/usr/include/llvm-3.5/llvm/Analysis/ScalarEvolutionExpander.h is in llvm-3.5-dev 1:3.5.2-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to generate code from scalar expressions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/ValueHandle.h"
#include <set>
namespace llvm {
class TargetTransformInfo;
/// Return true if the given expression is safe to expand in the sense that
/// all materialized values are safe to speculate.
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
/// SCEVExpander - This class uses information about analyze scalars to
/// rewrite expressions in canonical form.
///
/// Clients should create an instance of this class when rewriting is needed,
/// and destroy it when finished to allow the release of the associated
/// memory.
class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
ScalarEvolution &SE;
// New instructions receive a name to identifies them with the current pass.
const char* IVName;
// InsertedExpressions caches Values for reuse, so must track RAUW.
std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >
InsertedExpressions;
// InsertedValues only flags inserted instructions so needs no RAUW.
std::set<AssertingVH<Value> > InsertedValues;
std::set<AssertingVH<Value> > InsertedPostIncValues;
/// RelevantLoops - A memoization of the "relevant" loop for a given SCEV.
DenseMap<const SCEV *, const Loop *> RelevantLoops;
/// PostIncLoops - Addrecs referring to any of the given loops are expanded
/// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode
/// returns the add instruction that adds one to the phi for {0,+,1}<L>,
/// as opposed to a new phi starting at 1. This is only supported in
/// non-canonical mode.
PostIncLoopSet PostIncLoops;
/// IVIncInsertPos - When this is non-null, addrecs expanded in the
/// loop it indicates should be inserted with increments at
/// IVIncInsertPos.
const Loop *IVIncInsertLoop;
/// IVIncInsertPos - When expanding addrecs in the IVIncInsertLoop loop,
/// insert the IV increment at this position.
Instruction *IVIncInsertPos;
/// Phis that complete an IV chain. Reuse
std::set<AssertingVH<PHINode> > ChainedPhis;
/// CanonicalMode - When true, expressions are expanded in "canonical"
/// form. In particular, addrecs are expanded as arithmetic based on
/// a canonical induction variable. When false, expression are expanded
/// in a more literal form.
bool CanonicalMode;
/// When invoked from LSR, the expander is in "strength reduction" mode. The
/// only difference is that phi's are only reused if they are already in
/// "expanded" form.
bool LSRMode;
typedef IRBuilder<true, TargetFolder> BuilderType;
BuilderType Builder;
#ifndef NDEBUG
const char *DebugType;
#endif
friend struct SCEVVisitor<SCEVExpander, Value*>;
public:
/// SCEVExpander - Construct a SCEVExpander in "canonical" mode.
explicit SCEVExpander(ScalarEvolution &se, const char *name)
: SE(se), IVName(name), IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr),
CanonicalMode(true), LSRMode(false),
Builder(se.getContext(), TargetFolder(se.DL)) {
#ifndef NDEBUG
DebugType = "";
#endif
}
#ifndef NDEBUG
void setDebugType(const char* s) { DebugType = s; }
#endif
/// clear - Erase the contents of the InsertedExpressions map so that users
/// trying to expand the same expression into multiple BasicBlocks or
/// different places within the same BasicBlock can do so.
void clear() {
InsertedExpressions.clear();
InsertedValues.clear();
InsertedPostIncValues.clear();
ChainedPhis.clear();
}
/// getOrInsertCanonicalInductionVariable - This method returns the
/// canonical induction variable of the specified type for the specified
/// loop (inserting one if there is none). A canonical induction variable
/// starts at zero and steps by one on each iteration.
PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
/// getIVIncOperand - Return the induction variable increment's IV operand.
Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
bool allowScale);
/// hoistIVInc - Utility for hoisting an IV increment.
bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
/// replaceCongruentIVs - replace congruent phis with their most canonical
/// representative. Return the number of phis eliminated.
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
SmallVectorImpl<WeakVH> &DeadInsts,
const TargetTransformInfo *TTI = nullptr);
/// expandCodeFor - Insert code to directly compute the specified SCEV
/// expression into the program. The inserted code is inserted into the
/// specified block.
Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
/// setIVIncInsertPos - Set the current IV increment loop and position.
void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
assert(!CanonicalMode &&
"IV increment positions are not supported in CanonicalMode");
IVIncInsertLoop = L;
IVIncInsertPos = Pos;
}
/// setPostInc - Enable post-inc expansion for addrecs referring to the
/// given loops. Post-inc expansion is only supported in non-canonical
/// mode.
void setPostInc(const PostIncLoopSet &L) {
assert(!CanonicalMode &&
"Post-inc expansion is not supported in CanonicalMode");
PostIncLoops = L;
}
/// clearPostInc - Disable all post-inc expansion.
void clearPostInc() {
PostIncLoops.clear();
// When we change the post-inc loop set, cached expansions may no
// longer be valid.
InsertedPostIncValues.clear();
}
/// disableCanonicalMode - Disable the behavior of expanding expressions in
/// canonical form rather than in a more literal form. Non-canonical mode
/// is useful for late optimization passes.
void disableCanonicalMode() { CanonicalMode = false; }
void enableLSRMode() { LSRMode = true; }
/// clearInsertPoint - Clear the current insertion point. This is useful
/// if the instruction that had been serving as the insertion point may
/// have been deleted.
void clearInsertPoint() {
Builder.ClearInsertionPoint();
}
/// isInsertedInstruction - Return true if the specified instruction was
/// inserted by the code rewriter. If so, the client should not modify the
/// instruction.
bool isInsertedInstruction(Instruction *I) const {
return InsertedValues.count(I) || InsertedPostIncValues.count(I);
}
void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
private:
LLVMContext &getContext() const { return SE.getContext(); }
/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.
Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
/// ReuseOrCreateCast - Arange for there to be a cast of V to Ty at IP,
/// reusing an existing cast if a suitable one exists, moving an existing
/// cast if a suitable one exists but isn't in the right place, or
/// or creating a new one.
Value *ReuseOrCreateCast(Value *V, Type *Ty,
Instruction::CastOps Op,
BasicBlock::iterator IP);
/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
/// which must be possible with a noop cast, doing what we can to
/// share the casts.
Value *InsertNoopCastOfTo(Value *V, Type *Ty);
/// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
/// instead of using ptrtoint+arithmetic+inttoptr.
Value *expandAddToGEP(const SCEV *const *op_begin,
const SCEV *const *op_end,
PointerType *PTy, Type *Ty, Value *V);
Value *expand(const SCEV *S);
/// expandCodeFor - Insert code to directly compute the specified SCEV
/// expression into the program. The inserted code is inserted into the
/// SCEVExpander's current insertion point. If a type is specified, the
/// result will be expanded to have that type, with a cast if necessary.
Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
/// getRelevantLoop - Determine the most "relevant" loop for the given SCEV.
const Loop *getRelevantLoop(const SCEV *);
Value *visitConstant(const SCEVConstant *S) {
return S->getValue();
}
Value *visitTruncateExpr(const SCEVTruncateExpr *S);
Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
Value *visitAddExpr(const SCEVAddExpr *S);
Value *visitMulExpr(const SCEVMulExpr *S);
Value *visitUDivExpr(const SCEVUDivExpr *S);
Value *visitAddRecExpr(const SCEVAddRecExpr *S);
Value *visitSMaxExpr(const SCEVSMaxExpr *S);
Value *visitUMaxExpr(const SCEVUMaxExpr *S);
Value *visitUnknown(const SCEVUnknown *S) {
return S->getValue();
}
void rememberInstruction(Value *I);
bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
const Loop *L,
Type *ExpandTy,
Type *IntTy,
Type *&TruncTy,
bool &InvertStep);
Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
Type *ExpandTy, Type *IntTy, bool useSubtract);
};
}
#endif
|