/usr/include/llvm-3.5/llvm/Analysis/ScalarEvolutionExpressions.h is in llvm-3.5-dev 1:3.5.2-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 | //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to represent and build scalar expressions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
#include "llvm/ADT/iterator_range.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Support/ErrorHandling.h"
namespace llvm {
class ConstantInt;
class ConstantRange;
class DominatorTree;
enum SCEVTypes {
// These should be ordered in terms of increasing complexity to make the
// folders simpler.
scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
scUnknown, scCouldNotCompute
};
//===--------------------------------------------------------------------===//
/// SCEVConstant - This class represents a constant integer value.
///
class SCEVConstant : public SCEV {
friend class ScalarEvolution;
ConstantInt *V;
SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
SCEV(ID, scConstant), V(v) {}
public:
ConstantInt *getValue() const { return V; }
Type *getType() const { return V->getType(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scConstant;
}
};
//===--------------------------------------------------------------------===//
/// SCEVCastExpr - This is the base class for unary cast operator classes.
///
class SCEVCastExpr : public SCEV {
protected:
const SCEV *Op;
Type *Ty;
SCEVCastExpr(const FoldingSetNodeIDRef ID,
unsigned SCEVTy, const SCEV *op, Type *ty);
public:
const SCEV *getOperand() const { return Op; }
Type *getType() const { return Ty; }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scTruncate ||
S->getSCEVType() == scZeroExtend ||
S->getSCEVType() == scSignExtend;
}
};
//===--------------------------------------------------------------------===//
/// SCEVTruncateExpr - This class represents a truncation of an integer value
/// to a smaller integer value.
///
class SCEVTruncateExpr : public SCEVCastExpr {
friend class ScalarEvolution;
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
const SCEV *op, Type *ty);
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scTruncate;
}
};
//===--------------------------------------------------------------------===//
/// SCEVZeroExtendExpr - This class represents a zero extension of a small
/// integer value to a larger integer value.
///
class SCEVZeroExtendExpr : public SCEVCastExpr {
friend class ScalarEvolution;
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
const SCEV *op, Type *ty);
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scZeroExtend;
}
};
//===--------------------------------------------------------------------===//
/// SCEVSignExtendExpr - This class represents a sign extension of a small
/// integer value to a larger integer value.
///
class SCEVSignExtendExpr : public SCEVCastExpr {
friend class ScalarEvolution;
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
const SCEV *op, Type *ty);
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scSignExtend;
}
};
//===--------------------------------------------------------------------===//
/// SCEVNAryExpr - This node is a base class providing common
/// functionality for n'ary operators.
///
class SCEVNAryExpr : public SCEV {
protected:
// Since SCEVs are immutable, ScalarEvolution allocates operand
// arrays with its SCEVAllocator, so this class just needs a simple
// pointer rather than a more elaborate vector-like data structure.
// This also avoids the need for a non-trivial destructor.
const SCEV *const *Operands;
size_t NumOperands;
SCEVNAryExpr(const FoldingSetNodeIDRef ID,
enum SCEVTypes T, const SCEV *const *O, size_t N)
: SCEV(ID, T), Operands(O), NumOperands(N) {}
public:
size_t getNumOperands() const { return NumOperands; }
const SCEV *getOperand(unsigned i) const {
assert(i < NumOperands && "Operand index out of range!");
return Operands[i];
}
typedef const SCEV *const *op_iterator;
typedef iterator_range<op_iterator> op_range;
op_iterator op_begin() const { return Operands; }
op_iterator op_end() const { return Operands + NumOperands; }
op_range operands() const {
return make_range(op_begin(), op_end());
}
Type *getType() const { return getOperand(0)->getType(); }
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
return (NoWrapFlags)(SubclassData & Mask);
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scAddExpr ||
S->getSCEVType() == scMulExpr ||
S->getSCEVType() == scSMaxExpr ||
S->getSCEVType() == scUMaxExpr ||
S->getSCEVType() == scAddRecExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVCommutativeExpr - This node is the base class for n'ary commutative
/// operators.
///
class SCEVCommutativeExpr : public SCEVNAryExpr {
protected:
SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
enum SCEVTypes T, const SCEV *const *O, size_t N)
: SCEVNAryExpr(ID, T, O, N) {}
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scAddExpr ||
S->getSCEVType() == scMulExpr ||
S->getSCEVType() == scSMaxExpr ||
S->getSCEVType() == scUMaxExpr;
}
/// Set flags for a non-recurrence without clearing previously set flags.
void setNoWrapFlags(NoWrapFlags Flags) {
SubclassData |= Flags;
}
};
//===--------------------------------------------------------------------===//
/// SCEVAddExpr - This node represents an addition of some number of SCEVs.
///
class SCEVAddExpr : public SCEVCommutativeExpr {
friend class ScalarEvolution;
SCEVAddExpr(const FoldingSetNodeIDRef ID,
const SCEV *const *O, size_t N)
: SCEVCommutativeExpr(ID, scAddExpr, O, N) {
}
public:
Type *getType() const {
// Use the type of the last operand, which is likely to be a pointer
// type, if there is one. This doesn't usually matter, but it can help
// reduce casts when the expressions are expanded.
return getOperand(getNumOperands() - 1)->getType();
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scAddExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
///
class SCEVMulExpr : public SCEVCommutativeExpr {
friend class ScalarEvolution;
SCEVMulExpr(const FoldingSetNodeIDRef ID,
const SCEV *const *O, size_t N)
: SCEVCommutativeExpr(ID, scMulExpr, O, N) {
}
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scMulExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVUDivExpr - This class represents a binary unsigned division operation.
///
class SCEVUDivExpr : public SCEV {
friend class ScalarEvolution;
const SCEV *LHS;
const SCEV *RHS;
SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
: SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
public:
const SCEV *getLHS() const { return LHS; }
const SCEV *getRHS() const { return RHS; }
Type *getType() const {
// In most cases the types of LHS and RHS will be the same, but in some
// crazy cases one or the other may be a pointer. ScalarEvolution doesn't
// depend on the type for correctness, but handling types carefully can
// avoid extra casts in the SCEVExpander. The LHS is more likely to be
// a pointer type than the RHS, so use the RHS' type here.
return getRHS()->getType();
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scUDivExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
/// count of the specified loop. This is the primary focus of the
/// ScalarEvolution framework; all the other SCEV subclasses are mostly just
/// supporting infrastructure to allow SCEVAddRecExpr expressions to be
/// created and analyzed.
///
/// All operands of an AddRec are required to be loop invariant.
///
class SCEVAddRecExpr : public SCEVNAryExpr {
friend class ScalarEvolution;
const Loop *L;
SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
const SCEV *const *O, size_t N, const Loop *l)
: SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
public:
const SCEV *getStart() const { return Operands[0]; }
const Loop *getLoop() const { return L; }
/// getStepRecurrence - This method constructs and returns the recurrence
/// indicating how much this expression steps by. If this is a polynomial
/// of degree N, it returns a chrec of degree N-1.
/// We cannot determine whether the step recurrence has self-wraparound.
const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
if (isAffine()) return getOperand(1);
return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
op_end()),
getLoop(), FlagAnyWrap);
}
/// isAffine - Return true if this represents an expression
/// A + B*x where A and B are loop invariant values.
bool isAffine() const {
// We know that the start value is invariant. This expression is thus
// affine iff the step is also invariant.
return getNumOperands() == 2;
}
/// isQuadratic - Return true if this represents an expression
/// A + B*x + C*x^2 where A, B and C are loop invariant values.
/// This corresponds to an addrec of the form {L,+,M,+,N}
bool isQuadratic() const {
return getNumOperands() == 3;
}
/// Set flags for a recurrence without clearing any previously set flags.
/// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
/// to make it easier to propagate flags.
void setNoWrapFlags(NoWrapFlags Flags) {
if (Flags & (FlagNUW | FlagNSW))
Flags = ScalarEvolution::setFlags(Flags, FlagNW);
SubclassData |= Flags;
}
/// evaluateAtIteration - Return the value of this chain of recurrences at
/// the specified iteration number.
const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
/// getNumIterationsInRange - Return the number of iterations of this loop
/// that produce values in the specified constant range. Another way of
/// looking at this is that it returns the first iteration number where the
/// value is not in the condition, thus computing the exit count. If the
/// iteration count can't be computed, an instance of SCEVCouldNotCompute is
/// returned.
const SCEV *getNumIterationsInRange(ConstantRange Range,
ScalarEvolution &SE) const;
/// getPostIncExpr - Return an expression representing the value of
/// this expression one iteration of the loop ahead.
const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scAddRecExpr;
}
/// Collect parametric terms occurring in step expressions.
void collectParametricTerms(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Terms) const;
/// Return in Subscripts the access functions for each dimension in Sizes.
void computeAccessFunctions(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes) const;
/// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
/// subscripts and sizes of an array access.
///
/// The delinearization is a 3 step process: the first two steps compute the
/// sizes of each subscript and the third step computes the access functions
/// for the delinearized array:
///
/// 1. Find the terms in the step functions
/// 2. Compute the array size
/// 3. Compute the access function: divide the SCEV by the array size
/// starting with the innermost dimensions found in step 2. The Quotient
/// is the SCEV to be divided in the next step of the recursion. The
/// Remainder is the subscript of the innermost dimension. Loop over all
/// array dimensions computed in step 2.
///
/// To compute a uniform array size for several memory accesses to the same
/// object, one can collect in step 1 all the step terms for all the memory
/// accesses, and compute in step 2 a unique array shape. This guarantees
/// that the array shape will be the same across all memory accesses.
///
/// FIXME: We could derive the result of steps 1 and 2 from a description of
/// the array shape given in metadata.
///
/// Example:
///
/// A[][n][m]
///
/// for i
/// for j
/// for k
/// A[j+k][2i][5i] =
///
/// The initial SCEV:
///
/// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
///
/// 1. Find the different terms in the step functions:
/// -> [2*m, 5, n*m, n*m]
///
/// 2. Compute the array size: sort and unique them
/// -> [n*m, 2*m, 5]
/// find the GCD of all the terms = 1
/// divide by the GCD and erase constant terms
/// -> [n*m, 2*m]
/// GCD = m
/// divide by GCD -> [n, 2]
/// remove constant terms
/// -> [n]
/// size of the array is A[unknown][n][m]
///
/// 3. Compute the access function
/// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
/// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
/// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
/// The remainder is the subscript of the innermost array dimension: [5i].
///
/// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
/// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
/// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
/// The Remainder is the subscript of the next array dimension: [2i].
///
/// The subscript of the outermost dimension is the Quotient: [j+k].
///
/// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
void delinearize(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize) const;
};
//===--------------------------------------------------------------------===//
/// SCEVSMaxExpr - This class represents a signed maximum selection.
///
class SCEVSMaxExpr : public SCEVCommutativeExpr {
friend class ScalarEvolution;
SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
const SCEV *const *O, size_t N)
: SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
// Max never overflows.
setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
}
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scSMaxExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVUMaxExpr - This class represents an unsigned maximum selection.
///
class SCEVUMaxExpr : public SCEVCommutativeExpr {
friend class ScalarEvolution;
SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
const SCEV *const *O, size_t N)
: SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
// Max never overflows.
setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
}
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scUMaxExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
/// value, and only represent it as its LLVM Value. This is the "bottom"
/// value for the analysis.
///
class SCEVUnknown : public SCEV, private CallbackVH {
friend class ScalarEvolution;
// Implement CallbackVH.
void deleted() override;
void allUsesReplacedWith(Value *New) override;
/// SE - The parent ScalarEvolution value. This is used to update
/// the parent's maps when the value associated with a SCEVUnknown
/// is deleted or RAUW'd.
ScalarEvolution *SE;
/// Next - The next pointer in the linked list of all
/// SCEVUnknown instances owned by a ScalarEvolution.
SCEVUnknown *Next;
SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
ScalarEvolution *se, SCEVUnknown *next) :
SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
public:
Value *getValue() const { return getValPtr(); }
/// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
/// constant representing a type size, alignment, or field offset in
/// a target-independent manner, and hasn't happened to have been
/// folded with other operations into something unrecognizable. This
/// is mainly only useful for pretty-printing and other situations
/// where it isn't absolutely required for these to succeed.
bool isSizeOf(Type *&AllocTy) const;
bool isAlignOf(Type *&AllocTy) const;
bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
Type *getType() const { return getValPtr()->getType(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scUnknown;
}
};
/// SCEVVisitor - This class defines a simple visitor class that may be used
/// for various SCEV analysis purposes.
template<typename SC, typename RetVal=void>
struct SCEVVisitor {
RetVal visit(const SCEV *S) {
switch (S->getSCEVType()) {
case scConstant:
return ((SC*)this)->visitConstant((const SCEVConstant*)S);
case scTruncate:
return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
case scZeroExtend:
return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
case scSignExtend:
return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
case scAddExpr:
return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
case scMulExpr:
return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
case scUDivExpr:
return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
case scAddRecExpr:
return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
case scSMaxExpr:
return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
case scUMaxExpr:
return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
case scUnknown:
return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
case scCouldNotCompute:
return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
default:
llvm_unreachable("Unknown SCEV type!");
}
}
RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
}
};
/// Visit all nodes in the expression tree using worklist traversal.
///
/// Visitor implements:
/// // return true to follow this node.
/// bool follow(const SCEV *S);
/// // return true to terminate the search.
/// bool isDone();
template<typename SV>
class SCEVTraversal {
SV &Visitor;
SmallVector<const SCEV *, 8> Worklist;
SmallPtrSet<const SCEV *, 8> Visited;
void push(const SCEV *S) {
if (Visited.insert(S) && Visitor.follow(S))
Worklist.push_back(S);
}
public:
SCEVTraversal(SV& V): Visitor(V) {}
void visitAll(const SCEV *Root) {
push(Root);
while (!Worklist.empty() && !Visitor.isDone()) {
const SCEV *S = Worklist.pop_back_val();
switch (S->getSCEVType()) {
case scConstant:
case scUnknown:
break;
case scTruncate:
case scZeroExtend:
case scSignExtend:
push(cast<SCEVCastExpr>(S)->getOperand());
break;
case scAddExpr:
case scMulExpr:
case scSMaxExpr:
case scUMaxExpr:
case scAddRecExpr: {
const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
for (SCEVNAryExpr::op_iterator I = NAry->op_begin(),
E = NAry->op_end(); I != E; ++I) {
push(*I);
}
break;
}
case scUDivExpr: {
const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
push(UDiv->getLHS());
push(UDiv->getRHS());
break;
}
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
default:
llvm_unreachable("Unknown SCEV kind!");
}
}
}
};
/// Use SCEVTraversal to visit all nodes in the givien expression tree.
template<typename SV>
void visitAll(const SCEV *Root, SV& Visitor) {
SCEVTraversal<SV> T(Visitor);
T.visitAll(Root);
}
typedef DenseMap<const Value*, Value*> ValueToValueMap;
/// The SCEVParameterRewriter takes a scalar evolution expression and updates
/// the SCEVUnknown components following the Map (Value -> Value).
struct SCEVParameterRewriter
: public SCEVVisitor<SCEVParameterRewriter, const SCEV*> {
public:
static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
ValueToValueMap &Map,
bool InterpretConsts = false) {
SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
return Rewriter.visit(Scev);
}
SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M, bool C)
: SE(S), Map(M), InterpretConsts(C) {}
const SCEV *visitConstant(const SCEVConstant *Constant) {
return Constant;
}
const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getTruncateExpr(Operand, Expr->getType());
}
const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getZeroExtendExpr(Operand, Expr->getType());
}
const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getSignExtendExpr(Operand, Expr->getType());
}
const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getAddExpr(Operands);
}
const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getMulExpr(Operands);
}
const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
}
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getAddRecExpr(Operands, Expr->getLoop(),
Expr->getNoWrapFlags());
}
const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getSMaxExpr(Operands);
}
const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getUMaxExpr(Operands);
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
Value *V = Expr->getValue();
if (Map.count(V)) {
Value *NV = Map[V];
if (InterpretConsts && isa<ConstantInt>(NV))
return SE.getConstant(cast<ConstantInt>(NV));
return SE.getUnknown(NV);
}
return Expr;
}
const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
return Expr;
}
private:
ScalarEvolution &SE;
ValueToValueMap ⤅
bool InterpretConsts;
};
typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;
/// The SCEVApplyRewriter takes a scalar evolution expression and applies
/// the Map (Loop -> SCEV) to all AddRecExprs.
struct SCEVApplyRewriter
: public SCEVVisitor<SCEVApplyRewriter, const SCEV*> {
public:
static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
ScalarEvolution &SE) {
SCEVApplyRewriter Rewriter(SE, Map);
return Rewriter.visit(Scev);
}
SCEVApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M)
: SE(S), Map(M) {}
const SCEV *visitConstant(const SCEVConstant *Constant) {
return Constant;
}
const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getTruncateExpr(Operand, Expr->getType());
}
const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getZeroExtendExpr(Operand, Expr->getType());
}
const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getSignExtendExpr(Operand, Expr->getType());
}
const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getAddExpr(Operands);
}
const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getMulExpr(Operands);
}
const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
}
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
const Loop *L = Expr->getLoop();
const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
if (0 == Map.count(L))
return Res;
const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res;
return Rec->evaluateAtIteration(Map[L], SE);
}
const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getSMaxExpr(Operands);
}
const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getUMaxExpr(Operands);
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
return Expr;
}
const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
return Expr;
}
private:
ScalarEvolution &SE;
LoopToScevMapT ⤅
};
/// Applies the Map (Loop -> SCEV) to the given Scev.
static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map,
ScalarEvolution &SE) {
return SCEVApplyRewriter::rewrite(Scev, Map, SE);
}
}
#endif
|