This file is indexed.

/usr/share/doc/nasm/html/nasmdoc3.html is in nasm 2.11.08-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
<html><head><title>NASM Manual</title></head>
<body><h1 align=center>The Netwide Assembler: NASM</h1>

<p align=center><a href="nasmdoc4.html">Next Chapter</a> |
<a href="nasmdoc2.html">Previous Chapter</a> |
<a href="nasmdoc0.html">Contents</a> |
<a href="nasmdoci.html">Index</a>
<h2><a name="chapter-3">Chapter 3: The NASM Language</a></h2>
<h3><a name="section-3.1">3.1 Layout of a NASM Source Line</a></h3>
<p>Like most assemblers, each NASM source line contains (unless it is a
macro, a preprocessor directive or an assembler directive: see
<a href="nasmdoc4.html">chapter 4</a> and <a href="nasmdoc6.html">chapter
6</a>) some combination of the four fields
<p><pre>
label:    instruction operands        ; comment
</pre>
<p>As usual, most of these fields are optional; the presence or absence of
any combination of a label, an instruction and a comment is allowed. Of
course, the operand field is either required or forbidden by the presence
and nature of the instruction field.
<p>NASM uses backslash (\) as the line continuation character; if a line
ends with backslash, the next line is considered to be a part of the
backslash-ended line.
<p>NASM places no restrictions on white space within a line: labels may
have white space before them, or instructions may have no space before
them, or anything. The colon after a label is also optional. (Note that
this means that if you intend to code <code><nobr>lodsb</nobr></code> alone
on a line, and type <code><nobr>lodab</nobr></code> by accident, then
that's still a valid source line which does nothing but define a label.
Running NASM with the command-line option
<code><nobr>-w+orphan-labels</nobr></code> will cause it to warn you if you
define a label alone on a line without a trailing colon.)
<p>Valid characters in labels are letters, numbers,
<code><nobr>_</nobr></code>, <code><nobr>$</nobr></code>,
<code><nobr>#</nobr></code>, <code><nobr>@</nobr></code>,
<code><nobr>~</nobr></code>, <code><nobr>.</nobr></code>, and
<code><nobr>?</nobr></code>. The only characters which may be used as the
<em>first</em> character of an identifier are letters,
<code><nobr>.</nobr></code> (with special meaning: see
<a href="#section-3.9">section 3.9</a>), <code><nobr>_</nobr></code> and
<code><nobr>?</nobr></code>. An identifier may also be prefixed with a
<code><nobr>$</nobr></code> to indicate that it is intended to be read as
an identifier and not a reserved word; thus, if some other module you are
linking with defines a symbol called <code><nobr>eax</nobr></code>, you can
refer to <code><nobr>$eax</nobr></code> in NASM code to distinguish the
symbol from the register. Maximum length of an identifier is 4095
characters.
<p>The instruction field may contain any machine instruction: Pentium and
P6 instructions, FPU instructions, MMX instructions and even undocumented
instructions are all supported. The instruction may be prefixed by
<code><nobr>LOCK</nobr></code>, <code><nobr>REP</nobr></code>,
<code><nobr>REPE</nobr></code>/<code><nobr>REPZ</nobr></code>,
<code><nobr>REPNE</nobr></code>/<code><nobr>REPNZ</nobr></code>,
<code><nobr>XACQUIRE</nobr></code>/<code><nobr>XRELEASE</nobr></code> or
<code><nobr>BND</nobr></code>/<code><nobr>NOBND</nobr></code>, in the usual
way. Explicit address-size and operand-size prefixes
<code><nobr>A16</nobr></code>, <code><nobr>A32</nobr></code>,
<code><nobr>A64</nobr></code>, <code><nobr>O16</nobr></code> and
<code><nobr>O32</nobr></code>, <code><nobr>O64</nobr></code> are provided -
one example of their use is given in <a href="nasmdo10.html">chapter
10</a>. You can also use the name of a segment register as an instruction
prefix: coding <code><nobr>es mov [bx],ax</nobr></code> is equivalent to
coding <code><nobr>mov [es:bx],ax</nobr></code>. We recommend the latter
syntax, since it is consistent with other syntactic features of the
language, but for instructions such as <code><nobr>LODSB</nobr></code>,
which has no operands and yet can require a segment override, there is no
clean syntactic way to proceed apart from
<code><nobr>es lodsb</nobr></code>.
<p>An instruction is not required to use a prefix: prefixes such as
<code><nobr>CS</nobr></code>, <code><nobr>A32</nobr></code>,
<code><nobr>LOCK</nobr></code> or <code><nobr>REPE</nobr></code> can appear
on a line by themselves, and NASM will just generate the prefix bytes.
<p>In addition to actual machine instructions, NASM also supports a number
of pseudo-instructions, described in <a href="#section-3.2">section
3.2</a>.
<p>Instruction operands may take a number of forms: they can be registers,
described simply by the register name (e.g. <code><nobr>ax</nobr></code>,
<code><nobr>bp</nobr></code>, <code><nobr>ebx</nobr></code>,
<code><nobr>cr0</nobr></code>: NASM does not use the
<code><nobr>gas</nobr></code>-style syntax in which register names must be
prefixed by a <code><nobr>%</nobr></code> sign), or they can be effective
addresses (see <a href="#section-3.3">section 3.3</a>), constants
(<a href="#section-3.4">section 3.4</a>) or expressions
(<a href="#section-3.5">section 3.5</a>).
<p>For x87 floating-point instructions, NASM accepts a wide range of
syntaxes: you can use two-operand forms like MASM supports, or you can use
NASM's native single-operand forms in most cases. For example, you can
code:
<p><pre>
        fadd    st1             ; this sets st0 := st0 + st1 
        fadd    st0,st1         ; so does this 

        fadd    st1,st0         ; this sets st1 := st1 + st0 
        fadd    to st1          ; so does this
</pre>
<p>Almost any x87 floating-point instruction that references memory must
use one of the prefixes <code><nobr>DWORD</nobr></code>,
<code><nobr>QWORD</nobr></code> or <code><nobr>TWORD</nobr></code> to
indicate what size of memory operand it refers to.
<h3><a name="section-3.2">3.2 Pseudo-Instructions</a></h3>
<p>Pseudo-instructions are things which, though not real x86 machine
instructions, are used in the instruction field anyway because that's the
most convenient place to put them. The current pseudo-instructions are
<code><nobr>DB</nobr></code>, <code><nobr>DW</nobr></code>,
<code><nobr>DD</nobr></code>, <code><nobr>DQ</nobr></code>,
<code><nobr>DT</nobr></code>, <code><nobr>DO</nobr></code>,
<code><nobr>DY</nobr></code> and <code><nobr>DZ</nobr></code>; their
uninitialized counterparts <code><nobr>RESB</nobr></code>,
<code><nobr>RESW</nobr></code>, <code><nobr>RESD</nobr></code>,
<code><nobr>RESQ</nobr></code>, <code><nobr>REST</nobr></code>,
<code><nobr>RESO</nobr></code>, <code><nobr>RESY</nobr></code> and
<code><nobr>RESZ</nobr></code>; the <code><nobr>INCBIN</nobr></code>
command, the <code><nobr>EQU</nobr></code> command, and the
<code><nobr>TIMES</nobr></code> prefix.
<h4><a name="section-3.2.1">3.2.1 <code><nobr>DB</nobr></code> and Friends: Declaring Initialized Data</a></h4>
<p><code><nobr>DB</nobr></code>, <code><nobr>DW</nobr></code>,
<code><nobr>DD</nobr></code>, <code><nobr>DQ</nobr></code>,
<code><nobr>DT</nobr></code>, <code><nobr>DO</nobr></code>,
<code><nobr>DY</nobr></code> and <code><nobr>DZ</nobr></code> are used,
much as in MASM, to declare initialized data in the output file. They can
be invoked in a wide range of ways:
<p><pre>
      db    0x55                ; just the byte 0x55 
      db    0x55,0x56,0x57      ; three bytes in succession 
      db    'a',0x55            ; character constants are OK 
      db    'hello',13,10,'$'   ; so are string constants 
      dw    0x1234              ; 0x34 0x12 
      dw    'a'                 ; 0x61 0x00 (it's just a number) 
      dw    'ab'                ; 0x61 0x62 (character constant) 
      dw    'abc'               ; 0x61 0x62 0x63 0x00 (string) 
      dd    0x12345678          ; 0x78 0x56 0x34 0x12 
      dd    1.234567e20         ; floating-point constant 
      dq    0x123456789abcdef0  ; eight byte constant 
      dq    1.234567e20         ; double-precision float 
      dt    1.234567e20         ; extended-precision float
</pre>
<p><code><nobr>DT</nobr></code>, <code><nobr>DO</nobr></code>,
<code><nobr>DY</nobr></code> and <code><nobr>DZ</nobr></code> do not accept
numeric constants as operands.
<h4><a name="section-3.2.2">3.2.2 <code><nobr>RESB</nobr></code> and Friends: Declaring Uninitialized Data</a></h4>
<p><code><nobr>RESB</nobr></code>, <code><nobr>RESW</nobr></code>,
<code><nobr>RESD</nobr></code>, <code><nobr>RESQ</nobr></code>,
<code><nobr>REST</nobr></code>, <code><nobr>RESO</nobr></code>,
<code><nobr>RESY</nobr></code> and <code><nobr>RESZ</nobr></code> are
designed to be used in the BSS section of a module: they declare
<em>uninitialized</em> storage space. Each takes a single operand, which is
the number of bytes, words, doublewords or whatever to reserve. As stated
in <a href="nasmdoc2.html#section-2.2.7">section 2.2.7</a>, NASM does not
support the MASM/TASM syntax of reserving uninitialized space by writing
<code><nobr>DW ?</nobr></code> or similar things: this is what it does
instead. The operand to a <code><nobr>RESB</nobr></code>-type
pseudo-instruction is a <em>critical expression</em>: see
<a href="#section-3.8">section 3.8</a>.
<p>For example:
<p><pre>
buffer:         resb    64              ; reserve 64 bytes 
wordvar:        resw    1               ; reserve a word 
realarray       resq    10              ; array of ten reals 
ymmval:         resy    1               ; one YMM register 
zmmvals:        resz    32              ; 32 ZMM registers 
</pre>
<h4><a name="section-3.2.3">3.2.3 <code><nobr>INCBIN</nobr></code>: Including External Binary Files</a></h4>
<p><code><nobr>INCBIN</nobr></code> is borrowed from the old Amiga
assembler DevPac: it includes a binary file verbatim into the output file.
This can be handy for (for example) including graphics and sound data
directly into a game executable file. It can be called in one of these
three ways:
<p><pre>
    incbin  "file.dat"             ; include the whole file 
    incbin  "file.dat",1024        ; skip the first 1024 bytes 
    incbin  "file.dat",1024,512    ; skip the first 1024, and 
                                   ; actually include at most 512
</pre>
<p><code><nobr>INCBIN</nobr></code> is both a directive and a standard
macro; the standard macro version searches for the file in the include file
search path and adds the file to the dependency lists. This macro can be
overridden if desired.
<h4><a name="section-3.2.4">3.2.4 <code><nobr>EQU</nobr></code>: Defining Constants</a></h4>
<p><code><nobr>EQU</nobr></code> defines a symbol to a given constant
value: when <code><nobr>EQU</nobr></code> is used, the source line must
contain a label. The action of <code><nobr>EQU</nobr></code> is to define
the given label name to the value of its (only) operand. This definition is
absolute, and cannot change later. So, for example,
<p><pre>
message         db      'hello, world' 
msglen          equ     $-message
</pre>
<p>defines <code><nobr>msglen</nobr></code> to be the constant 12.
<code><nobr>msglen</nobr></code> may not then be redefined later. This is
not a preprocessor definition either: the value of
<code><nobr>msglen</nobr></code> is evaluated <em>once</em>, using the
value of <code><nobr>$</nobr></code> (see <a href="#section-3.5">section
3.5</a> for an explanation of <code><nobr>$</nobr></code>) at the point of
definition, rather than being evaluated wherever it is referenced and using
the value of <code><nobr>$</nobr></code> at the point of reference.
<h4><a name="section-3.2.5">3.2.5 <code><nobr>TIMES</nobr></code>: Repeating Instructions or Data</a></h4>
<p>The <code><nobr>TIMES</nobr></code> prefix causes the instruction to be
assembled multiple times. This is partly present as NASM's equivalent of
the <code><nobr>DUP</nobr></code> syntax supported by MASM-compatible
assemblers, in that you can code
<p><pre>
zerobuf:        times 64 db 0
</pre>
<p>or similar things; but <code><nobr>TIMES</nobr></code> is more versatile
than that. The argument to <code><nobr>TIMES</nobr></code> is not just a
numeric constant, but a numeric <em>expression</em>, so you can do things
like
<p><pre>
buffer: db      'hello, world' 
        times 64-$+buffer db ' '
</pre>
<p>which will store exactly enough spaces to make the total length of
<code><nobr>buffer</nobr></code> up to 64. Finally,
<code><nobr>TIMES</nobr></code> can be applied to ordinary instructions, so
you can code trivial unrolled loops in it:
<p><pre>
        times 100 movsb
</pre>
<p>Note that there is no effective difference between
<code><nobr>times 100 resb 1</nobr></code> and
<code><nobr>resb 100</nobr></code>, except that the latter will be
assembled about 100 times faster due to the internal structure of the
assembler.
<p>The operand to <code><nobr>TIMES</nobr></code> is a critical expression
(<a href="#section-3.8">section 3.8</a>).
<p>Note also that <code><nobr>TIMES</nobr></code> can't be applied to
macros: the reason for this is that <code><nobr>TIMES</nobr></code> is
processed after the macro phase, which allows the argument to
<code><nobr>TIMES</nobr></code> to contain expressions such as
<code><nobr>64-$+buffer</nobr></code> as above. To repeat more than one
line of code, or a complex macro, use the preprocessor
<code><nobr>%rep</nobr></code> directive.
<h3><a name="section-3.3">3.3 Effective Addresses</a></h3>
<p>An effective address is any operand to an instruction which references
memory. Effective addresses, in NASM, have a very simple syntax: they
consist of an expression evaluating to the desired address, enclosed in
square brackets. For example:
<p><pre>
wordvar dw      123 
        mov     ax,[wordvar] 
        mov     ax,[wordvar+1] 
        mov     ax,[es:wordvar+bx]
</pre>
<p>Anything not conforming to this simple system is not a valid memory
reference in NASM, for example <code><nobr>es:wordvar[bx]</nobr></code>.
<p>More complicated effective addresses, such as those involving more than
one register, work in exactly the same way:
<p><pre>
        mov     eax,[ebx*2+ecx+offset] 
        mov     ax,[bp+di+8]
</pre>
<p>NASM is capable of doing algebra on these effective addresses, so that
things which don't necessarily <em>look</em> legal are perfectly all right:
<p><pre>
    mov     eax,[ebx*5]             ; assembles as [ebx*4+ebx] 
    mov     eax,[label1*2-label2]   ; ie [label1+(label1-label2)]
</pre>
<p>Some forms of effective address have more than one assembled form; in
most such cases NASM will generate the smallest form it can. For example,
there are distinct assembled forms for the 32-bit effective addresses
<code><nobr>[eax*2+0]</nobr></code> and
<code><nobr>[eax+eax]</nobr></code>, and NASM will generally generate the
latter on the grounds that the former requires four bytes to store a zero
offset.
<p>NASM has a hinting mechanism which will cause
<code><nobr>[eax+ebx]</nobr></code> and <code><nobr>[ebx+eax]</nobr></code>
to generate different opcodes; this is occasionally useful because
<code><nobr>[esi+ebp]</nobr></code> and <code><nobr>[ebp+esi]</nobr></code>
have different default segment registers.
<p>However, you can force NASM to generate an effective address in a
particular form by the use of the keywords <code><nobr>BYTE</nobr></code>,
<code><nobr>WORD</nobr></code>, <code><nobr>DWORD</nobr></code> and
<code><nobr>NOSPLIT</nobr></code>. If you need
<code><nobr>[eax+3]</nobr></code> to be assembled using a double-word
offset field instead of the one byte NASM will normally generate, you can
code <code><nobr>[dword eax+3]</nobr></code>. Similarly, you can force NASM
to use a byte offset for a small value which it hasn't seen on the first
pass (see <a href="#section-3.8">section 3.8</a> for an example of such a
code fragment) by using <code><nobr>[byte eax+offset]</nobr></code>. As
special cases, <code><nobr>[byte eax]</nobr></code> will code
<code><nobr>[eax+0]</nobr></code> with a byte offset of zero, and
<code><nobr>[dword eax]</nobr></code> will code it with a double-word
offset of zero. The normal form, <code><nobr>[eax]</nobr></code>, will be
coded with no offset field.
<p>The form described in the previous paragraph is also useful if you are
trying to access data in a 32-bit segment from within 16 bit code. For more
information on this see the section on mixed-size addressing
(<a href="nasmdo10.html#section-10.2">section 10.2</a>). In particular, if
you need to access data with a known offset that is larger than will fit in
a 16-bit value, if you don't specify that it is a dword offset, nasm will
cause the high word of the offset to be lost.
<p>Similarly, NASM will split <code><nobr>[eax*2]</nobr></code> into
<code><nobr>[eax+eax]</nobr></code> because that allows the offset field to
be absent and space to be saved; in fact, it will also split
<code><nobr>[eax*2+offset]</nobr></code> into
<code><nobr>[eax+eax+offset]</nobr></code>. You can combat this behaviour
by the use of the <code><nobr>NOSPLIT</nobr></code> keyword:
<code><nobr>[nosplit eax*2]</nobr></code> will force
<code><nobr>[eax*2+0]</nobr></code> to be generated literally.
<code><nobr>[nosplit eax*1]</nobr></code> also has the same effect. In
another way, a split EA form <code><nobr>[0, eax*2]</nobr></code> can be
used, too. However, <code><nobr>NOSPLIT</nobr></code> in
<code><nobr>[nosplit eax+eax]</nobr></code> will be ignored because user's
intention here is considered as <code><nobr>[eax+eax]</nobr></code>.
<p>In 64-bit mode, NASM will by default generate absolute addresses. The
<code><nobr>REL</nobr></code> keyword makes it produce
<code><nobr>RIP</nobr></code>-relative addresses. Since this is frequently
the normally desired behaviour, see the <code><nobr>DEFAULT</nobr></code>
directive (<a href="nasmdoc6.html#section-6.2">section 6.2</a>). The
keyword <code><nobr>ABS</nobr></code> overrides
<code><nobr>REL</nobr></code>.
<p>A new form of split effective addres syntax is also supported. This is
mainly intended for mib operands as used by MPX instructions, but can be
used for any memory reference. The basic concept of this form is splitting
base and index.
<p><pre>
     mov eax,[ebx+8,ecx*4]   ; ebx=base, ecx=index, 4=scale, 8=disp
</pre>
<p>For mib operands, there are several ways of writing effective address
depending on the tools. NASM supports all currently possible ways of mib
syntax:
<p><pre>
     ; bndstx 
     ; next 5 lines are parsed same 
     ; base=rax, index=rbx, scale=1, displacement=3 
     bndstx [rax+0x3,rbx], bnd0      ; NASM - split EA 
     bndstx [rbx*1+rax+0x3], bnd0    ; GAS - '*1' indecates an index reg 
     bndstx [rax+rbx+3], bnd0        ; GAS - without hints 
     bndstx [rax+0x3], bnd0, rbx     ; ICC-1 
     bndstx [rax+0x3], rbx, bnd0     ; ICC-2
</pre>
<p>When broadcasting decorator is used, the opsize keyword should match the
size of each element.
<p><pre>
     VDIVPS zmm4, zmm5, dword [rbx]{1to16}   ; single-precision float 
     VDIVPS zmm4, zmm5, zword [rbx]          ; packed 512 bit memory
</pre>
<h3><a name="section-3.4">3.4 Constants</a></h3>
<p>NASM understands four different types of constant: numeric, character,
string and floating-point.
<h4><a name="section-3.4.1">3.4.1 Numeric Constants</a></h4>
<p>A numeric constant is simply a number. NASM allows you to specify
numbers in a variety of number bases, in a variety of ways: you can suffix
<code><nobr>H</nobr></code> or <code><nobr>X</nobr></code>,
<code><nobr>D</nobr></code> or <code><nobr>T</nobr></code>,
<code><nobr>Q</nobr></code> or <code><nobr>O</nobr></code>, and
<code><nobr>B</nobr></code> or <code><nobr>Y</nobr></code> for hexadecimal,
decimal, octal and binary respectively, or you can prefix
<code><nobr>0x</nobr></code>, for hexadecimal in the style of C, or you can
prefix <code><nobr>$</nobr></code> for hexadecimal in the style of Borland
Pascal or Motorola Assemblers. Note, though, that the
<code><nobr>$</nobr></code> prefix does double duty as a prefix on
identifiers (see <a href="#section-3.1">section 3.1</a>), so a hex number
prefixed with a <code><nobr>$</nobr></code> sign must have a digit after
the <code><nobr>$</nobr></code> rather than a letter. In addition, current
versions of NASM accept the prefix <code><nobr>0h</nobr></code> for
hexadecimal, <code><nobr>0d</nobr></code> or <code><nobr>0t</nobr></code>
for decimal, <code><nobr>0o</nobr></code> or <code><nobr>0q</nobr></code>
for octal, and <code><nobr>0b</nobr></code> or <code><nobr>0y</nobr></code>
for binary. Please note that unlike C, a <code><nobr>0</nobr></code> prefix
by itself does <em>not</em> imply an octal constant!
<p>Numeric constants can have underscores (<code><nobr>_</nobr></code>)
interspersed to break up long strings.
<p>Some examples (all producing exactly the same code):
<p><pre>
        mov     ax,200          ; decimal 
        mov     ax,0200         ; still decimal 
        mov     ax,0200d        ; explicitly decimal 
        mov     ax,0d200        ; also decimal 
        mov     ax,0c8h         ; hex 
        mov     ax,$0c8         ; hex again: the 0 is required 
        mov     ax,0xc8         ; hex yet again 
        mov     ax,0hc8         ; still hex 
        mov     ax,310q         ; octal 
        mov     ax,310o         ; octal again 
        mov     ax,0o310        ; octal yet again 
        mov     ax,0q310        ; octal yet again 
        mov     ax,11001000b    ; binary 
        mov     ax,1100_1000b   ; same binary constant 
        mov     ax,1100_1000y   ; same binary constant once more 
        mov     ax,0b1100_1000  ; same binary constant yet again 
        mov     ax,0y1100_1000  ; same binary constant yet again
</pre>
<h4><a name="section-3.4.2">3.4.2 Character Strings</a></h4>
<p>A character string consists of up to eight characters enclosed in either
single quotes (<code><nobr>'...'</nobr></code>), double quotes
(<code><nobr>"..."</nobr></code>) or backquotes
(<code><nobr>`...`</nobr></code>). Single or double quotes are equivalent
to NASM (except of course that surrounding the constant with single quotes
allows double quotes to appear within it and vice versa); the contents of
those are represented verbatim. Strings enclosed in backquotes support
C-style <code><nobr>\</nobr></code>-escapes for special characters.
<p>The following escape sequences are recognized by backquoted strings:
<p><pre>
      \'          single quote (') 
      \"          double quote (") 
      \`          backquote (`) 
      \\          backslash (\) 
      \?          question mark (?) 
      \a          BEL (ASCII 7) 
      \b          BS  (ASCII 8) 
      \t          TAB (ASCII 9) 
      \n          LF  (ASCII 10) 
      \v          VT  (ASCII 11) 
      \f          FF  (ASCII 12) 
      \r          CR  (ASCII 13) 
      \e          ESC (ASCII 27) 
      \377        Up to 3 octal digits - literal byte 
      \xFF        Up to 2 hexadecimal digits - literal byte 
      \u1234      4 hexadecimal digits - Unicode character 
      \U12345678  8 hexadecimal digits - Unicode character
</pre>
<p>All other escape sequences are reserved. Note that
<code><nobr>\0</nobr></code>, meaning a <code><nobr>NUL</nobr></code>
character (ASCII 0), is a special case of the octal escape sequence.
<p>Unicode characters specified with <code><nobr>\u</nobr></code> or
<code><nobr>\U</nobr></code> are converted to UTF-8. For example, the
following lines are all equivalent:
<p><pre>
      db `\u263a`            ; UTF-8 smiley face 
      db `\xe2\x98\xba`      ; UTF-8 smiley face 
      db 0E2h, 098h, 0BAh    ; UTF-8 smiley face
</pre>
<h4><a name="section-3.4.3">3.4.3 Character Constants</a></h4>
<p>A character constant consists of a string up to eight bytes long, used
in an expression context. It is treated as if it was an integer.
<p>A character constant with more than one byte will be arranged with
little-endian order in mind: if you code
<p><pre>
          mov eax,'abcd'
</pre>
<p>then the constant generated is not <code><nobr>0x61626364</nobr></code>,
but <code><nobr>0x64636261</nobr></code>, so that if you were then to store
the value into memory, it would read <code><nobr>abcd</nobr></code> rather
than <code><nobr>dcba</nobr></code>. This is also the sense of character
constants understood by the Pentium's <code><nobr>CPUID</nobr></code>
instruction.
<h4><a name="section-3.4.4">3.4.4 String Constants</a></h4>
<p>String constants are character strings used in the context of some
pseudo-instructions, namely the <code><nobr>DB</nobr></code> family and
<code><nobr>INCBIN</nobr></code> (where it represents a filename.) They are
also used in certain preprocessor directives.
<p>A string constant looks like a character constant, only longer. It is
treated as a concatenation of maximum-size character constants for the
conditions. So the following are equivalent:
<p><pre>
      db    'hello'               ; string constant 
      db    'h','e','l','l','o'   ; equivalent character constants
</pre>
<p>And the following are also equivalent:
<p><pre>
      dd    'ninechars'           ; doubleword string constant 
      dd    'nine','char','s'     ; becomes three doublewords 
      db    'ninechars',0,0,0     ; and really looks like this
</pre>
<p>Note that when used in a string-supporting context, quoted strings are
treated as a string constants even if they are short enough to be a
character constant, because otherwise <code><nobr>db 'ab'</nobr></code>
would have the same effect as <code><nobr>db 'a'</nobr></code>, which would
be silly. Similarly, three-character or four-character constants are
treated as strings when they are operands to <code><nobr>DW</nobr></code>,
and so forth.
<h4><a name="section-3.4.5">3.4.5 Unicode Strings</a></h4>
<p>The special operators <code><nobr>__utf16__</nobr></code>,
<code><nobr>__utf16le__</nobr></code>,
<code><nobr>__utf16be__</nobr></code>, <code><nobr>__utf32__</nobr></code>,
<code><nobr>__utf32le__</nobr></code> and
<code><nobr>__utf32be__</nobr></code> allows definition of Unicode strings.
They take a string in UTF-8 format and converts it to UTF-16 or UTF-32,
respectively. Unless the <code><nobr>be</nobr></code> forms are specified,
the output is littleendian.
<p>For example:
<p><pre>
%define u(x) __utf16__(x) 
%define w(x) __utf32__(x) 

      dw u('C:\WINDOWS'), 0       ; Pathname in UTF-16 
      dd w(`A + B = \u206a`), 0   ; String in UTF-32
</pre>
<p>The UTF operators can be applied either to strings passed to the
<code><nobr>DB</nobr></code> family instructions, or to character constants
in an expression context.
<h4><a name="section-3.4.6">3.4.6 Floating-Point Constants</a></h4>
<p>Floating-point constants are acceptable only as arguments to
<code><nobr>DB</nobr></code>, <code><nobr>DW</nobr></code>,
<code><nobr>DD</nobr></code>, <code><nobr>DQ</nobr></code>,
<code><nobr>DT</nobr></code>, and <code><nobr>DO</nobr></code>, or as
arguments to the special operators <code><nobr>__float8__</nobr></code>,
<code><nobr>__float16__</nobr></code>,
<code><nobr>__float32__</nobr></code>,
<code><nobr>__float64__</nobr></code>,
<code><nobr>__float80m__</nobr></code>,
<code><nobr>__float80e__</nobr></code>,
<code><nobr>__float128l__</nobr></code>, and
<code><nobr>__float128h__</nobr></code>.
<p>Floating-point constants are expressed in the traditional form: digits,
then a period, then optionally more digits, then optionally an
<code><nobr>E</nobr></code> followed by an exponent. The period is
mandatory, so that NASM can distinguish between
<code><nobr>dd 1</nobr></code>, which declares an integer constant, and
<code><nobr>dd 1.0</nobr></code> which declares a floating-point constant.
<p>NASM also support C99-style hexadecimal floating-point:
<code><nobr>0x</nobr></code>, hexadecimal digits, period, optionally more
hexadeximal digits, then optionally a <code><nobr>P</nobr></code> followed
by a <em>binary</em> (not hexadecimal) exponent in decimal notation. As an
extension, NASM additionally supports the <code><nobr>0h</nobr></code> and
<code><nobr>$</nobr></code> prefixes for hexadecimal, as well binary and
octal floating-point, using the <code><nobr>0b</nobr></code> or
<code><nobr>0y</nobr></code> and <code><nobr>0o</nobr></code> or
<code><nobr>0q</nobr></code> prefixes, respectively.
<p>Underscores to break up groups of digits are permitted in floating-point
constants as well.
<p>Some examples:
<p><pre>
      db    -0.2                    ; "Quarter precision" 
      dw    -0.5                    ; IEEE 754r/SSE5 half precision 
      dd    1.2                     ; an easy one 
      dd    1.222_222_222           ; underscores are permitted 
      dd    0x1p+2                  ; 1.0x2^2 = 4.0 
      dq    0x1p+32                 ; 1.0x2^32 = 4 294 967 296.0 
      dq    1.e10                   ; 10 000 000 000.0 
      dq    1.e+10                  ; synonymous with 1.e10 
      dq    1.e-10                  ; 0.000 000 000 1 
      dt    3.141592653589793238462 ; pi 
      do    1.e+4000                ; IEEE 754r quad precision
</pre>
<p>The 8-bit "quarter-precision" floating-point format is
sign:exponent:mantissa = 1:4:3 with an exponent bias of 7. This appears to
be the most frequently used 8-bit floating-point format, although it is not
covered by any formal standard. This is sometimes called a "minifloat."
<p>The special operators are used to produce floating-point numbers in
other contexts. They produce the binary representation of a specific
floating-point number as an integer, and can use anywhere integer constants
are used in an expression. <code><nobr>__float80m__</nobr></code> and
<code><nobr>__float80e__</nobr></code> produce the 64-bit mantissa and
16-bit exponent of an 80-bit floating-point number, and
<code><nobr>__float128l__</nobr></code> and
<code><nobr>__float128h__</nobr></code> produce the lower and upper 64-bit
halves of a 128-bit floating-point number, respectively.
<p>For example:
<p><pre>
      mov    rax,__float64__(3.141592653589793238462)
</pre>
<p>... would assign the binary representation of pi as a 64-bit floating
point number into <code><nobr>RAX</nobr></code>. This is exactly equivalent
to:
<p><pre>
      mov    rax,0x400921fb54442d18
</pre>
<p>NASM cannot do compile-time arithmetic on floating-point constants. This
is because NASM is designed to be portable - although it always generates
code to run on x86 processors, the assembler itself can run on any system
with an ANSI C compiler. Therefore, the assembler cannot guarantee the
presence of a floating-point unit capable of handling the Intel number
formats, and so for NASM to be able to do floating arithmetic it would have
to include its own complete set of floating-point routines, which would
significantly increase the size of the assembler for very little benefit.
<p>The special tokens <code><nobr>__Infinity__</nobr></code>,
<code><nobr>__QNaN__</nobr></code> (or <code><nobr>__NaN__</nobr></code>)
and <code><nobr>__SNaN__</nobr></code> can be used to generate infinities,
quiet NaNs, and signalling NaNs, respectively. These are normally used as
macros:
<p><pre>
%define Inf __Infinity__ 
%define NaN __QNaN__ 

      dq    +1.5, -Inf, NaN         ; Double-precision constants
</pre>
<p>The <code><nobr>%use fp</nobr></code> standard macro package contains a
set of convenience macros. See <a href="nasmdoc5.html#section-5.3">section
5.3</a>.
<h4><a name="section-3.4.7">3.4.7 Packed BCD Constants</a></h4>
<p>x87-style packed BCD constants can be used in the same contexts as
80-bit floating-point numbers. They are suffixed with
<code><nobr>p</nobr></code> or prefixed with <code><nobr>0p</nobr></code>,
and can include up to 18 decimal digits.
<p>As with other numeric constants, underscores can be used to separate
digits.
<p>For example:
<p><pre>
      dt 12_345_678_901_245_678p 
      dt -12_345_678_901_245_678p 
      dt +0p33 
      dt 33p
</pre>
<h3><a name="section-3.5">3.5 Expressions</a></h3>
<p>Expressions in NASM are similar in syntax to those in C. Expressions are
evaluated as 64-bit integers which are then adjusted to the appropriate
size.
<p>NASM supports two special tokens in expressions, allowing calculations
to involve the current assembly position: the <code><nobr>$</nobr></code>
and <code><nobr>$$</nobr></code> tokens. <code><nobr>$</nobr></code>
evaluates to the assembly position at the beginning of the line containing
the expression; so you can code an infinite loop using
<code><nobr>JMP $</nobr></code>. <code><nobr>$$</nobr></code> evaluates to
the beginning of the current section; so you can tell how far into the
section you are by using <code><nobr>($-$$)</nobr></code>.
<p>The arithmetic operators provided by NASM are listed here, in increasing
order of precedence.
<h4><a name="section-3.5.1">3.5.1 <code><nobr>|</nobr></code>: Bitwise OR Operator</a></h4>
<p>The <code><nobr>|</nobr></code> operator gives a bitwise OR, exactly as
performed by the <code><nobr>OR</nobr></code> machine instruction. Bitwise
OR is the lowest-priority arithmetic operator supported by NASM.
<h4><a name="section-3.5.2">3.5.2 <code><nobr>^</nobr></code>: Bitwise XOR Operator</a></h4>
<p><code><nobr>^</nobr></code> provides the bitwise XOR operation.
<h4><a name="section-3.5.3">3.5.3 <code><nobr>&amp;</nobr></code>: Bitwise AND Operator</a></h4>
<p><code><nobr>&amp;</nobr></code> provides the bitwise AND operation.
<h4><a name="section-3.5.4">3.5.4 <code><nobr>&lt;&lt;</nobr></code> and <code><nobr>&gt;&gt;</nobr></code>: Bit Shift Operators</a></h4>
<p><code><nobr>&lt;&lt;</nobr></code> gives a bit-shift to the left, just
as it does in C. So <code><nobr>5&lt;&lt;3</nobr></code> evaluates to 5
times 8, or 40. <code><nobr>&gt;&gt;</nobr></code> gives a bit-shift to the
right; in NASM, such a shift is <em>always</em> unsigned, so that the bits
shifted in from the left-hand end are filled with zero rather than a
sign-extension of the previous highest bit.
<h4><a name="section-3.5.5">3.5.5 <code><nobr>+</nobr></code> and <code><nobr>-</nobr></code>: Addition and Subtraction Operators</a></h4>
<p>The <code><nobr>+</nobr></code> and <code><nobr>-</nobr></code>
operators do perfectly ordinary addition and subtraction.
<h4><a name="section-3.5.6">3.5.6 <code><nobr>*</nobr></code>, <code><nobr>/</nobr></code>, <code><nobr>//</nobr></code>, <code><nobr>%</nobr></code> and <code><nobr>%%</nobr></code>: Multiplication and Division</a></h4>
<p><code><nobr>*</nobr></code> is the multiplication operator.
<code><nobr>/</nobr></code> and <code><nobr>//</nobr></code> are both
division operators: <code><nobr>/</nobr></code> is unsigned division and
<code><nobr>//</nobr></code> is signed division. Similarly,
<code><nobr>%</nobr></code> and <code><nobr>%%</nobr></code> provide
unsigned and signed modulo operators respectively.
<p>NASM, like ANSI C, provides no guarantees about the sensible operation
of the signed modulo operator.
<p>Since the <code><nobr>%</nobr></code> character is used extensively by
the macro preprocessor, you should ensure that both the signed and unsigned
modulo operators are followed by white space wherever they appear.
<h4><a name="section-3.5.7">3.5.7 Unary Operators</a></h4>
<p>The highest-priority operators in NASM's expression grammar are those
which only apply to one argument. These are <code><nobr>+</nobr></code>,
<code><nobr>-</nobr></code>, <code><nobr>~</nobr></code>,
<code><nobr>!</nobr></code>, <code><nobr>SEG</nobr></code>, and the integer
functions operators.
<p><code><nobr>-</nobr></code> negates its operand,
<code><nobr>+</nobr></code> does nothing (it's provided for symmetry with
<code><nobr>-</nobr></code>), <code><nobr>~</nobr></code> computes the
one's complement of its operand, <code><nobr>!</nobr></code> is the logical
negation operator.
<p><code><nobr>SEG</nobr></code> provides the segment address of its
operand (explained in more detail in <a href="#section-3.6">section
3.6</a>).
<p>A set of additional operators with leading and trailing double
underscores are used to implement the integer functions of the
<code><nobr>ifunc</nobr></code> macro package, see
<a href="nasmdoc5.html#section-5.4">section 5.4</a>.
<h3><a name="section-3.6">3.6 <code><nobr>SEG</nobr></code> and <code><nobr>WRT</nobr></code></a></h3>
<p>When writing large 16-bit programs, which must be split into multiple
segments, it is often necessary to be able to refer to the segment part of
the address of a symbol. NASM supports the <code><nobr>SEG</nobr></code>
operator to perform this function.
<p>The <code><nobr>SEG</nobr></code> operator returns the
<em>preferred</em> segment base of a symbol, defined as the segment base
relative to which the offset of the symbol makes sense. So the code
<p><pre>
        mov     ax,seg symbol 
        mov     es,ax 
        mov     bx,symbol
</pre>
<p>will load <code><nobr>ES:BX</nobr></code> with a valid pointer to the
symbol <code><nobr>symbol</nobr></code>.
<p>Things can be more complex than this: since 16-bit segments and groups
may overlap, you might occasionally want to refer to some symbol using a
different segment base from the preferred one. NASM lets you do this, by
the use of the <code><nobr>WRT</nobr></code> (With Reference To) keyword.
So you can do things like
<p><pre>
        mov     ax,weird_seg        ; weird_seg is a segment base 
        mov     es,ax 
        mov     bx,symbol wrt weird_seg
</pre>
<p>to load <code><nobr>ES:BX</nobr></code> with a different, but
functionally equivalent, pointer to the symbol
<code><nobr>symbol</nobr></code>.
<p>NASM supports far (inter-segment) calls and jumps by means of the syntax
<code><nobr>call segment:offset</nobr></code>, where
<code><nobr>segment</nobr></code> and <code><nobr>offset</nobr></code> both
represent immediate values. So to call a far procedure, you could code
either of
<p><pre>
        call    (seg procedure):procedure 
        call    weird_seg:(procedure wrt weird_seg)
</pre>
<p>(The parentheses are included for clarity, to show the intended parsing
of the above instructions. They are not necessary in practice.)
<p>NASM supports the syntax <code><nobr>call far procedure</nobr></code> as
a synonym for the first of the above usages. <code><nobr>JMP</nobr></code>
works identically to <code><nobr>CALL</nobr></code> in these examples.
<p>To declare a far pointer to a data item in a data segment, you must code
<p><pre>
        dw      symbol, seg symbol
</pre>
<p>NASM supports no convenient synonym for this, though you can always
invent one using the macro processor.
<h3><a name="section-3.7">3.7 <code><nobr>STRICT</nobr></code>: Inhibiting Optimization</a></h3>
<p>When assembling with the optimizer set to level 2 or higher (see
<a href="nasmdoc2.html#section-2.1.22">section 2.1.22</a>), NASM will use
size specifiers (<code><nobr>BYTE</nobr></code>,
<code><nobr>WORD</nobr></code>, <code><nobr>DWORD</nobr></code>,
<code><nobr>QWORD</nobr></code>, <code><nobr>TWORD</nobr></code>,
<code><nobr>OWORD</nobr></code>, <code><nobr>YWORD</nobr></code> or
<code><nobr>ZWORD</nobr></code>), but will give them the smallest possible
size. The keyword <code><nobr>STRICT</nobr></code> can be used to inhibit
optimization and force a particular operand to be emitted in the specified
size. For example, with the optimizer on, and in
<code><nobr>BITS 16</nobr></code> mode,
<p><pre>
        push dword 33
</pre>
<p>is encoded in three bytes <code><nobr>66 6A 21</nobr></code>, whereas
<p><pre>
        push strict dword 33
</pre>
<p>is encoded in six bytes, with a full dword immediate operand
<code><nobr>66 68 21 00 00 00</nobr></code>.
<p>With the optimizer off, the same code (six bytes) is generated whether
the <code><nobr>STRICT</nobr></code> keyword was used or not.
<h3><a name="section-3.8">3.8 Critical Expressions</a></h3>
<p>Although NASM has an optional multi-pass optimizer, there are some
expressions which must be resolvable on the first pass. These are called
<em>Critical Expressions</em>.
<p>The first pass is used to determine the size of all the assembled code
and data, so that the second pass, when generating all the code, knows all
the symbol addresses the code refers to. So one thing NASM can't handle is
code whose size depends on the value of a symbol declared after the code in
question. For example,
<p><pre>
        times (label-$) db 0 
label:  db      'Where am I?'
</pre>
<p>The argument to <code><nobr>TIMES</nobr></code> in this case could
equally legally evaluate to anything at all; NASM will reject this example
because it cannot tell the size of the <code><nobr>TIMES</nobr></code> line
when it first sees it. It will just as firmly reject the slightly
paradoxical code
<p><pre>
        times (label-$+1) db 0 
label:  db      'NOW where am I?'
</pre>
<p>in which <em>any</em> value for the <code><nobr>TIMES</nobr></code>
argument is by definition wrong!
<p>NASM rejects these examples by means of a concept called a <em>critical
expression</em>, which is defined to be an expression whose value is
required to be computable in the first pass, and which must therefore
depend only on symbols defined before it. The argument to the
<code><nobr>TIMES</nobr></code> prefix is a critical expression.
<h3><a name="section-3.9">3.9 Local Labels</a></h3>
<p>NASM gives special treatment to symbols beginning with a period. A label
beginning with a single period is treated as a <em>local</em> label, which
means that it is associated with the previous non-local label. So, for
example:
<p><pre>
label1  ; some code 

.loop 
        ; some more code 

        jne     .loop 
        ret 

label2  ; some code 

.loop 
        ; some more code 

        jne     .loop 
        ret
</pre>
<p>In the above code fragment, each <code><nobr>JNE</nobr></code>
instruction jumps to the line immediately before it, because the two
definitions of <code><nobr>.loop</nobr></code> are kept separate by virtue
of each being associated with the previous non-local label.
<p>This form of local label handling is borrowed from the old Amiga
assembler DevPac; however, NASM goes one step further, in allowing access
to local labels from other parts of the code. This is achieved by means of
<em>defining</em> a local label in terms of the previous non-local label:
the first definition of <code><nobr>.loop</nobr></code> above is really
defining a symbol called <code><nobr>label1.loop</nobr></code>, and the
second defines a symbol called <code><nobr>label2.loop</nobr></code>. So,
if you really needed to, you could write
<p><pre>
label3  ; some more code 
        ; and some more 

        jmp label1.loop
</pre>
<p>Sometimes it is useful - in a macro, for instance - to be able to define
a label which can be referenced from anywhere but which doesn't interfere
with the normal local-label mechanism. Such a label can't be non-local
because it would interfere with subsequent definitions of, and references
to, local labels; and it can't be local because the macro that defined it
wouldn't know the label's full name. NASM therefore introduces a third type
of label, which is probably only useful in macro definitions: if a label
begins with the special prefix <code><nobr>..@</nobr></code>, then it does
nothing to the local label mechanism. So you could code
<p><pre>
label1:                         ; a non-local label 
.local:                         ; this is really label1.local 
..@foo:                         ; this is a special symbol 
label2:                         ; another non-local label 
.local:                         ; this is really label2.local 

        jmp     ..@foo          ; this will jump three lines up
</pre>
<p>NASM has the capacity to define other special symbols beginning with a
double period: for example, <code><nobr>..start</nobr></code> is used to
specify the entry point in the <code><nobr>obj</nobr></code> output format
(see <a href="nasmdoc7.html#section-7.4.6">section 7.4.6</a>),
<code><nobr>..imagebase</nobr></code> is used to find out the offset from a
base address of the current image in the <code><nobr>win64</nobr></code>
output format (see <a href="nasmdoc7.html#section-7.6.1">section
7.6.1</a>). So just keep in mind that symbols beginning with a double
period are special.
<p align=center><a href="nasmdoc4.html">Next Chapter</a> |
<a href="nasmdoc2.html">Previous Chapter</a> |
<a href="nasmdoc0.html">Contents</a> |
<a href="nasmdoci.html">Index</a>
</body></html>