/usr/x86_64-w64-mingw32/lib/ocaml/int64.mli is in ocaml-mingw-w64-x86-64 4.01.0~20140328-1build3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | (***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(** 64-bit integers.
This module provides operations on the type [int64] of
signed 64-bit integers. Unlike the built-in [int] type,
the type [int64] is guaranteed to be exactly 64-bit wide on all
platforms. All arithmetic operations over [int64] are taken
modulo 2{^64}
Performance notice: values of type [int64] occupy more memory
space than values of type [int], and arithmetic operations on
[int64] are generally slower than those on [int]. Use [int64]
only when the application requires exact 64-bit arithmetic.
*)
val zero : int64
(** The 64-bit integer 0. *)
val one : int64
(** The 64-bit integer 1. *)
val minus_one : int64
(** The 64-bit integer -1. *)
external neg : int64 -> int64 = "%int64_neg"
(** Unary negation. *)
external add : int64 -> int64 -> int64 = "%int64_add"
(** Addition. *)
external sub : int64 -> int64 -> int64 = "%int64_sub"
(** Subtraction. *)
external mul : int64 -> int64 -> int64 = "%int64_mul"
(** Multiplication. *)
external div : int64 -> int64 -> int64 = "%int64_div"
(** Integer division. Raise [Division_by_zero] if the second
argument is zero. This division rounds the real quotient of
its arguments towards zero, as specified for {!Pervasives.(/)}. *)
external rem : int64 -> int64 -> int64 = "%int64_mod"
(** Integer remainder. If [y] is not zero, the result
of [Int64.rem x y] satisfies the following property:
[x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y)].
If [y = 0], [Int64.rem x y] raises [Division_by_zero]. *)
val succ : int64 -> int64
(** Successor. [Int64.succ x] is [Int64.add x Int64.one]. *)
val pred : int64 -> int64
(** Predecessor. [Int64.pred x] is [Int64.sub x Int64.one]. *)
val abs : int64 -> int64
(** Return the absolute value of its argument. *)
val max_int : int64
(** The greatest representable 64-bit integer, 2{^63} - 1. *)
val min_int : int64
(** The smallest representable 64-bit integer, -2{^63}. *)
external logand : int64 -> int64 -> int64 = "%int64_and"
(** Bitwise logical and. *)
external logor : int64 -> int64 -> int64 = "%int64_or"
(** Bitwise logical or. *)
external logxor : int64 -> int64 -> int64 = "%int64_xor"
(** Bitwise logical exclusive or. *)
val lognot : int64 -> int64
(** Bitwise logical negation *)
external shift_left : int64 -> int -> int64 = "%int64_lsl"
(** [Int64.shift_left x y] shifts [x] to the left by [y] bits.
The result is unspecified if [y < 0] or [y >= 64]. *)
external shift_right : int64 -> int -> int64 = "%int64_asr"
(** [Int64.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits.
The result is unspecified if [y < 0] or [y >= 64]. *)
external shift_right_logical : int64 -> int -> int64 = "%int64_lsr"
(** [Int64.shift_right_logical x y] shifts [x] to the right by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x].
The result is unspecified if [y < 0] or [y >= 64]. *)
external of_int : int -> int64 = "%int64_of_int"
(** Convert the given integer (type [int]) to a 64-bit integer
(type [int64]). *)
external to_int : int64 -> int = "%int64_to_int"
(** Convert the given 64-bit integer (type [int64]) to an
integer (type [int]). On 64-bit platforms, the 64-bit integer
is taken modulo 2{^63}, i.e. the high-order bit is lost
during the conversion. On 32-bit platforms, the 64-bit integer
is taken modulo 2{^31}, i.e. the top 33 bits are lost
during the conversion. *)
external of_float : float -> int64 = "caml_int64_of_float"
(** Convert the given floating-point number to a 64-bit integer,
discarding the fractional part (truncate towards 0).
The result of the conversion is undefined if, after truncation,
the number is outside the range \[{!Int64.min_int}, {!Int64.max_int}\]. *)
external to_float : int64 -> float = "caml_int64_to_float"
(** Convert the given 64-bit integer to a floating-point number. *)
external of_int32 : int32 -> int64 = "%int64_of_int32"
(** Convert the given 32-bit integer (type [int32])
to a 64-bit integer (type [int64]). *)
external to_int32 : int64 -> int32 = "%int64_to_int32"
(** Convert the given 64-bit integer (type [int64]) to a
32-bit integer (type [int32]). The 64-bit integer
is taken modulo 2{^32}, i.e. the top 32 bits are lost
during the conversion. *)
external of_nativeint : nativeint -> int64 = "%int64_of_nativeint"
(** Convert the given native integer (type [nativeint])
to a 64-bit integer (type [int64]). *)
external to_nativeint : int64 -> nativeint = "%int64_to_nativeint"
(** Convert the given 64-bit integer (type [int64]) to a
native integer. On 32-bit platforms, the 64-bit integer
is taken modulo 2{^32}. On 64-bit platforms,
the conversion is exact. *)
external of_string : string -> int64 = "caml_int64_of_string"
(** Convert the given string to a 64-bit integer.
The string is read in decimal (by default) or in hexadecimal,
octal or binary if the string begins with [0x], [0o] or [0b]
respectively.
Raise [Failure "int_of_string"] if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type [int64]. *)
val to_string : int64 -> string
(** Return the string representation of its argument, in decimal. *)
external bits_of_float : float -> int64 = "caml_int64_bits_of_float"
(** Return the internal representation of the given float according
to the IEEE 754 floating-point 'double format' bit layout.
Bit 63 of the result represents the sign of the float;
bits 62 to 52 represent the (biased) exponent; bits 51 to 0
represent the mantissa. *)
external float_of_bits : int64 -> float = "caml_int64_float_of_bits"
(** Return the floating-point number whose internal representation,
according to the IEEE 754 floating-point 'double format' bit layout,
is the given [int64]. *)
type t = int64
(** An alias for the type of 64-bit integers. *)
val compare: t -> t -> int
(** The comparison function for 64-bit integers, with the same specification as
{!Pervasives.compare}. Along with the type [t], this function [compare]
allows the module [Int64] to be passed as argument to the functors
{!Set.Make} and {!Map.Make}. *)
(**/**)
(** {6 Deprecated functions} *)
external format : string -> int64 -> string = "caml_int64_format"
(** Do not use this deprecated function. Instead,
used {!Printf.sprintf} with a [%L...] format. *)
|