This file is indexed.

/usr/include/llvm-3.5/llvm/Analysis/DependenceAnalysis.h is in llvm-3.5-dev 1:3.5.2-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
//===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// DependenceAnalysis is an LLVM pass that analyses dependences between memory
// accesses. Currently, it is an implementation of the approach described in
//
//            Practical Dependence Testing
//            Goff, Kennedy, Tseng
//            PLDI 1991
//
// There's a single entry point that analyzes the dependence between a pair
// of memory references in a function, returning either NULL, for no dependence,
// or a more-or-less detailed description of the dependence between them.
//
// This pass exists to support the DependenceGraph pass. There are two separate
// passes because there's a useful separation of concerns. A dependence exists
// if two conditions are met:
//
//    1) Two instructions reference the same memory location, and
//    2) There is a flow of control leading from one instruction to the other.
//
// DependenceAnalysis attacks the first condition; DependenceGraph will attack
// the second (it's not yet ready).
//
// Please note that this is work in progress and the interface is subject to
// change.
//
// Plausible changes:
//    Return a set of more precise dependences instead of just one dependence
//    summarizing all.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
#define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H

#include "llvm/ADT/SmallBitVector.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"

namespace llvm {
  class AliasAnalysis;
  class Loop;
  class LoopInfo;
  class ScalarEvolution;
  class SCEV;
  class SCEVConstant;
  class raw_ostream;

  /// Dependence - This class represents a dependence between two memory
  /// memory references in a function. It contains minimal information and
  /// is used in the very common situation where the compiler is unable to
  /// determine anything beyond the existence of a dependence; that is, it
  /// represents a confused dependence (see also FullDependence). In most
  /// cases (for output, flow, and anti dependences), the dependence implies
  /// an ordering, where the source must precede the destination; in contrast,
  /// input dependences are unordered.
  ///
  /// When a dependence graph is built, each Dependence will be a member of
  /// the set of predecessor edges for its destination instruction and a set
  /// if successor edges for its source instruction. These sets are represented
  /// as singly-linked lists, with the "next" fields stored in the dependence
  /// itelf.
  class Dependence {
  public:
    Dependence(Instruction *Source,
               Instruction *Destination) :
      Src(Source),
      Dst(Destination),
      NextPredecessor(nullptr),
      NextSuccessor(nullptr) {}
    virtual ~Dependence() {}

    /// Dependence::DVEntry - Each level in the distance/direction vector
    /// has a direction (or perhaps a union of several directions), and
    /// perhaps a distance.
    struct DVEntry {
      enum { NONE = 0,
             LT = 1,
             EQ = 2,
             LE = 3,
             GT = 4,
             NE = 5,
             GE = 6,
             ALL = 7 };
      unsigned char Direction : 3; // Init to ALL, then refine.
      bool Scalar    : 1; // Init to true.
      bool PeelFirst : 1; // Peeling the first iteration will break dependence.
      bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
      bool Splitable : 1; // Splitting the loop will break dependence.
      const SCEV *Distance; // NULL implies no distance available.
      DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
                  PeelLast(false), Splitable(false), Distance(nullptr) { }
    };

    /// getSrc - Returns the source instruction for this dependence.
    ///
    Instruction *getSrc() const { return Src; }

    /// getDst - Returns the destination instruction for this dependence.
    ///
    Instruction *getDst() const { return Dst; }

    /// isInput - Returns true if this is an input dependence.
    ///
    bool isInput() const;

    /// isOutput - Returns true if this is an output dependence.
    ///
    bool isOutput() const;

    /// isFlow - Returns true if this is a flow (aka true) dependence.
    ///
    bool isFlow() const;

    /// isAnti - Returns true if this is an anti dependence.
    ///
    bool isAnti() const;

    /// isOrdered - Returns true if dependence is Output, Flow, or Anti
    ///
    bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }

    /// isUnordered - Returns true if dependence is Input
    ///
    bool isUnordered() const { return isInput(); }

    /// isLoopIndependent - Returns true if this is a loop-independent
    /// dependence.
    virtual bool isLoopIndependent() const { return true; }

    /// isConfused - Returns true if this dependence is confused
    /// (the compiler understands nothing and makes worst-case
    /// assumptions).
    virtual bool isConfused() const { return true; }

    /// isConsistent - Returns true if this dependence is consistent
    /// (occurs every time the source and destination are executed).
    virtual bool isConsistent() const { return false; }

    /// getLevels - Returns the number of common loops surrounding the
    /// source and destination of the dependence.
    virtual unsigned getLevels() const { return 0; }

    /// getDirection - Returns the direction associated with a particular
    /// level.
    virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }

    /// getDistance - Returns the distance (or NULL) associated with a
    /// particular level.
    virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }

    /// isPeelFirst - Returns true if peeling the first iteration from
    /// this loop will break this dependence.
    virtual bool isPeelFirst(unsigned Level) const { return false; }

    /// isPeelLast - Returns true if peeling the last iteration from
    /// this loop will break this dependence.
    virtual bool isPeelLast(unsigned Level) const { return false; }

    /// isSplitable - Returns true if splitting this loop will break
    /// the dependence.
    virtual bool isSplitable(unsigned Level) const { return false; }

    /// isScalar - Returns true if a particular level is scalar; that is,
    /// if no subscript in the source or destination mention the induction
    /// variable associated with the loop at this level.
    virtual bool isScalar(unsigned Level) const;

    /// getNextPredecessor - Returns the value of the NextPredecessor
    /// field.
    const Dependence *getNextPredecessor() const {
      return NextPredecessor;
    }
    
    /// getNextSuccessor - Returns the value of the NextSuccessor
    /// field.
    const Dependence *getNextSuccessor() const {
      return NextSuccessor;
    }
    
    /// setNextPredecessor - Sets the value of the NextPredecessor
    /// field.
    void setNextPredecessor(const Dependence *pred) {
      NextPredecessor = pred;
    }
    
    /// setNextSuccessor - Sets the value of the NextSuccessor
    /// field.
    void setNextSuccessor(const Dependence *succ) {
      NextSuccessor = succ;
    }
    
    /// dump - For debugging purposes, dumps a dependence to OS.
    ///
    void dump(raw_ostream &OS) const;
  private:
    Instruction *Src, *Dst;
    const Dependence *NextPredecessor, *NextSuccessor;
    friend class DependenceAnalysis;
  };


  /// FullDependence - This class represents a dependence between two memory
  /// references in a function. It contains detailed information about the
  /// dependence (direction vectors, etc.) and is used when the compiler is
  /// able to accurately analyze the interaction of the references; that is,
  /// it is not a confused dependence (see Dependence). In most cases
  /// (for output, flow, and anti dependences), the dependence implies an
  /// ordering, where the source must precede the destination; in contrast,
  /// input dependences are unordered.
  class FullDependence : public Dependence {
  public:
    FullDependence(Instruction *Src,
                   Instruction *Dst,
                   bool LoopIndependent,
                   unsigned Levels);
    ~FullDependence() {
      delete[] DV;
    }

    /// isLoopIndependent - Returns true if this is a loop-independent
    /// dependence.
    bool isLoopIndependent() const override { return LoopIndependent; }

    /// isConfused - Returns true if this dependence is confused
    /// (the compiler understands nothing and makes worst-case
    /// assumptions).
    bool isConfused() const override { return false; }

    /// isConsistent - Returns true if this dependence is consistent
    /// (occurs every time the source and destination are executed).
    bool isConsistent() const override { return Consistent; }

    /// getLevels - Returns the number of common loops surrounding the
    /// source and destination of the dependence.
    unsigned getLevels() const override { return Levels; }

    /// getDirection - Returns the direction associated with a particular
    /// level.
    unsigned getDirection(unsigned Level) const override;

    /// getDistance - Returns the distance (or NULL) associated with a
    /// particular level.
    const SCEV *getDistance(unsigned Level) const override;

    /// isPeelFirst - Returns true if peeling the first iteration from
    /// this loop will break this dependence.
    bool isPeelFirst(unsigned Level) const override;

    /// isPeelLast - Returns true if peeling the last iteration from
    /// this loop will break this dependence.
    bool isPeelLast(unsigned Level) const override;

    /// isSplitable - Returns true if splitting the loop will break
    /// the dependence.
    bool isSplitable(unsigned Level) const override;

    /// isScalar - Returns true if a particular level is scalar; that is,
    /// if no subscript in the source or destination mention the induction
    /// variable associated with the loop at this level.
    bool isScalar(unsigned Level) const override;
  private:
    unsigned short Levels;
    bool LoopIndependent;
    bool Consistent; // Init to true, then refine.
    DVEntry *DV;
    friend class DependenceAnalysis;
  };


  /// DependenceAnalysis - This class is the main dependence-analysis driver.
  ///
  class DependenceAnalysis : public FunctionPass {
    void operator=(const DependenceAnalysis &) LLVM_DELETED_FUNCTION;
    DependenceAnalysis(const DependenceAnalysis &) LLVM_DELETED_FUNCTION;
  public:
    /// depends - Tests for a dependence between the Src and Dst instructions.
    /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
    /// FullDependence) with as much information as can be gleaned.
    /// The flag PossiblyLoopIndependent should be set by the caller
    /// if it appears that control flow can reach from Src to Dst
    /// without traversing a loop back edge.
    Dependence *depends(Instruction *Src,
                        Instruction *Dst,
                        bool PossiblyLoopIndependent);

    /// getSplitIteration - Give a dependence that's splittable at some
    /// particular level, return the iteration that should be used to split
    /// the loop.
    ///
    /// Generally, the dependence analyzer will be used to build
    /// a dependence graph for a function (basically a map from instructions
    /// to dependences). Looking for cycles in the graph shows us loops
    /// that cannot be trivially vectorized/parallelized.
    ///
    /// We can try to improve the situation by examining all the dependences
    /// that make up the cycle, looking for ones we can break.
    /// Sometimes, peeling the first or last iteration of a loop will break
    /// dependences, and there are flags for those possibilities.
    /// Sometimes, splitting a loop at some other iteration will do the trick,
    /// and we've got a flag for that case. Rather than waste the space to
    /// record the exact iteration (since we rarely know), we provide
    /// a method that calculates the iteration. It's a drag that it must work
    /// from scratch, but wonderful in that it's possible.
    ///
    /// Here's an example:
    ///
    ///    for (i = 0; i < 10; i++)
    ///        A[i] = ...
    ///        ... = A[11 - i]
    ///
    /// There's a loop-carried flow dependence from the store to the load,
    /// found by the weak-crossing SIV test. The dependence will have a flag,
    /// indicating that the dependence can be broken by splitting the loop.
    /// Calling getSplitIteration will return 5.
    /// Splitting the loop breaks the dependence, like so:
    ///
    ///    for (i = 0; i <= 5; i++)
    ///        A[i] = ...
    ///        ... = A[11 - i]
    ///    for (i = 6; i < 10; i++)
    ///        A[i] = ...
    ///        ... = A[11 - i]
    ///
    /// breaks the dependence and allows us to vectorize/parallelize
    /// both loops.
    const SCEV *getSplitIteration(const Dependence *Dep, unsigned Level);

  private:
    AliasAnalysis *AA;
    ScalarEvolution *SE;
    LoopInfo *LI;
    Function *F;

    /// Subscript - This private struct represents a pair of subscripts from
    /// a pair of potentially multi-dimensional array references. We use a
    /// vector of them to guide subscript partitioning.
    struct Subscript {
      const SCEV *Src;
      const SCEV *Dst;
      enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
      SmallBitVector Loops;
      SmallBitVector GroupLoops;
      SmallBitVector Group;
    };

    struct CoefficientInfo {
      const SCEV *Coeff;
      const SCEV *PosPart;
      const SCEV *NegPart;
      const SCEV *Iterations;
    };

    struct BoundInfo {
      const SCEV *Iterations;
      const SCEV *Upper[8];
      const SCEV *Lower[8];
      unsigned char Direction;
      unsigned char DirSet;
    };

    /// Constraint - This private class represents a constraint, as defined
    /// in the paper
    ///
    ///           Practical Dependence Testing
    ///           Goff, Kennedy, Tseng
    ///           PLDI 1991
    ///
    /// There are 5 kinds of constraint, in a hierarchy.
    ///   1) Any - indicates no constraint, any dependence is possible.
    ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
    ///             representing the dependence equation.
    ///   3) Distance - The value d of the dependence distance;
    ///   4) Point - A point <x, y> representing the dependence from
    ///              iteration x to iteration y.
    ///   5) Empty - No dependence is possible.
    class Constraint {
    private:
      enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
      ScalarEvolution *SE;
      const SCEV *A;
      const SCEV *B;
      const SCEV *C;
      const Loop *AssociatedLoop;
    public:
      /// isEmpty - Return true if the constraint is of kind Empty.
      bool isEmpty() const { return Kind == Empty; }

      /// isPoint - Return true if the constraint is of kind Point.
      bool isPoint() const { return Kind == Point; }

      /// isDistance - Return true if the constraint is of kind Distance.
      bool isDistance() const { return Kind == Distance; }

      /// isLine - Return true if the constraint is of kind Line.
      /// Since Distance's can also be represented as Lines, we also return
      /// true if the constraint is of kind Distance.
      bool isLine() const { return Kind == Line || Kind == Distance; }

      /// isAny - Return true if the constraint is of kind Any;
      bool isAny() const { return Kind == Any; }

      /// getX - If constraint is a point <X, Y>, returns X.
      /// Otherwise assert.
      const SCEV *getX() const;

      /// getY - If constraint is a point <X, Y>, returns Y.
      /// Otherwise assert.
      const SCEV *getY() const;

      /// getA - If constraint is a line AX + BY = C, returns A.
      /// Otherwise assert.
      const SCEV *getA() const;

      /// getB - If constraint is a line AX + BY = C, returns B.
      /// Otherwise assert.
      const SCEV *getB() const;

      /// getC - If constraint is a line AX + BY = C, returns C.
      /// Otherwise assert.
      const SCEV *getC() const;

      /// getD - If constraint is a distance, returns D.
      /// Otherwise assert.
      const SCEV *getD() const;

      /// getAssociatedLoop - Returns the loop associated with this constraint.
      const Loop *getAssociatedLoop() const;

      /// setPoint - Change a constraint to Point.
      void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);

      /// setLine - Change a constraint to Line.
      void setLine(const SCEV *A, const SCEV *B,
                   const SCEV *C, const Loop *CurrentLoop);

      /// setDistance - Change a constraint to Distance.
      void setDistance(const SCEV *D, const Loop *CurrentLoop);

      /// setEmpty - Change a constraint to Empty.
      void setEmpty();

      /// setAny - Change a constraint to Any.
      void setAny(ScalarEvolution *SE);

      /// dump - For debugging purposes. Dumps the constraint
      /// out to OS.
      void dump(raw_ostream &OS) const;
    };


    /// establishNestingLevels - Examines the loop nesting of the Src and Dst
    /// instructions and establishes their shared loops. Sets the variables
    /// CommonLevels, SrcLevels, and MaxLevels.
    /// The source and destination instructions needn't be contained in the same
    /// loop. The routine establishNestingLevels finds the level of most deeply
    /// nested loop that contains them both, CommonLevels. An instruction that's
    /// not contained in a loop is at level = 0. MaxLevels is equal to the level
    /// of the source plus the level of the destination, minus CommonLevels.
    /// This lets us allocate vectors MaxLevels in length, with room for every
    /// distinct loop referenced in both the source and destination subscripts.
    /// The variable SrcLevels is the nesting depth of the source instruction.
    /// It's used to help calculate distinct loops referenced by the destination.
    /// Here's the map from loops to levels:
    ///            0 - unused
    ///            1 - outermost common loop
    ///          ... - other common loops
    /// CommonLevels - innermost common loop
    ///          ... - loops containing Src but not Dst
    ///    SrcLevels - innermost loop containing Src but not Dst
    ///          ... - loops containing Dst but not Src
    ///    MaxLevels - innermost loop containing Dst but not Src
    /// Consider the follow code fragment:
    ///    for (a = ...) {
    ///      for (b = ...) {
    ///        for (c = ...) {
    ///          for (d = ...) {
    ///            A[] = ...;
    ///          }
    ///        }
    ///        for (e = ...) {
    ///          for (f = ...) {
    ///            for (g = ...) {
    ///              ... = A[];
    ///            }
    ///          }
    ///        }
    ///      }
    ///    }
    /// If we're looking at the possibility of a dependence between the store
    /// to A (the Src) and the load from A (the Dst), we'll note that they
    /// have 2 loops in common, so CommonLevels will equal 2 and the direction
    /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
    /// A map from loop names to level indices would look like
    ///     a - 1
    ///     b - 2 = CommonLevels
    ///     c - 3
    ///     d - 4 = SrcLevels
    ///     e - 5
    ///     f - 6
    ///     g - 7 = MaxLevels
    void establishNestingLevels(const Instruction *Src,
                                const Instruction *Dst);

    unsigned CommonLevels, SrcLevels, MaxLevels;

    /// mapSrcLoop - Given one of the loops containing the source, return
    /// its level index in our numbering scheme.
    unsigned mapSrcLoop(const Loop *SrcLoop) const;

    /// mapDstLoop - Given one of the loops containing the destination,
    /// return its level index in our numbering scheme.
    unsigned mapDstLoop(const Loop *DstLoop) const;

    /// isLoopInvariant - Returns true if Expression is loop invariant
    /// in LoopNest.
    bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;

    /// removeMatchingExtensions - Examines a subscript pair.
    /// If the source and destination are identically sign (or zero)
    /// extended, it strips off the extension in an effort to
    /// simplify the actual analysis.
    void removeMatchingExtensions(Subscript *Pair);

    /// collectCommonLoops - Finds the set of loops from the LoopNest that
    /// have a level <= CommonLevels and are referred to by the SCEV Expression.
    void collectCommonLoops(const SCEV *Expression,
                            const Loop *LoopNest,
                            SmallBitVector &Loops) const;

    /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
    /// linear. Collect the set of loops mentioned by Src.
    bool checkSrcSubscript(const SCEV *Src,
                           const Loop *LoopNest,
                           SmallBitVector &Loops);

    /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
    /// linear. Collect the set of loops mentioned by Dst.
    bool checkDstSubscript(const SCEV *Dst,
                           const Loop *LoopNest,
                           SmallBitVector &Loops);

    /// isKnownPredicate - Compare X and Y using the predicate Pred.
    /// Basically a wrapper for SCEV::isKnownPredicate,
    /// but tries harder, especially in the presence of sign and zero
    /// extensions and symbolics.
    bool isKnownPredicate(ICmpInst::Predicate Pred,
                          const SCEV *X,
                          const SCEV *Y) const;

    /// collectUpperBound - All subscripts are the same type (on my machine,
    /// an i64). The loop bound may be a smaller type. collectUpperBound
    /// find the bound, if available, and zero extends it to the Type T.
    /// (I zero extend since the bound should always be >= 0.)
    /// If no upper bound is available, return NULL.
    const SCEV *collectUpperBound(const Loop *l, Type *T) const;

    /// collectConstantUpperBound - Calls collectUpperBound(), then
    /// attempts to cast it to SCEVConstant. If the cast fails,
    /// returns NULL.
    const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;

    /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
    /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
    /// Collects the associated loops in a set.
    Subscript::ClassificationKind classifyPair(const SCEV *Src,
                                           const Loop *SrcLoopNest,
                                           const SCEV *Dst,
                                           const Loop *DstLoopNest,
                                           SmallBitVector &Loops);

    /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
    /// Returns true if any possible dependence is disproved.
    /// If there might be a dependence, returns false.
    /// If the dependence isn't proven to exist,
    /// marks the Result as inconsistent.
    bool testZIV(const SCEV *Src,
                 const SCEV *Dst,
                 FullDependence &Result) const;

    /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
    /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
    /// i and j are induction variables, c1 and c2 are loop invariant,
    /// and a1 and a2 are constant.
    /// Returns true if any possible dependence is disproved.
    /// If there might be a dependence, returns false.
    /// Sets appropriate direction vector entry and, when possible,
    /// the distance vector entry.
    /// If the dependence isn't proven to exist,
    /// marks the Result as inconsistent.
    bool testSIV(const SCEV *Src,
                 const SCEV *Dst,
                 unsigned &Level,
                 FullDependence &Result,
                 Constraint &NewConstraint,
                 const SCEV *&SplitIter) const;

    /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
    /// Things of the form [c1 + a1*i] and [c2 + a2*j]
    /// where i and j are induction variables, c1 and c2 are loop invariant,
    /// and a1 and a2 are constant.
    /// With minor algebra, this test can also be used for things like
    /// [c1 + a1*i + a2*j][c2].
    /// Returns true if any possible dependence is disproved.
    /// If there might be a dependence, returns false.
    /// Marks the Result as inconsistent.
    bool testRDIV(const SCEV *Src,
                  const SCEV *Dst,
                  FullDependence &Result) const;

    /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
    /// Returns true if dependence disproved.
    /// Can sometimes refine direction vectors.
    bool testMIV(const SCEV *Src,
                 const SCEV *Dst,
                 const SmallBitVector &Loops,
                 FullDependence &Result) const;

    /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
    /// for dependence.
    /// Things of the form [c1 + a*i] and [c2 + a*i],
    /// where i is an induction variable, c1 and c2 are loop invariant,
    /// and a is a constant
    /// Returns true if any possible dependence is disproved.
    /// If there might be a dependence, returns false.
    /// Sets appropriate direction and distance.
    bool strongSIVtest(const SCEV *Coeff,
                       const SCEV *SrcConst,
                       const SCEV *DstConst,
                       const Loop *CurrentLoop,
                       unsigned Level,
                       FullDependence &Result,
                       Constraint &NewConstraint) const;

    /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
    /// (Src and Dst) for dependence.
    /// Things of the form [c1 + a*i] and [c2 - a*i],
    /// where i is an induction variable, c1 and c2 are loop invariant,
    /// and a is a constant.
    /// Returns true if any possible dependence is disproved.
    /// If there might be a dependence, returns false.
    /// Sets appropriate direction entry.
    /// Set consistent to false.
    /// Marks the dependence as splitable.
    bool weakCrossingSIVtest(const SCEV *SrcCoeff,
                             const SCEV *SrcConst,
                             const SCEV *DstConst,
                             const Loop *CurrentLoop,
                             unsigned Level,
                             FullDependence &Result,
                             Constraint &NewConstraint,
                             const SCEV *&SplitIter) const;

    /// ExactSIVtest - Tests the SIV subscript pair
    /// (Src and Dst) for dependence.
    /// Things of the form [c1 + a1*i] and [c2 + a2*i],
    /// where i is an induction variable, c1 and c2 are loop invariant,
    /// and a1 and a2 are constant.
    /// Returns true if any possible dependence is disproved.
    /// If there might be a dependence, returns false.
    /// Sets appropriate direction entry.
    /// Set consistent to false.
    bool exactSIVtest(const SCEV *SrcCoeff,
                      const SCEV *DstCoeff,
                      const SCEV *SrcConst,
                      const SCEV *DstConst,
                      const Loop *CurrentLoop,
                      unsigned Level,
                      FullDependence &Result,
                      Constraint &NewConstraint) const;

    /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
    /// (Src and Dst) for dependence.
    /// Things of the form [c1] and [c2 + a*i],
    /// where i is an induction variable, c1 and c2 are loop invariant,
    /// and a is a constant. See also weakZeroDstSIVtest.
    /// Returns true if any possible dependence is disproved.
    /// If there might be a dependence, returns false.
    /// Sets appropriate direction entry.
    /// Set consistent to false.
    /// If loop peeling will break the dependence, mark appropriately.
    bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
                            const SCEV *SrcConst,
                            const SCEV *DstConst,
                            const Loop *CurrentLoop,
                            unsigned Level,
                            FullDependence &Result,
                            Constraint &NewConstraint) const;

    /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
    /// (Src and Dst) for dependence.
    /// Things of the form [c1 + a*i] and [c2],
    /// where i is an induction variable, c1 and c2 are loop invariant,
    /// and a is a constant. See also weakZeroSrcSIVtest.
    /// Returns true if any possible dependence is disproved.
    /// If there might be a dependence, returns false.
    /// Sets appropriate direction entry.
    /// Set consistent to false.
    /// If loop peeling will break the dependence, mark appropriately.
    bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
                            const SCEV *SrcConst,
                            const SCEV *DstConst,
                            const Loop *CurrentLoop,
                            unsigned Level,
                            FullDependence &Result,
                            Constraint &NewConstraint) const;

    /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
    /// Things of the form [c1 + a*i] and [c2 + b*j],
    /// where i and j are induction variable, c1 and c2 are loop invariant,
    /// and a and b are constants.
    /// Returns true if any possible dependence is disproved.
    /// Marks the result as inconsistent.
    /// Works in some cases that symbolicRDIVtest doesn't,
    /// and vice versa.
    bool exactRDIVtest(const SCEV *SrcCoeff,
                       const SCEV *DstCoeff,
                       const SCEV *SrcConst,
                       const SCEV *DstConst,
                       const Loop *SrcLoop,
                       const Loop *DstLoop,
                       FullDependence &Result) const;

    /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
    /// Things of the form [c1 + a*i] and [c2 + b*j],
    /// where i and j are induction variable, c1 and c2 are loop invariant,
    /// and a and b are constants.
    /// Returns true if any possible dependence is disproved.
    /// Marks the result as inconsistent.
    /// Works in some cases that exactRDIVtest doesn't,
    /// and vice versa. Can also be used as a backup for
    /// ordinary SIV tests.
    bool symbolicRDIVtest(const SCEV *SrcCoeff,
                          const SCEV *DstCoeff,
                          const SCEV *SrcConst,
                          const SCEV *DstConst,
                          const Loop *SrcLoop,
                          const Loop *DstLoop) const;

    /// gcdMIVtest - Tests an MIV subscript pair for dependence.
    /// Returns true if any possible dependence is disproved.
    /// Marks the result as inconsistent.
    /// Can sometimes disprove the equal direction for 1 or more loops.
    //  Can handle some symbolics that even the SIV tests don't get,
    /// so we use it as a backup for everything.
    bool gcdMIVtest(const SCEV *Src,
                    const SCEV *Dst,
                    FullDependence &Result) const;

    /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
    /// Returns true if any possible dependence is disproved.
    /// Marks the result as inconsistent.
    /// Computes directions.
    bool banerjeeMIVtest(const SCEV *Src,
                         const SCEV *Dst,
                         const SmallBitVector &Loops,
                         FullDependence &Result) const;

    /// collectCoefficientInfo - Walks through the subscript,
    /// collecting each coefficient, the associated loop bounds,
    /// and recording its positive and negative parts for later use.
    CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
                                      bool SrcFlag,
                                      const SCEV *&Constant) const;

    /// getPositivePart - X^+ = max(X, 0).
    ///
    const SCEV *getPositivePart(const SCEV *X) const;

    /// getNegativePart - X^- = min(X, 0).
    ///
    const SCEV *getNegativePart(const SCEV *X) const;

    /// getLowerBound - Looks through all the bounds info and
    /// computes the lower bound given the current direction settings
    /// at each level.
    const SCEV *getLowerBound(BoundInfo *Bound) const;

    /// getUpperBound - Looks through all the bounds info and
    /// computes the upper bound given the current direction settings
    /// at each level.
    const SCEV *getUpperBound(BoundInfo *Bound) const;

    /// exploreDirections - Hierarchically expands the direction vector
    /// search space, combining the directions of discovered dependences
    /// in the DirSet field of Bound. Returns the number of distinct
    /// dependences discovered. If the dependence is disproved,
    /// it will return 0.
    unsigned exploreDirections(unsigned Level,
                               CoefficientInfo *A,
                               CoefficientInfo *B,
                               BoundInfo *Bound,
                               const SmallBitVector &Loops,
                               unsigned &DepthExpanded,
                               const SCEV *Delta) const;

    /// testBounds - Returns true iff the current bounds are plausible.
    ///
    bool testBounds(unsigned char DirKind,
                    unsigned Level,
                    BoundInfo *Bound,
                    const SCEV *Delta) const;

    /// findBoundsALL - Computes the upper and lower bounds for level K
    /// using the * direction. Records them in Bound.
    void findBoundsALL(CoefficientInfo *A,
                       CoefficientInfo *B,
                       BoundInfo *Bound,
                       unsigned K) const;

    /// findBoundsLT - Computes the upper and lower bounds for level K
    /// using the < direction. Records them in Bound.
    void findBoundsLT(CoefficientInfo *A,
                      CoefficientInfo *B,
                      BoundInfo *Bound,
                      unsigned K) const;

    /// findBoundsGT - Computes the upper and lower bounds for level K
    /// using the > direction. Records them in Bound.
    void findBoundsGT(CoefficientInfo *A,
                      CoefficientInfo *B,
                      BoundInfo *Bound,
                      unsigned K) const;

    /// findBoundsEQ - Computes the upper and lower bounds for level K
    /// using the = direction. Records them in Bound.
    void findBoundsEQ(CoefficientInfo *A,
                      CoefficientInfo *B,
                      BoundInfo *Bound,
                      unsigned K) const;

    /// intersectConstraints - Updates X with the intersection
    /// of the Constraints X and Y. Returns true if X has changed.
    bool intersectConstraints(Constraint *X,
                              const Constraint *Y);

    /// propagate - Review the constraints, looking for opportunities
    /// to simplify a subscript pair (Src and Dst).
    /// Return true if some simplification occurs.
    /// If the simplification isn't exact (that is, if it is conservative
    /// in terms of dependence), set consistent to false.
    bool propagate(const SCEV *&Src,
                   const SCEV *&Dst,
                   SmallBitVector &Loops,
                   SmallVectorImpl<Constraint> &Constraints,
                   bool &Consistent);

    /// propagateDistance - Attempt to propagate a distance
    /// constraint into a subscript pair (Src and Dst).
    /// Return true if some simplification occurs.
    /// If the simplification isn't exact (that is, if it is conservative
    /// in terms of dependence), set consistent to false.
    bool propagateDistance(const SCEV *&Src,
                           const SCEV *&Dst,
                           Constraint &CurConstraint,
                           bool &Consistent);

    /// propagatePoint - Attempt to propagate a point
    /// constraint into a subscript pair (Src and Dst).
    /// Return true if some simplification occurs.
    bool propagatePoint(const SCEV *&Src,
                        const SCEV *&Dst,
                        Constraint &CurConstraint);

    /// propagateLine - Attempt to propagate a line
    /// constraint into a subscript pair (Src and Dst).
    /// Return true if some simplification occurs.
    /// If the simplification isn't exact (that is, if it is conservative
    /// in terms of dependence), set consistent to false.
    bool propagateLine(const SCEV *&Src,
                       const SCEV *&Dst,
                       Constraint &CurConstraint,
                       bool &Consistent);

    /// findCoefficient - Given a linear SCEV,
    /// return the coefficient corresponding to specified loop.
    /// If there isn't one, return the SCEV constant 0.
    /// For example, given a*i + b*j + c*k, returning the coefficient
    /// corresponding to the j loop would yield b.
    const SCEV *findCoefficient(const SCEV *Expr,
                                const Loop *TargetLoop) const;

    /// zeroCoefficient - Given a linear SCEV,
    /// return the SCEV given by zeroing out the coefficient
    /// corresponding to the specified loop.
    /// For example, given a*i + b*j + c*k, zeroing the coefficient
    /// corresponding to the j loop would yield a*i + c*k.
    const SCEV *zeroCoefficient(const SCEV *Expr,
                                const Loop *TargetLoop) const;

    /// addToCoefficient - Given a linear SCEV Expr,
    /// return the SCEV given by adding some Value to the
    /// coefficient corresponding to the specified TargetLoop.
    /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
    /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
    const SCEV *addToCoefficient(const SCEV *Expr,
                                 const Loop *TargetLoop,
                                 const SCEV *Value)  const;

    /// updateDirection - Update direction vector entry
    /// based on the current constraint.
    void updateDirection(Dependence::DVEntry &Level,
                         const Constraint &CurConstraint) const;

    bool tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV,
                        SmallVectorImpl<Subscript> &Pair,
                        const SCEV *ElementSize) const;

  public:
    static char ID; // Class identification, replacement for typeinfo
    DependenceAnalysis() : FunctionPass(ID) {
      initializeDependenceAnalysisPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;
    void releaseMemory() override;
    void getAnalysisUsage(AnalysisUsage &) const override;
    void print(raw_ostream &, const Module * = nullptr) const override;
  }; // class DependenceAnalysis

  /// createDependenceAnalysisPass - This creates an instance of the
  /// DependenceAnalysis pass.
  FunctionPass *createDependenceAnalysisPass();

} // namespace llvm

#endif