node);
      return Node == Nodes[0];
    }
    BlockNode getHeader() const { return Nodes[0]; }
    bool isIrreducible() const { return NumHeaders > 1; }

    NodeList::const_iterator members_begin() const {
      return Nodes.begin() + NumHeaders;
    }
    NodeList::const_iterator members_end() const { return Nodes.end(); }
    iterator_range<NodeList::const_iterator> members() const {
      return make_range(members_begin(), members_end());
    }
  };

  /// \brief Index of loop information.
  struct WorkingData {
    BlockNode Node; ///< This node.
    LoopData *Loop; ///< The loop this block is inside.
    BlockMass Mass; ///< Mass distribution from the entry block.

    WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}

    bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
    bool isDoubleLoopHeader() const {
      return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
             Loop->Parent->isHeader(Node);
    }

    LoopData *getContainingLoop() const {
      if (!isLoopHeader())
        return Loop;
      if (!isDoubleLoopHeader())
        return Loop->Parent;
      return Loop->Parent->Parent;
    }

    /// \brief Resolve a node to its representative.
    ///
    /// Get the node currently representing Node, which could be a containing
    /// loop.
    ///
    /// This function should only be called when distributing mass.  As long as
    /// there are no irreducilbe edges to Node, then it will have complexity
    /// O(1) in this context.
    ///
    /// In general, the complexity is O(L), where L is the number of loop
    /// headers Node has been packaged into.  Since this method is called in
    /// the context of distributing mass, L will be the number of loop headers
    /// an early exit edge jumps out of.
    BlockNode getResolvedNode() const {
      auto L = getPackagedLoop();
      return L ? L->getHeader() : Node;
    }
    LoopData *getPackagedLoop() const {
      if (!Loop || !Loop->IsPackaged)
        return nullptr;
      auto L = Loop;
      while (L->Parent && L->Parent->IsPackaged)
        L = L->Parent;
      return L;
    }

    /// \brief Get the appropriate mass for a node.
    ///
    /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
    /// has been packaged), returns the mass of its pseudo-node.  If it's a
    /// node inside a packaged loop, it returns the loop's mass.
    BlockMass &getMass() {
      if (!isAPackage())
        return Mass;
      if (!isADoublePackage())
        return Loop->Mass;
      return Loop->Parent->Mass;
    }

    /// \brief Has ContainingLoop been packaged up?
    bool isPackaged() const { return getResolvedNode() != Node; }
    /// \brief Has Loop been packaged up?
    bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
    /// \brief Has Loop been packaged up twice?
    bool isADoublePackage() const {
      return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
    }
  };

  /// \brief Unscaled probability weight.
  ///
  /// Probability weight for an edge in the graph (including the
  /// successor/target node).
  ///
  /// All edges in the original function are 32-bit.  However, exit edges from
  /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
  /// space in general.
  ///
  /// In addition to the raw weight amount, Weight stores the type of the edge
  /// in the current context (i.e., the context of the loop being processed).
  /// Is this a local edge within the loop, an exit from the loop, or a
  /// backedge to the loop header?
  struct Weight {
    enum DistType { Local, Exit, Backedge };
    DistType Type;
    BlockNode TargetNode;
    uint64_t Amount;
    Weight() : Type(Local), Amount(0) {}
    Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
        : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
  };

  /// \brief Distribution of unscaled probability weight.
  ///
  /// Distribution of unscaled probability weight to a set of successors.
  ///
  /// This class collates the successor edge weights for later processing.
  ///
  /// \a DidOverflow indicates whether \a Total did overflow while adding to
  /// the distribution.  It should never overflow twice.
  struct Distribution {
    typedef SmallVector<Weight, 4> WeightList;
    WeightList Weights;    ///< Individual successor weights.
    uint64_t Total;        ///< Sum of all weights.
    bool DidOverflow;      ///< Whether \a Total did overflow.

    Distribution() : Total(0), DidOverflow(false) {}
    void addLocal(const BlockNode &Node, uint64_t Amount) {
      add(Node, Amount, Weight::Local);
    }
    void addExit(const BlockNode &Node, uint64_t Amount) {
      add(Node, Amount, Weight::Exit);
    }
    void addBackedge(const BlockNode &Node, uint64_t Amount) {
      add(Node, Amount, Weight::Backedge);
    }

    /// \brief Normalize the distribution.
    ///
    /// Combines multiple edges to the same \a Weight::TargetNode and scales
    /// down so that \a Total fits into 32-bits.
    ///
    /// This is linear in the size of \a Weights.  For the vast majority of
    /// cases, adjacent edge weights are combined by sorting WeightList and
    /// combining adjacent weights.  However, for very large edge lists an
    /// auxiliary hash table is used.
    void normalize();

  private:
    void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
  };

  /// \brief Data about each block.  This is used downstream.
  std::vector<FrequencyData> Freqs;

  /// \brief Loop data: see initializeLoops().
  std::vector<WorkingData> Working;

  /// \brief Indexed information about loops.
  std::list<LoopData> Loops;

  /// \brief Add all edges out of a packaged loop to the distribution.
  ///
  /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
  /// successor edge.
  ///
  /// \return \c true unless there's an irreducible backedge.
  bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
                               Distribution &Dist);

  /// \brief Add an edge to the distribution.
  ///
  /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
  /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
  /// every edge should be a local edge (since all the loops are packaged up).
  ///
  /// \return \c true unless aborted due to an irreducible backedge.
  bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
                 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);

  LoopData &getLoopPackage(const BlockNode &Head) {
    assert(Head.Index < Working.size());
    assert(Working[Head.Index].isLoopHeader());
    return *Working[Head.Index].Loop;
  }

  /// \brief Analyze irreducible SCCs.
  ///
  /// Separate irreducible SCCs from \c G, which is an explict graph of \c
  /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
  /// Insert them into \a Loops before \c Insert.
  ///
  /// \return the \c LoopData nodes representing the irreducible SCCs.
  iterator_range<std::list<LoopData>::iterator>
  analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
                     std::list<LoopData>::iterator Insert);

  /// \brief Update a loop after packaging irreducible SCCs inside of it.
  ///
  /// Update \c OuterLoop.  Before finding irreducible control flow, it was
  /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
  /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
  /// up need to be removed from \a OuterLoop::Nodes.
  void updateLoopWithIrreducible(LoopData &OuterLoop);

  /// \brief Distribute mass according to a distribution.
  ///
  /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
  /// backedges and exits are stored in its entry in Loops.
  ///
  /// Mass is distributed in parallel from two copies of the source mass.
  void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
                      Distribution &Dist);

  /// \brief Compute the loop scale for a loop.
  void computeLoopScale(LoopData &Loop);

  /// \brief Package up a loop.
  void packageLoop(LoopData &Loop);

  /// \brief Unwrap loops.
  void unwrapLoops();

  /// \brief Finalize frequency metrics.
  ///
  /// Calculates final frequencies and cleans up no-longer-needed data
  /// structures.
  void finalizeMetrics();

  /// \brief Clear all memory.
  void clear();

  virtual std::string getBlockName(const BlockNode &Node) const;
  std::string getLoopName(const LoopData &Loop) const;

  virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
  void dump() const { print(dbgs()); }

  Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;

  BlockFrequency getBlockFreq(const BlockNode &Node) const;

  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
  raw_ostream &printBlockFreq(raw_ostream &OS,
                              const BlockFrequency &Freq) const;

  uint64_t getEntryFreq() const {
    assert(!Freqs.empty());
    return Freqs[0].Integer;
  }
  /// \brief Virtual destructor.
  ///
  /// Need a virtual destructor to mask the compiler warning about
  /// getBlockName().
  virtual ~BlockFrequencyInfoImplBase() {}
};

namespace bfi_detail {
template <class BlockT> struct TypeMap {};
template <> struct TypeMap<BasicBlock> {
  typedef BasicBlock BlockT;
  typedef Function FunctionT;
  typedef BranchProbabilityInfo BranchProbabilityInfoT;
  typedef Loop LoopT;
  typedef LoopInfo LoopInfoT;
};
template <> struct TypeMap<MachineBasicBlock> {
  typedef MachineBasicBlock BlockT;
  typedef MachineFunction FunctionT;
  typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
  typedef MachineLoop LoopT;
  typedef MachineLoopInfo LoopInfoT;
};

/// \brief Get the name of a MachineBasicBlock.
///
/// Get the name of a MachineBasicBlock.  It's templated so that including from
/// CodeGen is unnecessary (that would be a layering issue).
///
/// This is used mainly for debug output.  The name is similar to
/// MachineBasicBlock::getFullName(), but skips the name of the function.
template <class BlockT> std::string getBlockName(const BlockT *BB) {
  assert(BB && "Unexpected nullptr");
  auto MachineName = "BB" + Twine(BB->getNumber());
  if (BB->getBasicBlock())
    return (MachineName + "[" + BB->getName() + "]").str();
  return MachineName.str();
}
/// \brief Get the name of a BasicBlock.
template <> inline std::string getBlockName(const BasicBlock *BB) {
  assert(BB && "Unexpected nullptr");
  return BB->getName().str();
}

/// \brief Graph of irreducible control flow.
///
/// This graph is used for determining the SCCs in a loop (or top-level
/// function) that has irreducible control flow.
///
/// During the block frequency algorithm, the local graphs are defined in a
/// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
/// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
/// latter only has successor information.
///
/// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
/// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
/// and it explicitly lists predecessors and successors.  The initialization
/// that relies on \c MachineBasicBlock is defined in the header.
struct IrreducibleGraph {
  typedef BlockFrequencyInfoImplBase BFIBase;

  BFIBase &BFI;

  typedef BFIBase::BlockNode BlockNode;
  struct IrrNode {
    BlockNode Node;
    unsigned NumIn;
    std::deque<const IrrNode *> Edges;
    IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}

    typedef std::deque<const IrrNode *>::const_iterator iterator;
    iterator pred_begin() const { return Edges.begin(); }
    iterator succ_begin() const { return Edges.begin() + NumIn; }
    iterator pred_end() const { return succ_begin(); }
    iterator succ_end() const { return Edges.end(); }
  };
  BlockNode Start;
  const IrrNode *StartIrr;
  std::vector<IrrNode> Nodes;
  SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;

  /// \brief Construct an explicit graph containing irreducible control flow.
  ///
  /// Construct an explicit graph of the control flow in \c OuterLoop (or the
  /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
  /// addBlockEdges to add block successors that have not been packaged into
  /// loops.
  ///
  /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
  /// user of this.
  template <class BlockEdgesAdder>
  IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
                   BlockEdgesAdder addBlockEdges)
      : BFI(BFI), StartIrr(nullptr) {
    initialize(OuterLoop, addBlockEdges);
  }

  template <class BlockEdgesAdder>
  void initialize(const BFIBase::LoopData *OuterLoop,
                  BlockEdgesAdder addBlockEdges);
  void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
  void addNodesInFunction();
  void addNode(const BlockNode &Node) {
    Nodes.emplace_back(Node);
    BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
  }
  void indexNodes();
  template <class BlockEdgesAdder>
  void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
                BlockEdgesAdder addBlockEdges);
  void addEdge(IrrNode &Irr, const BlockNode &Succ,
               const BFIBase::LoopData *OuterLoop);
};
template <class BlockEdgesAdder>
void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
                                  BlockEdgesAdder addBlockEdges) {
  if (OuterLoop) {
    addNodesInLoop(*OuterLoop);
    for (auto N : OuterLoop->Nodes)
      addEdges(N, OuterLoop, addBlockEdges);
  } else {
    addNodesInFunction();
    for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
      addEdges(Index, OuterLoop, addBlockEdges);
  }
  StartIrr = Lookup[Start.Index];
}
template <class BlockEdgesAdder>
void IrreducibleGraph::addEdges(const BlockNode &Node,
                                const BFIBase::LoopData *OuterLoop,
                                BlockEdgesAdder addBlockEdges) {
  auto L = Lookup.find(Node.Index);
  if (L == Lookup.end())
    return;
  IrrNode &Irr = *L->second;
  const auto &Working = BFI.Working[Node.Index];

  if (Working.isAPackage())
    for (const auto &I : Working.Loop->Exits)
      addEdge(Irr, I.first, OuterLoop);
  else
    addBlockEdges(*this, Irr, OuterLoop);
}
}

/// \brief Shared implementation for block frequency analysis.
///
/// This is a shared implementation of BlockFrequencyInfo and
/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
/// blocks.
///
/// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
/// which is called the header.  A given loop, L, can have sub-loops, which are
/// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
/// consists of a single block that does not have a self-edge.)
///
/// In addition to loops, this algorithm has limited support for irreducible
/// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
/// discovered on they fly, and modelled as loops with multiple headers.
///
/// The headers of irreducible sub-SCCs consist of its entry blocks and all
/// nodes that are targets of a backedge within it (excluding backedges within
/// true sub-loops).  Block frequency calculations act as if a block is
/// inserted that intercepts all the edges to the headers.  All backedges and
/// entries point to this block.  Its successors are the headers, which split
/// the frequency evenly.
///
/// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
/// separates mass distribution from loop scaling, and dithers to eliminate
/// probability mass loss.
///
/// The implementation is split between BlockFrequencyInfoImpl, which knows the
/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
/// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
/// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
/// reverse-post order.  This gives two advantages:  it's easy to compare the
/// relative ordering of two nodes, and maps keyed on BlockT can be represented
/// by vectors.
///
/// This algorithm is O(V+E), unless there is irreducible control flow, in
/// which case it's O(V*E) in the worst case.
///
/// These are the main stages:
///
///  0. Reverse post-order traversal (\a initializeRPOT()).
///
///     Run a single post-order traversal and save it (in reverse) in RPOT.
///     All other stages make use of this ordering.  Save a lookup from BlockT
///     to BlockNode (the index into RPOT) in Nodes.
///
///  1. Loop initialization (\a initializeLoops()).
///
///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
///     the algorithm.  In particular, store the immediate members of each loop
///     in reverse post-order.
///
///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
///
///     For each loop (bottom-up), distribute mass through the DAG resulting
///     from ignoring backedges and treating sub-loops as a single pseudo-node.
///     Track the backedge mass distributed to the loop header, and use it to
///     calculate the loop scale (number of loop iterations).  Immediate
///     members that represent sub-loops will already have been visited and
///     packaged into a pseudo-node.
///
///     Distributing mass in a loop is a reverse-post-order traversal through
///     the loop.  Start by assigning full mass to the Loop header.  For each
///     node in the loop:
///
///         - Fetch and categorize the weight distribution for its successors.
///           If this is a packaged-subloop, the weight distribution is stored
///           in \a LoopData::Exits.  Otherwise, fetch it from
///           BranchProbabilityInfo.
///
///         - Each successor is categorized as \a Weight::Local, a local edge
///           within the current loop, \a Weight::Backedge, a backedge to the
///           loop header, or \a Weight::Exit, any successor outside the loop.
///           The weight, the successor, and its category are stored in \a
///           Distribution.  There can be multiple edges to each successor.
///
///         - If there's a backedge to a non-header, there's an irreducible SCC.
///           The usual flow is temporarily aborted.  \a
///           computeIrreducibleMass() finds the irreducible SCCs within the
///           loop, packages them up, and restarts the flow.
///
///         - Normalize the distribution:  scale weights down so that their sum
///           is 32-bits, and coalesce multiple edges to the same node.
///
///         - Distribute the mass accordingly, dithering to minimize mass loss,
///           as described in \a distributeMass().
///
///     Finally, calculate the loop scale from the accumulated backedge mass.
///
///  3. Distribute mass in the function (\a computeMassInFunction()).
///
///     Finally, distribute mass through the DAG resulting from packaging all
///     loops in the function.  This uses the same algorithm as distributing
///     mass in a loop, except that there are no exit or backedge edges.
///
///  4. Unpackage loops (\a unwrapLoops()).
///
///     Initialize each block's frequency to a floating point representation of
///     its mass.
///
///     Visit loops top-down, scaling the frequencies of its immediate members
///     by the loop's pseudo-node's frequency.
///
///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
///
///     Using the min and max frequencies as a guide, translate floating point
///     frequencies to an appropriate range in uint64_t.
///
/// It has some known flaws.
///
///   - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
///     BlockFrequency's 64-bit integer precision.
///
///   - The model of irreducible control flow is a rough approximation.
///
///     Modelling irreducible control flow exactly involves setting up and
///     solving a group of infinite geometric series.  Such precision is
///     unlikely to be worthwhile, since most of our algorithms give up on
///     irreducible control flow anyway.
///
///     Nevertheless, we might find that we need to get closer.  Here's a sort
///     of TODO list for the model with diminishing returns, to be completed as
///     necessary.
///
///       - The headers for the \a LoopData representing an irreducible SCC
///         include non-entry blocks.  When these extra blocks exist, they
///         indicate a self-contained irreducible sub-SCC.  We could treat them
///         as sub-loops, rather than arbitrarily shoving the problematic
///         blocks into the headers of the main irreducible SCC.
///
///       - Backedge frequencies are assumed to be evenly split between the
///         headers of a given irreducible SCC.  Instead, we could track the
///         backedge mass separately for each header, and adjust their relative
///         frequencies.
///
///       - Entry frequencies are assumed to be evenly split between the
///         headers of a given irreducible SCC, which is the only option if we
///         need to compute mass in the SCC before its parent loop.  Instead,
///         we could partially compute mass in the parent loop, and stop when
///         we get to the SCC.  Here, we have the correct ratio of entry
///         masses, which we can use to adjust their relative frequencies.
///         Compute mass in the SCC, and then continue propagation in the
///         parent.
///
///       - We can propagate mass iteratively through the SCC, for some fixed
///         number of iterations.  Each iteration starts by assigning the entry
///         blocks their backedge mass from the prior iteration.  The final
///         mass for each block (and each exit, and the total backedge mass
///         used for computing loop scale) is the sum of all iterations.
///         (Running this until fixed point would "solve" the geometric
///         series by simulation.)
template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
  typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
  typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
  typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
  BranchProbabilityInfoT;
  typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
  typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;

  // This is part of a workaround for a GCC 4.7 crash on lambdas.
  friend struct bfi_detail::BlockEdgesAdder<BT>;

  typedef GraphTraits<const BlockT *> Successor;
  typedef GraphTraits<Inverse<const BlockT *>> Predecessor;

  const BranchProbabilityInfoT *BPI;
  const LoopInfoT *LI;
  const FunctionT *F;

  // All blocks in reverse postorder.
  std::vector<const BlockT *> RPOT;
  DenseMap<const BlockT *, BlockNode> Nodes;

  typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;

  rpot_iterator rpot_begin() const { return RPOT.begin(); }
  rpot_iterator rpot_end() const { return RPOT.end(); }

  size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }

  BlockNode getNode(const rpot_iterator &I) const {
    return BlockNode(getIndex(I));
  }
  BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }

  const BlockT *getBlock(const BlockNode &Node) const {
    assert(Node.Index < RPOT.size());
    return RPOT[Node.Index];
  }

  /// \brief Run (and save) a post-order traversal.
  ///
  /// Saves a reverse post-order traversal of all the nodes in \a F.
  void initializeRPOT();

  /// \brief Initialize loop data.
  ///
  /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
  /// each block to the deepest loop it's in, but we need the inverse.  For each
  /// loop, we store in reverse post-order its "immediate" members, defined as
  /// the header, the headers of immediate sub-loops, and all other blocks in
  /// the loop that are not in sub-loops.
  void initializeLoops();

  /// \brief Propagate to a block's successors.
  ///
  /// In the context of distributing mass through \c OuterLoop, divide the mass
  /// currently assigned to \c Node between its successors.
  ///
  /// \return \c true unless there's an irreducible backedge.
  bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);

  /// \brief Compute mass in a particular loop.
  ///
  /// Assign mass to \c Loop's header, and then for each block in \c Loop in
  /// reverse post-order, distribute mass to its successors.  Only visits nodes
  /// that have not been packaged into sub-loops.
  ///
  /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
  /// \return \c true unless there's an irreducible backedge.
  bool computeMassInLoop(LoopData &Loop);

  /// \brief Try to compute mass in the top-level function.
  ///
  /// Assign mass to the entry block, and then for each block in reverse
  /// post-order, distribute mass to its successors.  Skips nodes that have
  /// been packaged into loops.
  ///
  /// \pre \a computeMassInLoops() has been called.
  /// \return \c true unless there's an irreducible backedge.
  bool tryToComputeMassInFunction();

  /// \brief Compute mass in (and package up) irreducible SCCs.
  ///
  /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
  /// of \c Insert), and call \a computeMassInLoop() on each of them.
  ///
  /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
  ///
  /// \pre \a computeMassInLoop() has been called for each subloop of \c
  /// OuterLoop.
  /// \pre \c Insert points at the the last loop successfully processed by \a
  /// computeMassInLoop().
  /// \pre \c OuterLoop has irreducible SCCs.
  void computeIrreducibleMass(LoopData *OuterLoop,
                              std::list<LoopData>::iterator Insert);

  /// \brief Compute mass in all loops.
  ///
  /// For each loop bottom-up, call \a computeMassInLoop().
  ///
  /// \a computeMassInLoop() aborts (and returns \c false) on loops that
  /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
  /// re-enter \a computeMassInLoop().
  ///
  /// \post \a computeMassInLoop() has returned \c true for every loop.
  void computeMassInLoops();

  /// \brief Compute mass in the top-level function.
  ///
  /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
  /// compute mass in the top-level function.
  ///
  /// \post \a tryToComputeMassInFunction() has returned \c true.
  void computeMassInFunction();

  std::string getBlockName(const BlockNode &Node) const override {
    return bfi_detail::getBlockName(getBlock(Node));
  }

public:
  const FunctionT *getFunction() const { return F; }

  void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
                  const LoopInfoT *LI);
  BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {}

  using BlockFrequencyInfoImplBase::getEntryFreq;
  BlockFrequency getBlockFreq(const BlockT *BB) const {
    return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
  }
  Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
    return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
  }

  /// \brief Print the frequencies for the current function.
  ///
  /// Prints the frequencies for the blocks in the current function.
  ///
  /// Blocks are printed in the natural iteration order of the function, rather
  /// than reverse post-order.  This provides two advantages:  writing -analyze
  /// tests is easier (since blocks come out in source order), and even
  /// unreachable blocks are printed.
  ///
  /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
  /// we need to override it here.
  raw_ostream &print(raw_ostream &OS) const override;
  using BlockFrequencyInfoImplBase::dump;

  using BlockFrequencyInfoImplBase::printBlockFreq;
  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
    return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
  }
};

template <class BT>
void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
                                            const BranchProbabilityInfoT *BPI,
                                            const LoopInfoT *LI) {
  // Save the parameters.
  this->BPI = BPI;
  this->LI = LI;
  this->F = F;

  // Clean up left-over data structures.
  BlockFrequencyInfoImplBase::clear();
  RPOT.clear();
  Nodes.clear();

  // Initialize.
  DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
               << std::string(F->getName().size(), '=') << "\n");
  initializeRPOT();
  initializeLoops();

  // Visit loops in post-order to find thelocal mass distribution, and then do
  // the full function.
  computeMassInLoops();
  computeMassInFunction();
  unwrapLoops();
  finalizeMetrics();
}

template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
  const BlockT *Entry = F->begin();
  RPOT.reserve(F->size());
  std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
  std::reverse(RPOT.begin(), RPOT.end());

  assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
         "More nodes in function than Block Frequency Info supports");

  DEBUG(dbgs() << "reverse-post-order-traversal\n");
  for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
    BlockNode Node = getNode(I);
    DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
    Nodes[*I] = Node;
  }

  Working.reserve(RPOT.size());
  for (size_t Index = 0; Index < RPOT.size(); ++Index)
    Working.emplace_back(Index);
  Freqs.resize(RPOT.size());
}

template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
  DEBUG(dbgs() << "loop-detection\n");
  if (LI->empty())
    return;

  // Visit loops top down and assign them an index.
  std::deque<std::pair<const LoopT *, LoopData *>> Q;
  for (const LoopT *L : *LI)
    Q.emplace_back(L, nullptr);
  while (!Q.empty()) {
    const LoopT *Loop = Q.front().first;
    LoopData *Parent = Q.front().second;
    Q.pop_front();

    BlockNode Header = getNode(Loop->getHeader());
    assert(Header.isValid());

    Loops.emplace_back(Parent, Header);
    Working[Header.Index].Loop = &Loops.back();
    DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");

    for (const LoopT *L : *Loop)
      Q.emplace_back(L, &Loops.back());
  }

  // Visit nodes in reverse post-order and add them to their deepest containing
  // loop.
  for (size_t Index = 0; Index < RPOT.size(); ++Index) {
    // Loop headers have already been mostly mapped.
    if (Working[Index].isLoopHeader()) {
      LoopData *ContainingLoop = Working[Index].getContainingLoop();
      if (ContainingLoop)
        ContainingLoop->Nodes.push_back(Index);
      continue;
    }

    const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
    if (!Loop)
      continue;

    // Add this node to its containing loop's member list.
    BlockNode Header = getNode(Loop->getHeader());
    assert(Header.isValid());
    const auto &HeaderData = Working[Header.Index];
    assert(HeaderData.isLoopHeader());

    Working[Index].Loop = HeaderData.Loop;
    HeaderData.Loop->Nodes.push_back(Index);
    DEBUG(dbgs() << " - loop = " << getBlockName(Header)
                 << ": member = " << getBlockName(Index) << "\n");
  }
}

template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
  // Visit loops with the deepest first, and the top-level loops last.
  for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
    if (computeMassInLoop(*L))
      continue;
    auto Next = std::next(L);
    computeIrreducibleMass(&*L, L.base());
    L = std::prev(Next);
    if (computeMassInLoop(*L))
      continue;
    llvm_unreachable("unhandled irreducible control flow");
  }
}

template <class BT>
bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
  // Compute mass in loop.
  DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");

  if (Loop.isIrreducible()) {
    BlockMass Remaining = BlockMass::getFull();
    for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
      auto &Mass = Working[Loop.Nodes[H].Index].getMass();
      Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
      Remaining -= Mass;
    }
    for (const BlockNode &M : Loop.Nodes)
      if (!propagateMassToSuccessors(&Loop, M))
        llvm_unreachable("unhandled irreducible control flow");
  } else {
    Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
    if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
      llvm_unreachable("irreducible control flow to loop header!?");
    for (const BlockNode &M : Loop.members())
      if (!propagateMassToSuccessors(&Loop, M))
        // Irreducible backedge.
        return false;
  }

  computeLoopScale(Loop);
  packageLoop(Loop);
  return true;
}

template <class BT>
bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
  // Compute mass in function.
  DEBUG(dbgs() << "compute-mass-in-function\n");
  assert(!Working.empty() && "no blocks in function");
  assert(!Working[0].isLoopHeader() && "entry block is a loop header");

  Working[0].getMass() = BlockMass::getFull();
  for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
    // Check for nodes that have been packaged.
    BlockNode Node = getNode(I);
    if (Working[Node.Index].isPackaged())
      continue;

    if (!propagateMassToSuccessors(nullptr, Node))
      return false;
  }
  return true;
}

template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
  if (tryToComputeMassInFunction())
    return;
  computeIrreducibleMass(nullptr, Loops.begin());
  if (tryToComputeMassInFunction())
    return;
  llvm_unreachable("unhandled irreducible control flow");
}

/// \note This should be a lambda, but that crashes GCC 4.7.
namespace bfi_detail {
template <class BT> struct BlockEdgesAdder {
  typedef BT BlockT;
  typedef BlockFrequencyInfoImplBase::LoopData LoopData;
  typedef GraphTraits<const BlockT *> Successor;

  const BlockFrequencyInfoImpl<BT> &BFI;
  explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
      : BFI(BFI) {}
  void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
                  const LoopData *OuterLoop) {
    const BlockT *BB = BFI.RPOT[Irr.Node.Index];
    for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
         I != E; ++I)
      G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
  }
};
}
template <class BT>
void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
    LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
  DEBUG(dbgs() << "analyze-irreducible-in-";
        if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
        else dbgs() << "function\n");

  using namespace bfi_detail;
  // Ideally, addBlockEdges() would be declared here as a lambda, but that
  // crashes GCC 4.7.
  BlockEdgesAdder<BT> addBlockEdges(*this);
  IrreducibleGraph G(*this, OuterLoop, addBlockEdges);

  for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
    computeMassInLoop(L);

  if (!OuterLoop)
    return;
  updateLoopWithIrreducible(*OuterLoop);
}

template <class BT>
bool
BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
                                                      const BlockNode &Node) {
  DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
  // Calculate probability for successors.
  Distribution Dist;
  if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
    assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
    if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
      // Irreducible backedge.
      return false;
  } else {
    const BlockT *BB = getBlock(Node);
    for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
         SI != SE; ++SI)
      // Do not dereference SI, or getEdgeWeight() is linear in the number of
      // successors.
      if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
                     BPI->getEdgeWeight(BB, SI)))
        // Irreducible backedge.
        return false;
  }

  // Distribute mass to successors, saving exit and backedge data in the
  // loop header.
  distributeMass(Node, OuterLoop, Dist);
  return true;
}

template <class BT>
raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
  if (!F)
    return OS;
  OS << "block-frequency-info: " << F->getName() << "\n";
  for (const BlockT &BB : *F)
    OS << " - " << bfi_detail::getBlockName(&BB)
       << ": float = " << getFloatingBlockFreq(&BB)
       << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";

  // Add an extra newline for readability.
  OS << "\n";
  return OS;
}

} // end namespace llvm

#undef DEBUG_TYPE

#endif