/usr/share/octave/packages/control-3.0.0/doc-cache is in octave-control 3.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 | # doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 88
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
Anderson
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Frequency-weighted coprime factorization controller reduction.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Frequency-weighted coprime factorization controller reduction.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
BMWengine
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1277
-- Function File: SYS = BMWengine ()
-- Function File: SYS = BMWengine ("SCALED")
-- Function File: SYS = BMWengine ("UNSCALED")
Model of the BMW 4-cylinder engine at ETH Zurich's control
laboratory.
OPERATING POINT
Drosselklappenstellung alpha_DK = 10.3 Grad
Saugrohrdruck p_s = 0.48 bar
Motordrehzahl n = 860 U/min
Lambda-Messwert lambda = 1.000
Relativer Wandfilminhalt nu = 1
INPUTS
U_1 Sollsignal Drosselklappenstellung [Grad]
U_2 Relative Einspritzmenge [-]
U_3 Zuendzeitpunkt [Grad KW]
M_L Lastdrehmoment [Nm]
STATES
X_1 Drosselklappenstellung [Grad]
X_2 Saugrohrdruck [bar]
X_3 Motordrehzahl [U/min]
X_4 Messwert Lamba-Sonde [-]
X_5 Relativer Wandfilminhalt [-]
OUTPUTS
Y_1 Motordrehzahl [U/min]
Y_2 Messwert Lambda-Sonde [-]
SCALING
U_1N, X_1N 1 Grad
U_2N, X_4N, X_5N, Y_2N 0.05
U_3N 1.6 Grad KW
X_2N 0.05 bar
X_3N, Y_1N 200 U/min
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Model of the BMW 4-cylinder engine at ETH Zurich's control laboratory.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
Boeing707
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 389
-- Function File: SYS = Boeing707 ()
Creates a linearized state-space model of a Boeing 707-321 aircraft
at V=80 m/s (M = 0.26, GA0 = -3 deg, ALPHA0 = 4 deg, KAPPA = 50
deg).
System inputs: (1) thrust and (2) elevator angle.
System outputs: (1) airspeed and (2) pitch angle.
*Reference*: R. Brockhaus: 'Flugregelung' (Flight Control),
Springer, 1994.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Creates a linearized state-space model of a Boeing 707-321 aircraft at
V=80 m/s
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
MDSSystem
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 154
Robust control of a mass-damper-spring system. Type 'which MDSSystem'
to locate, 'edit MDSSystem' to open and simply 'MDSSystem' to run the
example file.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Robust control of a mass-damper-spring system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
Madievski
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2420
Demonstration of frequency-weighted controller reduction. The system
considered in this example has been studied by Madievski and Anderson
[1] and comprises four spinning disks. The disks are connected by a
flexible rod, a motor applies torque to the third disk, and the angular
displacement of the first disk is the variable of interest. The
state-space model of eighth order is non-minimumphase and unstable. The
continuous-time LQG controller used in [1] is open-loop stable and of
eighth order like the plant. This eighth-order controller shall be
reduced by frequency-weighted singular perturbation approximation (SPA).
The major aim of this reduction is the preservation of the closed-loop
transfer function. This means that the error in approximation of the
controller K by the reduced-order controller KR is minimized by
min ||W (K-Kr) V||
Kr inf
where weights W and V are dictated by the requirement to preserve (as
far as possible) the closed-loop transfer function. In minimizing the
error, they cause the approximation process for K to be more accurate at
certain frequencies. Suggested by [1] is the use of the following
stability and performance enforcing weights:
-1 -1
W = (I - G K) G, V = (I - G K)
This example script reduces the eighth-order controller to orders
four and two by the function call 'Kr = spaconred (G, K, nr, 'feedback',
'-')' where argument NR denotes the desired order (4 or 2). The
key-value pair ''feedback', '-'' allows the reduction of negative
feedback controllers while the default setting expects positive feedback
controllers. The frequency responses of the original and reduced-order
controllers are depicted in figure 1, the step responses of the closed
loop in figure 2. There is no visible difference between the step
responses of the closed-loop systems with original (blue) and fourth
order (green) controllers. The second order controller (red) causes
ripples in the step response, but otherwise the behavior of the system
is unaltered. This leads to the conclusion that function 'spaconred' is
well suited to reduce the order of controllers considerably, while
stability and performance are retained.
*Reference*
[1] Madievski, A.G. and Anderson, B.D.O. 'Sampled-Data Controller
Reduction Procedure', IEEE Transactions of Automatic Control, Vol. 40,
No. 11, November 1995
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Demonstration of frequency-weighted controller reduction.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
VLFamp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1003
-- Function File: VLFamp
-- Function File: RESULT = VLFamp (VERBOSE)
Calculations on a two stage preamp for a multi-turn, air-core
solenoid loop antenna for the reception of signals below 30kHz.
The Octave Control Package functions are used extensively to
approximate the behavior of operational amplifiers and passive
electrical circuit elements.
This example presents several 'screen' pages of documentation of
the calculations and some reasoning about why. Plots of the
results are presented in most cases.
The process is to display a 'screen' page of text followed by the
calculation and a 'Press return to continue' message. To proceed
in the example, press return. ^C to exit.
At one point in the calculations, the process may seem to hang,
but, this is because of extensive calculations.
The returned transfer function is more than 100 characters long so
will wrap in screens that are narrow and appear jumbled.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Calculations on a two stage preamp for a multi-turn, air-core solenoid
loop ante
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
WestlandLynx
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1260
-- Function File: SYS = WestlandLynx ()
Model of the Westland Lynx Helicopter about hover.
INPUTS
main rotor collective
longitudinal cyclic
lateral cyclic
tail rotor collective
STATES
pitch attitude theta [rad]
roll attitude phi [rad]
roll rate (body-axis) p [rad/s]
pitch rate (body-axis) q [rad/s]
yaw rate xi [rad/s]
forward velocity v_x [ft/s]
lateral velocity v_y [ft/s]
vertical velocity v_z [ft/s]
OUTPUTS
heave velocity H_dot [ft/s]
pitch attitude theta [rad]
roll attitude phi [rad]
heading rate psi_dot [rad/s]
roll rate p [rad/s]
pitch rate q [rad/s]
*References*
[1] Skogestad, S. and Postlethwaite I. (2005) 'Multivariable
Feedback Control: Analysis and Design: Second Edition'. Wiley.
<http://www.nt.ntnu.no/users/skoge/book/2nd_edition/matlab_m/matfiles.html>
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Model of the Westland Lynx Helicopter about hover.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
append
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 116
-- Function File: SYS = append (SYS1, SYS2, ..., SYSN)
Group LTI models by appending their inputs and outputs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Group LTI models by appending their inputs and outputs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
arx
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1953
-- Function File: [SYS, X0] = arx (DAT, N, ...)
-- Function File: [SYS, X0] = arx (DAT, N, OPT, ...)
-- Function File: [SYS, X0] = arx (DAT, OPT, ...)
-- Function File: [SYS, X0] = arx (DAT, 'NA', NA, 'NB', NB)
Estimate ARX model using QR factorization.
A(q) y(t) = B(q) u(t) + e(t)
*Inputs*
DAT
iddata identification dataset containing the measurements,
i.e. time-domain signals.
N
The desired order of the resulting model SYS.
...
Optional pairs of keys and values. ''key1', value1, 'key2',
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
SYS
Discrete-time transfer function model. If the second output
argument X0 is returned, SYS becomes a state-space model.
X0
Initial state vector. If DAT is a multi-experiment dataset,
X0 becomes a cell vector containing an initial state vector
for each experiment.
*Option Keys and Values*
'NA'
Order of the polynomial A(q) and number of poles.
'NB'
Order of the polynomial B(q)+1 and number of zeros+1. NB <=
NA.
'NK'
Input-output delay specified as number of sampling instants.
Scalar positive integer. This corresponds to a call to
function 'nkshift', followed by padding the B polynomial with
NK leading zeros.
*Algorithm*
Uses the formulae given in [1] on pages 318-319, 'Solving for the
LS Estimate by QR Factorization'. For the initial conditions,
SLICOT IB01CD is used by courtesy of NICONET e.V.
(http://www.slicot.org)
*References*
[1] Ljung, L. (1999) 'System Identification: Theory for the User:
Second Edition'. Prentice Hall, New Jersey, USA.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Estimate ARX model using QR factorization.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
augstate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 264
-- Function File: AUGSYS = augstate (SYS)
Append state vector x of system SYS to output vector y.
. .
x = A x + B u x = A x + B u
y = C x + D u => y = C x + D u
x = I x + O u
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Append state vector x of system SYS to output vector y.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
augw
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2976
-- Function File: P = augw (G, W1, W2, W3)
Extend plant for stacked S/KS/T problem. Subsequently, the robust
control problem can be solved by h2syn or hinfsyn.
*Inputs*
G
LTI model of plant.
W1
LTI model of performance weight. Bounds the largest singular
values of sensitivity S. Model must be empty '[]', SISO or of
appropriate size.
W2
LTI model to penalize large control inputs. Bounds the
largest singular values of KS. Model must be empty '[]', SISO
or of appropriate size.
W3
LTI model of robustness and noise sensitivity weight. Bounds
the largest singular values of complementary sensitivity T.
Model must be empty '[]', SISO or of appropriate size.
All inputs must be proper/realizable. Scalars, vectors and
matrices are possible instead of LTI models.
*Outputs*
P
State-space model of augmented plant.
*Block Diagram*
| W1 | -W1*G | z1 = W1 r - W1 G u
| 0 | W2 | z2 = W2 u
P = | 0 | W3*G | z3 = W3 G u
|----+-------|
| I | -G | e = r - G u
+------+ z1
+---------------------------------------->| W1 |----->
| +------+
| +------+ z2
| +---------------------->| W2 |----->
| | +------+
r + e | +--------+ u | +--------+ y +------+ z3
----->(+)---+-->| K(s) |----+-->| G(s) |----+---->| W3 |----->
^ - +--------+ +--------+ | +------+
| |
+----------------------------------------+
+--------+
| |-----> z1 (p1x1) z1 = W1 e
r (px1) ----->| P(s) |-----> z2 (p2x1) z2 = W2 u
| |-----> z3 (p3x1) z3 = W3 y
u (mx1) ----->| |-----> e (px1) e = r - y
+--------+
+--------+
r ----->| |-----> z
| P(s) |
u +---->| |-----+ e
| +--------+ |
| |
| +--------+ |
+-----| K(s) |<----+
+--------+
*References*
[1] Skogestad, S. and Postlethwaite I. (2005) 'Multivariable
Feedback Control: Analysis and Design: Second Edition'. Wiley.
See also: h2syn, hinfsyn, mixsyn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Extend plant for stacked S/KS/T problem.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
bode
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1236
-- Function File: bode (SYS)
-- Function File: bode (SYS1, SYS2, ..., SYSN)
-- Function File: bode (SYS1, SYS2, ..., SYSN, W)
-- Function File: bode (SYS1, 'STYLE1', ..., SYSN, 'STYLEN')
-- Function File: [MAG, PHA, W] = bode (SYS)
-- Function File: [MAG, PHA, W] = bode (SYS, W)
Bode diagram of frequency response. If no output arguments are
given, the response is printed on the screen.
*Inputs*
SYS
LTI system. Must be a single-input and single-output (SISO)
system.
W
Optional vector of frequency values. If W is not specified,
it is calculated by the zeros and poles of the system.
Alternatively, the cell '{wmin, wmax}' specifies a frequency
range, where WMIN and WMAX denote minimum and maximum
frequencies in rad/s.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
MAG
Vector of magnitude. Has length of frequency vector W.
PHA
Vector of phase. Has length of frequency vector W.
W
Vector of frequency values used.
See also: nichols, nyquist, sigma.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Bode diagram of frequency response.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bodemag
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1189
-- Function File: bodemag (SYS)
-- Function File: bodemag (SYS1, SYS2, ..., SYSN)
-- Function File: bodemag (SYS1, SYS2, ..., SYSN, W)
-- Function File: bodemag (SYS1, 'STYLE1', ..., SYSN, 'STYLEN')
-- Function File: [MAG, W] = bodemag (SYS)
-- Function File: [MAG, W] = bodemag (SYS, W)
Bode magnitude diagram of frequency response. If no output
arguments are given, the response is printed on the screen.
*Inputs*
SYS
LTI system. Must be a single-input and single-output (SISO)
system.
W
Optional vector of frequency values. If W is not specified,
it is calculated by the zeros and poles of the system.
Alternatively, the cell '{wmin, wmax}' specifies a frequency
range, where WMIN and WMAX denote minimum and maximum
frequencies in rad/s.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
MAG
Vector of magnitude. Has length of frequency vector W.
W
Vector of frequency values used.
See also: bode, nichols, nyquist, sigma.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Bode magnitude diagram of frequency response.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
bstmodred
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6085
-- Function File: [GR, INFO] = bstmodred (G, ...)
-- Function File: [GR, INFO] = bstmodred (G, NR, ...)
-- Function File: [GR, INFO] = bstmodred (G, OPT, ...)
-- Function File: [GR, INFO] = bstmodred (G, NR, OPT, ...)
Model order reduction by Balanced Stochastic Truncation (BST)
method. The aim of model reduction is to find an LTI system GR of
order NR (nr < n) such that the input-output behaviour of GR
approximates the one from original system G.
BST is a relative error method which tries to minimize
-1
||G (G-Gr)|| = min
inf
*Inputs*
G
LTI model to be reduced.
NR
The desired order of the resulting reduced order system GR.
If not specified, NR is chosen automatically according to the
description of key 'ORDER'.
...
Optional pairs of keys and values. '"key1", value1, "key2",
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
GR
Reduced order state-space model.
INFO
Struct containing additional information.
INFO.N
The order of the original system G.
INFO.NS
The order of the ALPHA-stable subsystem of the original
system G.
INFO.HSV
The Hankel singular values of the phase system
corresponding to the ALPHA-stable part of the original
system G. The NS Hankel singular values are ordered
decreasingly.
INFO.NU
The order of the ALPHA-unstable subsystem of both the
original system G and the reduced-order system GR.
INFO.NR
The order of the obtained reduced order system GR.
*Option Keys and Values*
'ORDER', 'NR'
The desired order of the resulting reduced order system GR.
If not specified, NR is the sum of NU and the number of Hankel
singular values greater than 'MAX(TOL1,NS*EPS)'; NR can be
further reduced to ensure that 'HSV(NR-NU) > HSV(NR+1-NU)'.
'METHOD'
Approximation method for the H-infinity norm. Valid values
corresponding to this key are:
'SR-BTA', 'B'
Use the square-root Balance & Truncate method.
'BFSR-BTA', 'F'
Use the balancing-free square-root Balance & Truncate
method. Default method.
'SR-SPA', 'S'
Use the square-root Singular Perturbation Approximation
method.
'BFSR-SPA', 'P'
Use the balancing-free square-root Singular Perturbation
Approximation method.
'ALPHA'
Specifies the ALPHA-stability boundary for the eigenvalues of
the state dynamics matrix G.A. For a continuous-time system,
ALPHA <= 0 is the boundary value for the real parts of
eigenvalues, while for a discrete-time system, 0 <= ALPHA <= 1
represents the boundary value for the moduli of eigenvalues.
The ALPHA-stability domain does not include the boundary.
Default value is 0 for continuous-time systems and 1 for
discrete-time systems.
'BETA'
Use '[G, beta*I]' as new system G to combine absolute and
relative error methods. BETA > 0 specifies the
absolute/relative error weighting parameter. A large positive
value of BETA favours the minimization of the absolute
approximation error, while a small value of BETA is
appropriate for the minimization of the relative error. BETA
= 0 means a pure relative error method and can be used only if
rank(G.D) = rows(G.D) which means that the feedthrough matrice
must not be rank-deficient. Default value is 0.
'TOL1'
If 'ORDER' is not specified, TOL1 contains the tolerance for
determining the order of reduced system. For model reduction,
the recommended value of TOL1 lies in the interval [0.00001,
0.001]. TOL1 < 1. If TOL1 <= 0 on entry, the used default
value is TOL1 = NS*EPS, where NS is the number of ALPHA-stable
eigenvalues of A and EPS is the machine precision. If 'ORDER'
is specified, the value of TOL1 is ignored.
'TOL2'
The tolerance for determining the order of a minimal
realization of the phase system (see METHOD) corresponding to
the ALPHA-stable part of the given system. The recommended
value is TOL2 = NS*EPS. TOL2 <= TOL1 < 1. This value is used
by default if 'TOL2' is not specified or if TOL2 <= 0 on
entry.
'EQUIL', 'SCALE'
Boolean indicating whether equilibration (scaling) should be
performed on system G prior to order reduction. Default value
is true if 'G.scaled == false' and false if 'G.scaled ==
true'. Note that for MIMO models, proper scaling of both
inputs and outputs is of utmost importance. The input and
output scaling can *not* be done by the equilibration option
or the 'prescale' function because these functions perform
state transformations only. Furthermore, signals should not
be scaled simply to a certain range. For all inputs (or
outputs), a certain change should be of the same importance
for the model.
BST is often suitable to perform model reduction in order to obtain
low order design models for controller synthesis.
Approximation Properties:
* Guaranteed stability of reduced models
* Approximates simultaneously gain and phase
* Preserves non-minimum phase zeros
* Guaranteed a priori error bound
*Algorithm*
Uses SLICOT AB09HD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Model order reduction by Balanced Stochastic Truncation (BST) method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
btaconred
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6194
-- Function File: [KR, INFO] = btaconred (G, K, ...)
-- Function File: [KR, INFO] = btaconred (G, K, NCR, ...)
-- Function File: [KR, INFO] = btaconred (G, K, OPT, ...)
-- Function File: [KR, INFO] = btaconred (G, K, NCR, OPT, ...)
Controller reduction by frequency-weighted Balanced Truncation
Approximation (BTA). Given a plant G and a stabilizing controller
K, determine a reduced order controller KR such that the
closed-loop system is stable and closed-loop performance is
retained.
The algorithm tries to minimize the frequency-weighted error
||V (K-Kr) W|| = min
inf
where V and W denote output and input weightings.
*Inputs*
G
LTI model of the plant. It has m inputs, p outputs and n
states.
K
LTI model of the controller. It has p inputs, m outputs and
nc states.
NCR
The desired order of the resulting reduced order controller
KR. If not specified, NCR is chosen automatically according
to the description of key 'ORDER'.
...
Optional pairs of keys and values. '"key1", value1, "key2",
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
KR
State-space model of reduced order controller.
INFO
Struct containing additional information.
INFO.NCR
The order of the obtained reduced order controller KR.
INFO.NCS
The order of the alpha-stable part of original controller
K.
INFO.HSVC
The Hankel singular values of the alpha-stable part of K.
The NCS Hankel singular values are ordered decreasingly.
*Option Keys and Values*
'ORDER', 'NCR'
The desired order of the resulting reduced order controller
KR. If not specified, NCR is chosen automatically such that
states with Hankel singular values INFO.HSVC > TOL1 are
retained.
'METHOD'
Order reduction approach to be used as follows:
'SR', 'B'
Use the square-root Balance & Truncate method.
'BFSR', 'F'
Use the balancing-free square-root Balance & Truncate
method. Default method.
'WEIGHT'
Specifies the type of frequency-weighting as follows:
'NONE'
No weightings are used (V = I, W = I).
'LEFT', 'OUTPUT'
Use stability enforcing left (output) weighting
-1
V = (I-G*K) *G , W = I
'RIGHT', 'INPUT'
Use stability enforcing right (input) weighting
-1
V = I , W = (I-G*K) *G
'BOTH', 'PERFORMANCE'
Use stability and performance enforcing weightings
-1 -1
V = (I-G*K) *G , W = (I-G*K)
Default value.
'FEEDBACK'
Specifies whether K is a positive or negative feedback
controller:
'+'
Use positive feedback controller. Default value.
'-'
Use negative feedback controller.
'ALPHA'
Specifies the ALPHA-stability boundary for the eigenvalues of
the state dynamics matrix K.A. For a continuous-time
controller, ALPHA <= 0 is the boundary value for the real
parts of eigenvalues, while for a discrete-time controller, 0
<= ALPHA <= 1 represents the boundary value for the moduli of
eigenvalues. The ALPHA-stability domain does not include the
boundary. Default value is 0 for continuous-time controllers
and 1 for discrete-time controllers.
'TOL1'
If 'ORDER' is not specified, TOL1 contains the tolerance for
determining the order of the reduced controller. For model
reduction, the recommended value of TOL1 is c*info.hsvc(1),
where c lies in the interval [0.00001, 0.001]. Default value
is info.ncs*eps*info.hsvc(1). If 'ORDER' is specified, the
value of TOL1 is ignored.
'TOL2'
The tolerance for determining the order of a minimal
realization of the ALPHA-stable part of the given controller.
TOL2 <= TOL1. If not specified, ncs*eps*info.hsvc(1) is
chosen.
'GRAM-CTRB'
Specifies the choice of frequency-weighted controllability
Grammian as follows:
'STANDARD'
Choice corresponding to standard Enns' method [1].
Default method.
'ENHANCED'
Choice corresponding to the stability enhanced modified
Enns' method of [2].
'GRAM-OBSV'
Specifies the choice of frequency-weighted observability
Grammian as follows:
'STANDARD'
Choice corresponding to standard Enns' method [1].
Default method.
'ENHANCED'
Choice corresponding to the stability enhanced modified
Enns' method of [2].
'EQUIL', 'SCALE'
Boolean indicating whether equilibration (scaling) should be
performed on G and K prior to order reduction. Default value
is false if both 'G.scaled == true, K.scaled == true' and true
otherwise. Note that for MIMO models, proper scaling of both
inputs and outputs is of utmost importance. The input and
output scaling can *not* be done by the equilibration option
or the 'prescale' function because these functions perform
state transformations only. Furthermore, signals should not
be scaled simply to a certain range. For all inputs (or
outputs), a certain change should be of the same importance
for the model.
*Algorithm*
Uses SLICOT SB16AD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Controller reduction by frequency-weighted Balanced Truncation
Approximation (BT
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
btamodred
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7354
-- Function File: [GR, INFO] = btamodred (G, ...)
-- Function File: [GR, INFO] = btamodred (G, NR, ...)
-- Function File: [GR, INFO] = btamodred (G, OPT, ...)
-- Function File: [GR, INFO] = btamodred (G, NR, OPT, ...)
Model order reduction by frequency weighted Balanced Truncation
Approximation (BTA) method. The aim of model reduction is to find
an LTI system GR of order NR (nr < n) such that the input-output
behaviour of GR approximates the one from original system G.
BTA is an absolute error method which tries to minimize
||G-Gr|| = min
inf
||V (G-Gr) W|| = min
inf
where V and W denote output and input weightings.
*Inputs*
G
LTI model to be reduced.
NR
The desired order of the resulting reduced order system GR.
If not specified, NR is chosen automatically according to the
description of key 'ORDER'.
...
Optional pairs of keys and values. '"key1", value1, "key2",
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
GR
Reduced order state-space model.
INFO
Struct containing additional information.
INFO.N
The order of the original system G.
INFO.NS
The order of the ALPHA-stable subsystem of the original
system G.
INFO.HSV
The Hankel singular values of the ALPHA-stable part of
the original system G, ordered decreasingly.
INFO.NU
The order of the ALPHA-unstable subsystem of both the
original system G and the reduced-order system GR.
INFO.NR
The order of the obtained reduced order system GR.
*Option Keys and Values*
'ORDER', 'NR'
The desired order of the resulting reduced order system GR.
If not specified, NR is chosen automatically such that states
with Hankel singular values INFO.HSV > TOL1 are retained.
'LEFT', 'OUTPUT'
LTI model of the left/output frequency weighting V. Default
value is an identity matrix.
'RIGHT', 'INPUT'
LTI model of the right/input frequency weighting W. Default
value is an identity matrix.
'METHOD'
Approximation method for the L-infinity norm to be used as
follows:
'SR', 'B'
Use the square-root Balance & Truncate method.
'BFSR', 'F'
Use the balancing-free square-root Balance & Truncate
method. Default method.
'ALPHA'
Specifies the ALPHA-stability boundary for the eigenvalues of
the state dynamics matrix G.A. For a continuous-time system,
ALPHA <= 0 is the boundary value for the real parts of
eigenvalues, while for a discrete-time system, 0 <= ALPHA <= 1
represents the boundary value for the moduli of eigenvalues.
The ALPHA-stability domain does not include the boundary.
Default value is 0 for continuous-time systems and 1 for
discrete-time systems.
'TOL1'
If 'ORDER' is not specified, TOL1 contains the tolerance for
determining the order of the reduced model. For model
reduction, the recommended value of TOL1 is c*info.hsv(1),
where c lies in the interval [0.00001, 0.001]. Default value
is info.ns*eps*info.hsv(1). If 'ORDER' is specified, the
value of TOL1 is ignored.
'TOL2'
The tolerance for determining the order of a minimal
realization of the ALPHA-stable part of the given model. TOL2
<= TOL1. If not specified, ns*eps*info.hsv(1) is chosen.
'GRAM-CTRB'
Specifies the choice of frequency-weighted controllability
Grammian as follows:
'STANDARD'
Choice corresponding to a combination method [4] of the
approaches of Enns [1] and Lin-Chiu [2,3]. Default
method.
'ENHANCED'
Choice corresponding to the stability enhanced modified
combination method of [4].
'GRAM-OBSV'
Specifies the choice of frequency-weighted observability
Grammian as follows:
'STANDARD'
Choice corresponding to a combination method [4] of the
approaches of Enns [1] and Lin-Chiu [2,3]. Default
method.
'ENHANCED'
Choice corresponding to the stability enhanced modified
combination method of [4].
'ALPHA-CTRB'
Combination method parameter for defining the
frequency-weighted controllability Grammian. abs(alphac) <=
1. If alphac = 0, the choice of Grammian corresponds to the
method of Enns [1], while if alphac = 1, the choice of
Grammian corresponds to the method of Lin and Chiu [2,3].
Default value is 0.
'ALPHA-OBSV'
Combination method parameter for defining the
frequency-weighted observability Grammian. abs(alphao) <= 1.
If alphao = 0, the choice of Grammian corresponds to the
method of Enns [1], while if alphao = 1, the choice of
Grammian corresponds to the method of Lin and Chiu [2,3].
Default value is 0.
'EQUIL', 'SCALE'
Boolean indicating whether equilibration (scaling) should be
performed on system G prior to order reduction. This is done
by state transformations. Default value is true if 'G.scaled
== false' and false if 'G.scaled == true'. Note that for MIMO
models, proper scaling of both inputs and outputs is of utmost
importance. The input and output scaling can *not* be done by
the equilibration option or the 'prescale' function because
these functions perform state transformations only.
Furthermore, signals should not be scaled simply to a certain
range. For all inputs (or outputs), a certain change should
be of the same importance for the model.
Approximation Properties:
* Guaranteed stability of reduced models
* Lower guaranteed error bound
* Guaranteed a priori error bound
*References*
[1] Enns, D. 'Model reduction with balanced realizations: An error
bound and a frequency weighted generalization'. Proc. 23-th CDC,
Las Vegas, pp. 127-132, 1984.
[2] Lin, C.-A. and Chiu, T.-Y. 'Model reduction via
frequency-weighted balanced realization'. Control Theory and
Advanced Technology, vol. 8, pp. 341-351, 1992.
[3] Sreeram, V., Anderson, B.D.O and Madievski, A.G. 'New results
on frequency weighted balanced reduction technique'. Proc. ACC,
Seattle, Washington, pp. 4004-4009, 1995.
[4] Varga, A. and Anderson, B.D.O. 'Square-root balancing-free
methods for the frequency-weighted balancing related model
reduction'. (report in preparation)
*Algorithm*
Uses SLICOT AB09ID by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Model order reduction by frequency weighted Balanced Truncation
Approximation (B
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
care
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1626
-- Function File: [X, L, G] = care (A, B, Q, R)
-- Function File: [X, L, G] = care (A, B, Q, R, S)
-- Function File: [X, L, G] = care (A, B, Q, R, [], E)
-- Function File: [X, L, G] = care (A, B, Q, R, S, E)
Solve continuous-time algebraic Riccati equation (ARE).
*Inputs*
A
Real matrix (n-by-n).
B
Real matrix (n-by-m).
Q
Real matrix (n-by-n).
R
Real matrix (m-by-m).
S
Optional real matrix (n-by-m). If S is not specified, a zero
matrix is assumed.
E
Optional descriptor matrix (n-by-n). If E is not specified,
an identity matrix is assumed.
*Outputs*
X
Unique stabilizing solution of the continuous-time Riccati
equation (n-by-n).
L
Closed-loop poles (n-by-1).
G
Corresponding gain matrix (m-by-n).
*Equations*
-1
A'X + XA - XB R B'X + Q = 0
-1
A'X + XA - (XB + S) R (B'X + S') + Q = 0
-1
G = R B'X
-1
G = R (B'X + S')
L = eig (A - B*G)
-1
A'XE + E'XA - E'XB R B'XE + Q = 0
-1
A'XE + E'XA - (E'XB + S) R (B'XE + S') + Q = 0
-1
G = R B'XE
-1
G = R (B'XE + S)
L = eig (A - B*G, E)
*Algorithm*
Uses SLICOT SB02OD and SG02AD by courtesy of NICONET e.V.
(http://www.slicot.org)
See also: dare, lqr, dlqr, kalman.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Solve continuous-time algebraic Riccati equation (ARE).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cfconred
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4360
-- Function File: [KR, INFO] = cfconred (G, F, L, ...)
-- Function File: [KR, INFO] = cfconred (G, F, L, NCR, ...)
-- Function File: [KR, INFO] = cfconred (G, F, L, OPT, ...)
-- Function File: [KR, INFO] = cfconred (G, F, L, NCR, OPT, ...)
Reduction of state-feedback-observer based controller by coprime
factorization (CF). Given a plant G, state feedback gain F and full
observer gain L, determine a reduced order controller KR.
*Inputs*
G
LTI model of the open-loop plant (A,B,C,D). It has m inputs, p
outputs and n states.
F
Stabilizing state feedback matrix (m-by-n).
L
Stabilizing observer gain matrix (n-by-p).
NCR
The desired order of the resulting reduced order controller
KR. If not specified, NCR is chosen automatically according
to the description of key 'ORDER'.
...
Optional pairs of keys and values. '"key1", value1, "key2",
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
KR
State-space model of reduced order controller.
INFO
Struct containing additional information.
INFO.HSV
The Hankel singular values of the extended system?!?.
The N Hankel singular values are ordered decreasingly.
INFO.NCR
The order of the obtained reduced order controller KR.
*Option Keys and Values*
'ORDER', 'NCR'
The desired order of the resulting reduced order controller
KR. If not specified, NCR is chosen automatically such that
states with Hankel singular values INFO.HSV > TOL1 are
retained.
'METHOD'
Order reduction approach to be used as follows:
'SR-BTA', 'B'
Use the square-root Balance & Truncate method.
'BFSR-BTA', 'F'
Use the balancing-free square-root Balance & Truncate
method. Default method.
'SR-SPA', 'S'
Use the square-root Singular Perturbation Approximation
method.
'BFSR-SPA', 'P'
Use the balancing-free square-root Singular Perturbation
Approximation method.
'CF'
Specifies whether left or right coprime factorization is to be
used as follows:
'LEFT', 'L'
Use left coprime factorization. Default method.
'RIGHT', 'R'
Use right coprime factorization.
'FEEDBACK'
Specifies whether F and L are fed back positively or
negatively:
'+'
A+BK and A+LC are both Hurwitz matrices.
'-'
A-BK and A-LC are both Hurwitz matrices. Default value.
'TOL1'
If 'ORDER' is not specified, TOL1 contains the tolerance for
determining the order of the reduced system. For model
reduction, the recommended value of TOL1 is c*info.hsv(1),
where c lies in the interval [0.00001, 0.001]. Default value
is n*eps*info.hsv(1). If 'ORDER' is specified, the value of
TOL1 is ignored.
'TOL2'
The tolerance for determining the order of a minimal
realization of the coprime factorization controller. TOL2 <=
TOL1. If not specified, n*eps*info.hsv(1) is chosen.
'EQUIL', 'SCALE'
Boolean indicating whether equilibration (scaling) should be
performed on system G prior to order reduction. Default value
is true if 'G.scaled == false' and false if 'G.scaled ==
true'. Note that for MIMO models, proper scaling of both
inputs and outputs is of utmost importance. The input and
output scaling can *not* be done by the equilibration option
or the 'prescale' function because these functions perform
state transformations only. Furthermore, signals should not
be scaled simply to a certain range. For all inputs (or
outputs), a certain change should be of the same importance
for the model.
*Algorithm*
Uses SLICOT SB16BD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Reduction of state-feedback-observer based controller by coprime
factorization (
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
covar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 319
-- Function File: [P, Q] = covar (SYS, W)
Return the steady-state covariance.
*Inputs*
SYS
LTI model.
W
Intensity of Gaussian white noise inputs which drive SYS.
*Outputs*
P
Output covariance.
Q
State covariance.
See also: lyap, dlyap.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Return the steady-state covariance.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ctrb
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 379
-- Function File: CO = ctrb (SYS)
-- Function File: CO = ctrb (A, B)
Return controllability matrix.
*Inputs*
SYS
LTI model.
A
State matrix (n-by-n).
B
Input matrix (n-by-m).
*Outputs*
CO
Controllability matrix.
*Equation*
2 n-1
Co = [ B AB A B ... A B ]
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Return controllability matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ctrbf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 958
-- Function File: [SYSBAR, T, K] = ctrbf (SYS)
-- Function File: [SYSBAR, T, K] = ctrbf (SYS, TOL)
-- Function File: [ABAR, BBAR, CBAR, T, K] = ctrbf (A, B, C)
-- Function File: [ABAR, BBAR, CBAR, T, K] = ctrbf (A, B, C, TOL)
If Co=ctrb(A,B) has rank r <= n = SIZE(A,1), then there is a
similarity transformation Tc such that Tc = [t1 t2] where t1 is the
controllable subspace and t2 is orthogonal to t1
Abar = Tc \\ A * Tc , Bbar = Tc \\ B , Cbar = C * Tc
and the transformed system has the form
| Ac A12| | Bc |
Abar = |----------|, Bbar = | ---|, Cbar = [Cc | Cnc].
| 0 Anc| | 0 |
where (Ac,Bc) is controllable, and Cc(sI-Ac)^(-1)Bc =
C(sI-A)^(-1)B. and the system is stabilizable if Anc has no
eigenvalues in the right half plane. The last output K is a vector
of length n containing the number of controllable states.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
If Co=ctrb(A,B) has rank r <= n = SIZE(A,1), then there is a similarity
transfor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
dare
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1785
-- Function File: [X, L, G] = dare (A, B, Q, R)
-- Function File: [X, L, G] = dare (A, B, Q, R, S)
-- Function File: [X, L, G] = dare (A, B, Q, R, [], E)
-- Function File: [X, L, G] = dare (A, B, Q, R, S, E)
Solve discrete-time algebraic Riccati equation (ARE).
*Inputs*
A
Real matrix (n-by-n).
B
Real matrix (n-by-m).
Q
Real matrix (n-by-n).
R
Real matrix (m-by-m).
S
Optional real matrix (n-by-m). If S is not specified, a zero
matrix is assumed.
E
Optional descriptor matrix (n-by-n). If E is not specified,
an identity matrix is assumed.
*Outputs*
X
Unique stabilizing solution of the discrete-time Riccati
equation (n-by-n).
L
Closed-loop poles (n-by-1).
G
Corresponding gain matrix (m-by-n).
*Equations*
-1
A'XA - X - A'XB (B'XB + R) B'XA + Q = 0
-1
A'XA - X - (A'XB + S) (B'XB + R) (B'XA + S') + Q = 0
-1
G = (B'XB + R) B'XA
-1
G = (B'XB + R) (B'XA + S')
L = eig (A - B*G)
-1
A'XA - E'XE - A'XB (B'XB + R) B'XA + Q = 0
-1
A'XA - E'XE - (A'XB + S) (B'XB + R) (B'XA + S') + Q = 0
-1
G = (B'XB + R) B'XA
-1
G = (B'XB + R) (B'XA + S')
L = eig (A - B*G, E)
*Algorithm*
Uses SLICOT SB02OD and SG02AD by courtesy of NICONET e.V.
(http://www.slicot.org)
See also: care, lqr, dlqr, kalman.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Solve discrete-time algebraic Riccati equation (ARE).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
db2mag
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 275
-- Function File: MAG = db2mag (DB)
Convert Decibels (dB) to Magnitude.
*Inputs*
DB
Decibel (dB) value(s). Both real-valued scalars and matrices
are accepted.
*Outputs*
MAG
Magnitude value(s).
See also: mag2db.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Convert Decibels (dB) to Magnitude.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
dlqe
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1696
-- Function File: [M, P, Z, E] = dlqe (A, G, C, Q, R)
-- Function File: [M, P, Z, E] = dlqe (A, G, C, Q, R, S)
-- Function File: [M, P, Z, E] = dlqe (A, [], C, Q, R)
-- Function File: [M, P, Z, E] = dlqe (A, [], C, Q, R, S)
Kalman filter for discrete-time systems.
x[k] = Ax[k] + Bu[k] + Gw[k] (State equation)
y[k] = Cx[k] + Du[k] + v[k] (Measurement Equation)
E(w) = 0, E(v) = 0, cov(w) = Q, cov(v) = R, cov(w,v) = S
*Inputs*
A
State transition matrix of discrete-time system (n-by-n).
G
Process noise matrix of discrete-time system (n-by-g). If G
is empty '[]', an identity matrix is assumed.
C
Measurement matrix of discrete-time system (p-by-n).
Q
Process noise covariance matrix (g-by-g).
R
Measurement noise covariance matrix (p-by-p).
S
Optional cross term covariance matrix (g-by-p), s = cov(w,v).
If S is empty '[]' or not specified, a zero matrix is assumed.
*Outputs*
M
Kalman filter gain matrix (n-by-p).
P
Unique stabilizing solution of the discrete-time Riccati
equation (n-by-n). Symmetric matrix.
Z
Error covariance (n-by-n), cov(x(k|k)-x)
E
Closed-loop poles (n-by-1).
*Equations*
x[k|k] = x[k|k-1] + M(y[k] - Cx[k|k-1] - Du[k])
x[k+1|k] = Ax[k|k] + Bu[k] for S=0
x[k+1|k] = Ax[k|k] + Bu[k] + G*S*(C*P*C' + R)^-1*(y[k] - C*x[k|k-1]) for non-zero S
E = eig(A - A*M*C) for S=0
E = eig(A - A*M*C - G*S*(C*P*C' + Rv)^-1*C) for non-zero S
See also: dare, care, dlqr, lqr, lqe.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Kalman filter for discrete-time systems.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
dlqr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1374
-- Function File: [G, X, L] = dlqr (SYS, Q, R)
-- Function File: [G, X, L] = dlqr (SYS, Q, R, S)
-- Function File: [G, X, L] = dlqr (A, B, Q, R)
-- Function File: [G, X, L] = dlqr (A, B, Q, R, S)
-- Function File: [G, X, L] = dlqr (A, B, Q, R, [], E)
-- Function File: [G, X, L] = dlqr (A, B, Q, R, S, E)
Linear-quadratic regulator for discrete-time systems.
*Inputs*
SYS
Continuous or discrete-time LTI model (p-by-m, n states).
A
State transition matrix of discrete-time system (n-by-n).
B
Input matrix of discrete-time system (n-by-m).
Q
State weighting matrix (n-by-n).
R
Input weighting matrix (m-by-m).
S
Optional cross term matrix (n-by-m). If S is not specified, a
zero matrix is assumed.
E
Optional descriptor matrix (n-by-n). If E is not specified,
an identity matrix is assumed.
*Outputs*
G
State feedback matrix (m-by-n).
X
Unique stabilizing solution of the discrete-time Riccati
equation (n-by-n).
L
Closed-loop poles (n-by-1).
*Equations*
x[k+1] = A x[k] + B u[k], x[0] = x0
inf
J(x0) = SUM (x' Q x + u' R u + 2 x' S u)
k=0
L = eig (A - B*G)
See also: dare, care, lqr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Linear-quadratic regulator for discrete-time systems.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
dlyap
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 525
-- Function File: X = dlyap (A, B)
-- Function File: X = dlyap (A, B, C)
-- Function File: X = dlyap (A, B, [], E)
Solve discrete-time Lyapunov or Sylvester equations.
*Equations*
AXA' - X + B = 0 (Lyapunov Equation)
AXB' - X + C = 0 (Sylvester Equation)
AXA' - EXE' + B = 0 (Generalized Lyapunov Equation)
*Algorithm*
Uses SLICOT SB03MD, SB04QD and SG03AD by courtesy of NICONET e.V.
(http://www.slicot.org)
See also: dlyapchol, lyap, lyapchol.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
Solve discrete-time Lyapunov or Sylvester equations.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
dlyapchol
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 476
-- Function File: U = dlyapchol (A, B)
-- Function File: U = dlyapchol (A, B, E)
Compute Cholesky factor of discrete-time Lyapunov equations.
*Equations*
A U' U A' - U' U + B B' = 0 (Lyapunov Equation)
A U' U A' - E U' U E' + B B' = 0 (Generalized Lyapunov Equation)
*Algorithm*
Uses SLICOT SB03OD and SG03BD by courtesy of NICONET e.V.
(http://www.slicot.org)
See also: dlyap, lyap, lyapchol.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Compute Cholesky factor of discrete-time Lyapunov equations.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
dss
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2196
-- Function File: SYS = dss (SYS)
-- Function File: SYS = dss (D, ...)
-- Function File: SYS = dss (A, B, C, D, E, ...)
-- Function File: SYS = dss (A, B, C, D, E, TSAM, ...)
Create or convert to descriptor state-space model.
*Inputs*
SYS
LTI model to be converted to state-space.
A
State matrix (n-by-n).
B
Input matrix (n-by-m).
C
Output matrix (p-by-n).
D
Feedthrough matrix (p-by-m).
E
Descriptor matrix (n-by-n).
TSAM
Sampling time in seconds. If TSAM is not specified, a
continuous-time model is assumed.
...
Optional pairs of properties and values. Type 'set (dss)' for
more information.
*Outputs*
SYS
Descriptor state-space model.
*Option Keys and Values*
'A', 'B', 'C', 'D', 'E'
State-space matrices. See 'Inputs' for details.
'STNAME'
The name of the states in SYS. Cell vector containing strings
for each state. Default names are '{'x1', 'x2', ...}'
'SCALED'
Logical. If set to true, no automatic scaling is used, e.g.
for frequency response plots.
'TSAM'
Sampling time. See 'Inputs' for details.
'INNAME'
The name of the input channels in SYS. Cell vector of length
m containing strings. Default names are '{'u1', 'u2', ...}'
'OUTNAME'
The name of the output channels in SYS. Cell vector of length
p containing strings. Default names are '{'y1', 'y2', ...}'
'INGROUP'
Struct with input group names as field names and vectors of
input indices as field values. Default is an empty struct.
'OUTGROUP'
Struct with output group names as field names and vectors of
output indices as field values. Default is an empty struct.
'NAME'
String containing the name of the model.
'NOTES'
String or cell of string containing comments.
'USERDATA'
Any data type.
*Equations*
.
E x = A x + B u
y = C x + D u
See also: ss, tf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Create or convert to descriptor state-space model.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
estim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1085
-- Function File: EST = estim (SYS, L)
-- Function File: EST = estim (SYS, L, SENSORS, KNOWN)
Return state estimator for a given estimator gain.
*Inputs*
SYS
LTI model.
L
State feedback matrix.
SENSORS
Indices of measured output signals y from SYS. If omitted,
all outputs are measured.
KNOWN
Indices of known input signals u (deterministic) to SYS. All
other inputs to SYS are assumed stochastic (w). If argument
KNOWN is omitted, no inputs u are known.
*Outputs*
EST
State-space model of estimator.
*Block Diagram*
u +-------+ ^
+---------------------------->| |-------> y
| +-------+ + y | est | ^
u ----+--->| |----->(+)------>| |-------> x
| sys | ^ + +-------+
w -------->| | |
+-------+ | v
See also: kalman, lqe, place.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Return state estimator for a given estimator gain.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
filt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2804
-- Function File: SYS = filt (NUM, DEN, ...)
-- Function File: SYS = filt (NUM, DEN, TSAM, ...)
Create discrete-time transfer function model from data in DSP
format.
*Inputs*
NUM
Numerator or cell of numerators. Each numerator must be a row
vector containing the coefficients of the polynomial in
ascending powers of z^-1. num{i,j} contains the numerator
polynomial from input j to output i. In the SISO case, a
single vector is accepted as well.
DEN
Denominator or cell of denominators. Each denominator must be
a row vector containing the coefficients of the polynomial in
ascending powers of z^-1. den{i,j} contains the denominator
polynomial from input j to output i. In the SISO case, a
single vector is accepted as well.
TSAM
Sampling time in seconds. If TSAM is not specified, default
value -1 (unspecified) is taken.
...
Optional pairs of properties and values. Type 'set (filt)'
for more information.
*Outputs*
SYS
Discrete-time transfer function model.
*Option Keys and Values*
'NUM'
Numerator. See 'Inputs' for details.
'DEN'
Denominator. See 'Inputs' for details.
'TFVAR'
String containing the transfer function variable.
'INV'
Logical. True for negative powers of the transfer function
variable.
'TSAM'
Sampling time. See 'Inputs' for details.
'INNAME'
The name of the input channels in SYS. Cell vector of length
m containing strings. Default names are '{'u1', 'u2', ...}'
'OUTNAME'
The name of the output channels in SYS. Cell vector of length
p containing strings. Default names are '{'y1', 'y2', ...}'
'INGROUP'
Struct with input group names as field names and vectors of
input indices as field values. Default is an empty struct.
'OUTGROUP'
Struct with output group names as field names and vectors of
output indices as field values. Default is an empty struct.
'NAME'
String containing the name of the model.
'NOTES'
String or cell of string containing comments.
'USERDATA'
Any data type.
*Example*
3 z^-1
H(z^-1) = -------------------
1 + 4 z^-1 + 2 z^-2
octave:1> H = filt ([0, 3], [1, 4, 2])
Transfer function 'H' from input 'u1' to output ...
3 z^-1
y1: -------------------
1 + 4 z^-1 + 2 z^-2
Sampling time: unspecified
Discrete-time model.
See also: tf.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Create discrete-time transfer function model from data in DSP format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
fitfrd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1169
-- Function File: [SYS, N] = fitfrd (DAT, N)
-- Function File: [SYS, N] = fitfrd (DAT, N, FLAG)
Fit frequency response data with a state-space system. If
requested, the returned system is stable and minimum-phase.
*Inputs*
DAT
LTI model containing frequency response data of a SISO system.
N
The desired order of the system to be fitted. 'n <=
length(dat.w)'.
FLAG
The flag controls whether the returned system is stable and
minimum-phase.
0
The system zeros and poles are not constrained. Default
value.
1
The system zeros and poles will have negative real parts
in the continuous-time case, or moduli less than 1 in the
discrete-time case.
*Outputs*
SYS
State-space model of order N, fitted to frequency response
data DAT.
N
The order of the obtained system. The value of N could only
be modified if inputs 'n > 0' and 'flag = 1'.
*Algorithm*
Uses SLICOT SB10YD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Fit frequency response data with a state-space system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
fwcfconred
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3225
-- Function File: [KR, INFO] = fwcfconred (G, F, L, ...)
-- Function File: [KR, INFO] = fwcfconred (G, F, L, NCR, ...)
-- Function File: [KR, INFO] = fwcfconred (G, F, L, OPT, ...)
-- Function File: [KR, INFO] = fwcfconred (G, F, L, NCR, OPT, ...)
Reduction of state-feedback-observer based controller by
frequency-weighted coprime factorization (FW CF). Given a plant G,
state feedback gain F and full observer gain L, determine a reduced
order controller KR by using stability enforcing frequency weights.
*Inputs*
G
LTI model of the open-loop plant (A,B,C,D). It has m inputs, p
outputs and n states.
F
Stabilizing state feedback matrix (m-by-n).
L
Stabilizing observer gain matrix (n-by-p).
NCR
The desired order of the resulting reduced order controller
KR. If not specified, NCR is chosen automatically according
to the description of key 'ORDER'.
...
Optional pairs of keys and values. '"key1", value1, "key2",
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
KR
State-space model of reduced order controller.
INFO
Struct containing additional information.
INFO.HSV
The Hankel singular values of the extended system?!?.
The N Hankel singular values are ordered decreasingly.
INFO.NCR
The order of the obtained reduced order controller KR.
*Option Keys and Values*
'ORDER', 'NCR'
The desired order of the resulting reduced order controller
KR. If not specified, NCR is chosen automatically such that
states with Hankel singular values INFO.HSV > TOL1 are
retained.
'METHOD'
Order reduction approach to be used as follows:
'SR', 'B'
Use the square-root Balance & Truncate method.
'BFSR', 'F'
Use the balancing-free square-root Balance & Truncate
method. Default method.
'CF'
Specifies whether left or right coprime factorization is to be
used as follows:
'LEFT', 'L'
Use left coprime factorization.
'RIGHT', 'R'
Use right coprime factorization. Default method.
'FEEDBACK'
Specifies whether F and L are fed back positively or
negatively:
'+'
A+BK and A+LC are both Hurwitz matrices.
'-'
A-BK and A-LC are both Hurwitz matrices. Default value.
'TOL1'
If 'ORDER' is not specified, TOL1 contains the tolerance for
determining the order of the reduced system. For model
reduction, the recommended value of TOL1 is c*info.hsv(1),
where c lies in the interval [0.00001, 0.001]. Default value
is n*eps*info.hsv(1). If 'ORDER' is specified, the value of
TOL1 is ignored.
*Algorithm*
Uses SLICOT SB16CD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Reduction of state-feedback-observer based controller by
frequency-weighted copr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
gensig
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 802
-- Function File: [U, T] = gensig (SIGTYPE, TAU)
-- Function File: [U, T] = gensig (SIGTYPE, TAU, TFINAL)
-- Function File: [U, T] = gensig (SIGTYPE, TAU, TFINAL, TSAM)
Generate periodic signal. Useful in combination with lsim.
*Inputs*
SIGTYPE = "SIN"
Sine wave.
SIGTYPE = "COS"
Cosine wave.
SIGTYPE = "SQUARE"
Square wave.
SIGTYPE = "PULSE"
Periodic pulse.
TAU
Duration of one period in seconds.
TFINAL
Optional duration of the signal in seconds. Default duration
is 5 periods.
TSAM
Optional sampling time in seconds. Default spacing is tau/64.
*Outputs*
U
Vector of signal values.
T
Time vector of the signal.
See also: lsim.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
Generate periodic signal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
gram
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 459
-- Function File: W = gram (SYS, MODE)
-- Function File: WC = gram (A, B)
'gram (SYS, "c")' returns the controllability gramian of the
(continuous- or discrete-time) system SYS. 'gram (SYS, "o")'
returns the observability gramian of the (continuous- or
discrete-time) system SYS. 'gram (A, B)' returns the
controllability gramian WC of the continuous-time system dx/dt = a
x + b u; i.e., WC satisfies a Wc + m Wc' + b b' = 0.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
'gram (SYS, "c")' returns the controllability gramian of the
(continuous- or dis
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
h2syn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2227
-- Function File: [K, N, GAMMA, INFO] = h2syn (P, NMEAS, NCON)
-- Function File: [K, N, GAMMA, INFO] = h2syn (P)
H-2 control synthesis for LTI plant.
*Inputs*
P
Generalized plant. Must be a proper/realizable LTI model. If
P is constructed with 'mktito' or 'augw', arguments NMEAS and
NCON can be omitted.
NMEAS
Number of measured outputs v. The last NMEAS outputs of P are
connected to the inputs of controller K. The remaining
outputs z (indices 1 to p-nmeas) are used to calculate the H-2
norm.
NCON
Number of controlled inputs u. The last NCON inputs of P are
connected to the outputs of controller K. The remaining
inputs w (indices 1 to m-ncon) are excited by a harmonic test
signal.
*Outputs*
K
State-space model of the H-2 optimal controller.
N
State-space model of the lower LFT of P and K.
INFO
Structure containing additional information.
INFO.GAMMA
H-2 norm of N.
INFO.RCOND
Vector RCOND contains estimates of the reciprocal condition
numbers of the matrices which are to be inverted and estimates
of the reciprocal condition numbers of the Riccati equations
which have to be solved during the computation of the
controller K. For details, see the description of the
corresponding SLICOT routine.
*Block Diagram*
gamma = min||N(K)|| N = lft (P, K)
K 2
+--------+
w ----->| |-----> z
| P(s) |
u +---->| |-----+ v
| +--------+ |
| |
| +--------+ |
+-----| K(s) |<----+
+--------+
+--------+
w ----->| N(s) |-----> z
+--------+
*Algorithm*
Uses SLICOT SB10HD and SB10ED by courtesy of NICONET e.V.
(http://www.slicot.org)
See also: augw, lqr, dlqr, kalman.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
H-2 control synthesis for LTI plant.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hinfsyn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4179
-- Function File: [K, N, GAMMA, INFO] = hinfsyn (P, NMEAS, NCON)
-- Function File: [K, N, GAMMA, INFO] = hinfsyn (P, NMEAS, NCON, ...)
-- Function File: [K, N, GAMMA, INFO] = hinfsyn (P, NMEAS, NCON, OPT,
...)
-- Function File: [K, N, GAMMA, INFO] = hinfsyn (P, ...)
-- Function File: [K, N, GAMMA, INFO] = hinfsyn (P, OPT, ...)
H-infinity control synthesis for LTI plant.
*Inputs*
P
Generalized plant. Must be a proper/realizable LTI model. If
P is constructed with 'mktito' or 'augw', arguments NMEAS and
NCON can be omitted.
NMEAS
Number of measured outputs v. The last NMEAS outputs of P are
connected to the inputs of controller K. The remaining
outputs z (indices 1 to p-nmeas) are used to calculate the
H-infinity norm.
NCON
Number of controlled inputs u. The last NCON inputs of P are
connected to the outputs of controller K. The remaining
inputs w (indices 1 to m-ncon) are excited by a harmonic test
signal.
...
Optional pairs of keys and values. ''key1', value1, 'key2',
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
K
State-space model of the H-infinity (sub-)optimal controller.
N
State-space model of the lower LFT of P and K.
INFO
Structure containing additional information.
INFO.GAMMA
L-infinity norm of N.
INFO.RCOND
Vector RCOND contains estimates of the reciprocal condition
numbers of the matrices which are to be inverted and estimates
of the reciprocal condition numbers of the Riccati equations
which have to be solved during the computation of the
controller K. For details, see the description of the
corresponding SLICOT routine.
*Option Keys and Values*
'METHOD'
String specifying the desired kind of controller:
'OPTIMAL', 'OPT', 'O'
Compute optimal controller using gamma iteration.
Default selection for compatibility reasons.
'SUBOPTIMAL', 'SUB', 'S'
Compute (sub-)optimal controller. For stability reasons,
suboptimal controllers are to be preferred over optimal
ones.
'GMAX'
The maximum value of the H-infinity norm of N. It is assumed
that GMAX is sufficiently large so that the controller is
admissible. Default value is 1e15.
'GMIN'
Initial lower bound for gamma iteration. Default value is 0.
GMIN is only meaningful for optimal discrete-time controllers.
'TOLGAM'
Tolerance used for controlling the accuracy of GAMMA and its
distance to the estimated minimal possible value of GAMMA.
Default value is 0.01. If TOLGAM = 0, then a default value
equal to 'sqrt(eps)' is used, where EPS is the relative
machine precision. For suboptimal controllers, TOLGAM is
ignored.
'ACTOL'
Upper bound for the poles of the closed-loop system N used for
determining if it is stable. ACTOL >= 0 for stable systems.
For suboptimal controllers, ACTOL is ignored.
*Block Diagram*
gamma = min||N(K)|| N = lft (P, K)
K inf
+--------+
w ----->| |-----> z
| P(s) |
u +---->| |-----+ v
| +--------+ |
| |
| +--------+ |
+-----| K(s) |<----+
+--------+
+--------+
w ----->| N(s) |-----> z
+--------+
*Algorithm*
Uses SLICOT SB10FD, SB10DD and SB10AD by courtesy of NICONET e.V.
(http://www.slicot.org)
See also: augw, mixsyn.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
H-infinity control synthesis for LTI plant.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
hnamodred
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6628
-- Function File: [GR, INFO] = hnamodred (G, ...)
-- Function File: [GR, INFO] = hnamodred (G, NR, ...)
-- Function File: [GR, INFO] = hnamodred (G, OPT, ...)
-- Function File: [GR, INFO] = hnamodred (G, NR, OPT, ...)
Model order reduction by frequency weighted optimal Hankel-norm
(HNA) method. The aim of model reduction is to find an LTI system
GR of order NR (nr < n) such that the input-output behaviour of GR
approximates the one from original system G.
HNA is an absolute error method which tries to minimize
||G-Gr|| = min
H
||V (G-Gr) W|| = min
H
where V and W denote output and input weightings.
*Inputs*
G
LTI model to be reduced.
NR
The desired order of the resulting reduced order system GR.
If not specified, NR is chosen automatically according to the
description of key "ORDER".
...
Optional pairs of keys and values. '"key1", value1, "key2",
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
GR
Reduced order state-space model.
INFO
Struct containing additional information.
INFO.N
The order of the original system G.
INFO.NS
The order of the ALPHA-stable subsystem of the original
system G.
INFO.HSV
The Hankel singular values corresponding to the
projection 'op(V)*G1*op(W)', where G1 denotes the
ALPHA-stable part of the original system G. The NS
Hankel singular values are ordered decreasingly.
INFO.NU
The order of the ALPHA-unstable subsystem of both the
original system G and the reduced-order system GR.
INFO.NR
The order of the obtained reduced order system GR.
*Option Keys and Values*
'ORDER', 'NR'
The desired order of the resulting reduced order system GR.
If not specified, NR is the sum of INFO.NU and the number of
Hankel singular values greater than 'max(tol1,
ns*eps*info.hsv(1)';
'METHOD'
Specifies the computational approach to be used. Valid values
corresponding to this key are:
'DESCRIPTOR'
Use the inverse free descriptor system approach.
'STANDARD'
Use the inversion based standard approach.
'AUTO'
Switch automatically to the inverse free descriptor
approach in case of badly conditioned feedthrough
matrices in V or W. Default method.
'LEFT', 'V'
LTI model of the left/output frequency weighting. The
weighting must be antistable.
|| V (G-Gr) . || = min
H
'RIGHT', 'W'
LTI model of the right/input frequency weighting. The
weighting must be antistable.
|| . (G-Gr) W || = min
H
'LEFT-INV', 'INV-V'
LTI model of the left/output frequency weighting. The
weighting must have only antistable zeros.
|| inv(V) (G-Gr) . || = min
H
'RIGHT-INV', 'INV-W'
LTI model of the right/input frequency weighting. The
weighting must have only antistable zeros.
|| . (G-Gr) inv(W) || = min
H
'LEFT-CONJ', 'CONJ-V'
LTI model of the left/output frequency weighting. The
weighting must be stable.
|| V (G-Gr) . || = min
H
'RIGHT-CONJ', 'CONJ-W'
LTI model of the right/input frequency weighting. The
weighting must be stable.
|| . (G-Gr) W || = min
H
'LEFT-CONJ-INV', 'CONJ-INV-V'
LTI model of the left/output frequency weighting. The
weighting must be minimum-phase.
|| V (G-Gr) . || = min
H
'RIGHT-CONJ-INV', 'CONJ-INV-W'
LTI model of the right/input frequency weighting. The
weighting must be minimum-phase.
|| . (G-Gr) W || = min
H
'ALPHA'
Specifies the ALPHA-stability boundary for the eigenvalues of
the state dynamics matrix G.A. For a continuous-time system,
ALPHA <= 0 is the boundary value for the real parts of
eigenvalues, while for a discrete-time system, 0 <= ALPHA <= 1
represents the boundary value for the moduli of eigenvalues.
The ALPHA-stability domain does not include the boundary.
Default value is 0 for continuous-time systems and 1 for
discrete-time systems.
'TOL1'
If 'ORDER' is not specified, TOL1 contains the tolerance for
determining the order of the reduced model. For model
reduction, the recommended value of TOL1 is c*info.hsv(1),
where c lies in the interval [0.00001, 0.001]. TOL1 < 1. If
'ORDER' is specified, the value of TOL1 is ignored.
'TOL2'
The tolerance for determining the order of a minimal
realization of the ALPHA-stable part of the given model. TOL2
<= TOL1 < 1. If not specified, ns*eps*info.hsv(1) is chosen.
'EQUIL', 'SCALE'
Boolean indicating whether equilibration (scaling) should be
performed on system G prior to order reduction. Default value
is true if 'G.scaled == false' and false if 'G.scaled ==
true'. Note that for MIMO models, proper scaling of both
inputs and outputs is of utmost importance. The input and
output scaling can *not* be done by the equilibration option
or the 'prescale' function because these functions perform
state transformations only. Furthermore, signals should not
be scaled simply to a certain range. For all inputs (or
outputs), a certain change should be of the same importance
for the model.
Approximation Properties:
* Guaranteed stability of reduced models
* Lower guaranteed error bound
* Guaranteed a priori error bound
*Algorithm*
Uses SLICOT AB09JD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
Model order reduction by frequency weighted optimal Hankel-norm (HNA)
method.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
hsvd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 401
-- Function File: HSV = hsvd (SYS)
-- Function File: HSV = hsvd (SYS, "OFFSET", OFFSET)
-- Function File: HSV = hsvd (SYS, "ALPHA", ALPHA)
Hankel singular values of the stable part of an LTI model. If no
output arguments are given, the Hankel singular values are
displayed in a plot.
*Algorithm*
Uses SLICOT AB13AD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Hankel singular values of the stable part of an LTI model.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
impulse
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1691
-- Function File: impulse (SYS)
-- Function File: impulse (SYS1, SYS2, ..., SYSN)
-- Function File: impulse (SYS1, 'STYLE1', ..., SYSN, 'STYLEN')
-- Function File: impulse (SYS1, ..., T)
-- Function File: impulse (SYS1, ..., TFINAL)
-- Function File: impulse (SYS1, ..., TFINAL, DT)
-- Function File: [Y, T, X] = impulse (SYS)
-- Function File: [Y, T, X] = impulse (SYS, T)
-- Function File: [Y, T, X] = impulse (SYS, TFINAL)
-- Function File: [Y, T, X] = impulse (SYS, TFINAL, DT)
Impulse response of LTI system. If no output arguments are given,
the response is printed on the screen.
*Inputs*
SYS
LTI model.
T
Time vector. Should be evenly spaced. If not specified, it
is calculated by the poles of the system to reflect adequately
the response transients.
TFINAL
Optional simulation horizon. If not specified, it is
calculated by the poles of the system to reflect adequately
the response transients.
DT
Optional sampling time. Be sure to choose it small enough to
capture transient phenomena. If not specified, it is
calculated by the poles of the system.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
Y
Output response array. Has as many rows as time samples
(length of t) and as many columns as outputs.
T
Time row vector.
X
State trajectories array. Has 'length (t)' rows and as many
columns as states.
See also: initial, lsim, step.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Impulse response of LTI system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
initial
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2014
-- Function File: initial (SYS, X0)
-- Function File: initial (SYS1, SYS2, ..., SYSN, X0)
-- Function File: initial (SYS1, 'STYLE1', ..., SYSN, 'STYLEN', X0)
-- Function File: initial (SYS1, ..., X0, T)
-- Function File: initial (SYS1, ..., X0, TFINAL)
-- Function File: initial (SYS1, ..., X0, TFINAL, DT)
-- Function File: [Y, T, X] = initial (SYS, X0)
-- Function File: [Y, T, X] = initial (SYS, X0, T)
-- Function File: [Y, T, X] = initial (SYS, X0, TFINAL)
-- Function File: [Y, T, X] = initial (SYS, X0, TFINAL, DT)
Initial condition response of state-space model. If no output
arguments are given, the response is printed on the screen.
*Inputs*
SYS
State-space model.
X0
Vector of initial conditions for each state.
T
Optional time vector. Should be evenly spaced. If not
specified, it is calculated by the poles of the system to
reflect adequately the response transients.
TFINAL
Optional simulation horizon. If not specified, it is
calculated by the poles of the system to reflect adequately
the response transients.
DT
Optional sampling time. Be sure to choose it small enough to
capture transient phenomena. If not specified, it is
calculated by the poles of the system.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
Y
Output response array. Has as many rows as time samples
(length of t) and as many columns as outputs.
T
Time row vector.
X
State trajectories array. Has 'length (t)' rows and as many
columns as states.
*Example*
.
Continuous Time: x = A x , y = C x , x(0) = x0
Discrete Time: x[k+1] = A x[k] , y[k] = C x[k] , x[0] = x0
See also: impulse, lsim, step.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Initial condition response of state-space model.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isctrb
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1302
-- Function File: [BOOL, NCON] = isctrb (SYS)
-- Function File: [BOOL, NCON] = isctrb (SYS, TOL)
-- Function File: [BOOL, NCON] = isctrb (A, B)
-- Function File: [BOOL, NCON] = isctrb (A, B, E)
-- Function File: [BOOL, NCON] = isctrb (A, B, [], TOL)
-- Function File: [BOOL, NCON] = isctrb (A, B, E, TOL)
Logical check for system controllability. For numerical reasons,
'isctrb (sys)' should be used instead of 'rank (ctrb (sys))'.
*Inputs*
SYS
LTI model. Descriptor state-space models are possible. If
SYS is not a state-space model, it is converted to a minimal
state-space realization, so beware of pole-zero cancellations
which may lead to wrong results!
A
State matrix (n-by-n).
B
Input matrix (n-by-m).
E
Descriptor matrix (n-by-n). If E is empty '[]' or not
specified, an identity matrix is assumed.
TOL
Optional roundoff parameter. Default value is 0.
*Outputs*
BOOL = 0
System is not controllable.
BOOL = 1
System is controllable.
NCON
Number of controllable states.
*Algorithm*
Uses SLICOT AB01OD and TG01HD by courtesy of NICONET e.V.
(http://www.slicot.org)
See also: isobsv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Logical check for system controllability.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
isdetectable
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1510
-- Function File: BOOL = isdetectable (SYS)
-- Function File: BOOL = isdetectable (SYS, TOL)
-- Function File: BOOL = isdetectable (A, C)
-- Function File: BOOL = isdetectable (A, C, E)
-- Function File: BOOL = isdetectable (A, C, [], TOL)
-- Function File: BOOL = isdetectable (A, C, E, TOL)
-- Function File: BOOL = isdetectable (A, C, [], [], DFLG)
-- Function File: BOOL = isdetectable (A, C, E, [], DFLG)
-- Function File: BOOL = isdetectable (A, C, [], TOL, DFLG)
-- Function File: BOOL = isdetectable (A, C, E, TOL, DFLG)
Logical test for system detectability. All unstable modes must be
observable or all unobservable states must be stable.
*Inputs*
SYS
LTI system.
A
State transition matrix.
C
Measurement matrix.
E
Descriptor matrix. If E is empty '[]' or not specified, an
identity matrix is assumed.
TOL
Optional tolerance for stability. Default value is 0.
DFLG = 0
Matrices (A, C) are part of a continuous-time system. Default
Value.
DFLG = 1
Matrices (A, C) are part of a discrete-time system.
*Outputs*
BOOL = 0
System is not detectable.
BOOL = 1
System is detectable.
*Algorithm*
Uses SLICOT AB01OD and TG01HD by courtesy of NICONET e.V.
(http://www.slicot.org) See 'isstabilizable' for description of
computational method.
See also: isstabilizable, isstable, isctrb, isobsv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Logical test for system detectability.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
isobsv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1110
-- Function File: [BOOL, NOBS] = isobsv (SYS)
-- Function File: [BOOL, NOBS] = isobsv (SYS, TOL)
-- Function File: [BOOL, NOBS] = isobsv (A, C)
-- Function File: [BOOL, NOBS] = isobsv (A, C, E)
-- Function File: [BOOL, NOBS] = isobsv (A, C, [], TOL)
-- Function File: [BOOL, NOBS] = isobsv (A, C, E, TOL)
Logical check for system observability. For numerical reasons,
'isobsv (sys)' should be used instead of 'rank (obsv (sys))'.
*Inputs*
SYS
LTI model. Descriptor state-space models are possible.
A
State matrix (n-by-n).
C
Measurement matrix (p-by-n).
E
Descriptor matrix (n-by-n). If E is empty '[]' or not
specified, an identity matrix is assumed.
TOL
Optional roundoff parameter. Default value is 0.
*Outputs*
BOOL = 0
System is not observable.
BOOL = 1
System is observable.
NOBS
Number of observable states.
*Algorithm*
Uses SLICOT AB01OD and TG01HD by courtesy of NICONET e.V.
(http://www.slicot.org)
See also: isctrb.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Logical check for system observability.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
issample
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 613
-- Function File: BOOL = issample (TS)
-- Function File: BOOL = issample (TS, FLG)
Return true if TS is a valid sampling time.
*Inputs*
TS
Alleged sampling time to be tested.
FLG = 1
Accept real scalars TS > 0. Default Value.
FLG = 0
Accept real scalars TS >= 0.
FLG = -1
Accept real scalars TS > 0 and TS == -1.
FLG = -10
Accept real scalars TS >= 0 and TS == -1.
FLG = -2
Accept real scalars TS >= 0, TS == -1 and TS == -2.
*Outputs*
BOOL
True if conditions are met and false otherwise.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Return true if TS is a valid sampling time.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
isstabilizable
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1968
-- Function File: BOOL = isstabilizable (SYS)
-- Function File: BOOL = isstabilizable (SYS, TOL)
-- Function File: BOOL = isstabilizable (A, B)
-- Function File: BOOL = isstabilizable (A, B, E)
-- Function File: BOOL = isstabilizable (A, B, [], TOL)
-- Function File: BOOL = isstabilizable (A, B, E, TOL)
-- Function File: BOOL = isstabilizable (A, B, [], [], DFLG)
-- Function File: BOOL = isstabilizable (A, B, E, [], DFLG)
-- Function File: BOOL = isstabilizable (A, B, [], TOL, DFLG)
-- Function File: BOOL = isstabilizable (A, B, E, TOL, DFLG)
Logical check for system stabilizability. All unstable modes must
be controllable or all uncontrollable states must be stable.
*Inputs*
SYS
LTI system. If SYS is not a state-space system, it is
converted to a minimal state-space realization, so beware of
pole-zero cancellations which may lead to wrong results!
A
State transition matrix.
B
Input matrix.
E
Descriptor matrix. If E is empty '[]' or not specified, an
identity matrix is assumed.
TOL
Optional tolerance for stability. Default value is 0.
DFLG = 0
Matrices (A, B) are part of a continuous-time system. Default
Value.
DFLG = 1
Matrices (A, B) are part of a discrete-time system.
*Outputs*
BOOL = 0
System is not stabilizable.
BOOL = 1
System is stabilizable.
*Algorithm*
Uses SLICOT AB01OD and TG01HD by courtesy of NICONET e.V.
(http://www.slicot.org)
* Calculate staircase form (SLICOT AB01OD)
* Extract unobservable part of state transition matrix
* Calculate eigenvalues of unobservable part
* Check whether
real (ev) < -tol*(1 + abs (ev)) continuous-time
abs (ev) < 1 - tol discrete-time
See also: isdetectable, isstable, isctrb, isobsv.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
Logical check for system stabilizability.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
kalman
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1539
-- Function File: [EST, G, X] = kalman (SYS, Q, R)
-- Function File: [EST, G, X] = kalman (SYS, Q, R, S)
-- Function File: [EST, G, X] = kalman (SYS, Q, R, [], SENSORS, KNOWN)
-- Function File: [EST, G, X] = kalman (SYS, Q, R, S, SENSORS, KNOWN)
Design Kalman estimator for LTI systems.
*Inputs*
SYS
Nominal plant model.
Q
Covariance of white process noise.
R
Covariance of white measurement noise.
S
Optional cross term covariance. Default value is 0.
SENSORS
Indices of measured output signals y from SYS. If omitted,
all outputs are measured.
KNOWN
Indices of known input signals u (deterministic) to SYS. All
other inputs to SYS are assumed stochastic. If argument KNOWN
is omitted, no inputs u are known.
*Outputs*
EST
State-space model of the Kalman estimator.
G
Estimator gain.
X
Solution of the Riccati equation.
*Block Diagram*
u +-------+ ^
+---------------------------->| |-------> y
| +-------+ + y | est | ^
u ----+--->| |----->(+)------>| |-------> x
| sys | ^ + +-------+
w -------->| | |
+-------+ | v
Q = cov (w, w') R = cov (v, v') S = cov (w, v')
See also: care, dare, estim, lqr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Design Kalman estimator for LTI systems.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
lqe
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1686
-- Function File: [L, P, E] = lqe (SYS, Q, R)
-- Function File: [L, P, E] = lqe (SYS, Q, R, S)
-- Function File: [L, P, E] = lqe (A, G, C, Q, R)
-- Function File: [L, P, E] = lqe (A, G, C, Q, R, S)
-- Function File: [L, P, E] = lqe (A, [], C, Q, R)
-- Function File: [L, P, E] = lqe (A, [], C, Q, R, S)
Kalman filter for continuous-time systems.
.
x = Ax + Bu + Gw (State equation)
y = Cx + Du + v (Measurement Equation)
E(w) = 0, E(v) = 0, cov(w) = Q, cov(v) = R, cov(w,v) = S
*Inputs*
SYS
Continuous or discrete-time LTI model (p-by-m, n states).
A
State matrix of continuous-time system (n-by-n).
G
Process noise matrix of continuous-time system (n-by-g). If G
is empty '[]', an identity matrix is assumed.
C
Measurement matrix of continuous-time system (p-by-n).
Q
Process noise covariance matrix (g-by-g).
R
Measurement noise covariance matrix (p-by-p).
S
Optional cross term covariance matrix (g-by-p), s = cov(w,v).
If S is empty '[]' or not specified, a zero matrix is assumed.
*Outputs*
L
Kalman filter gain matrix (n-by-p).
P
Unique stabilizing solution of the continuous-time Riccati
equation (n-by-n). Symmetric matrix. If SYS is a
discrete-time model, the solution of the corresponding
discrete-time Riccati equation is returned.
E
Closed-loop poles (n-by-1).
*Equations*
.
x = Ax + Bu + L(y - Cx -Du)
E = eig(A - L*C)
See also: dare, care, dlqr, lqr, dlqe.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Kalman filter for continuous-time systems.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
lqr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1342
-- Function File: [G, X, L] = lqr (SYS, Q, R)
-- Function File: [G, X, L] = lqr (SYS, Q, R, S)
-- Function File: [G, X, L] = lqr (A, B, Q, R)
-- Function File: [G, X, L] = lqr (A, B, Q, R, S)
-- Function File: [G, X, L] = lqr (A, B, Q, R, [], E)
-- Function File: [G, X, L] = lqr (A, B, Q, R, S, E)
Linear-quadratic regulator.
*Inputs*
SYS
Continuous or discrete-time LTI model (p-by-m, n states).
A
State matrix of continuous-time system (n-by-n).
B
Input matrix of continuous-time system (n-by-m).
Q
State weighting matrix (n-by-n).
R
Input weighting matrix (m-by-m).
S
Optional cross term matrix (n-by-m). If S is not specified, a
zero matrix is assumed.
E
Optional descriptor matrix (n-by-n). If E is not specified,
an identity matrix is assumed.
*Outputs*
G
State feedback matrix (m-by-n).
X
Unique stabilizing solution of the continuous-time Riccati
equation (n-by-n).
L
Closed-loop poles (n-by-1).
*Equations*
.
x = A x + B u, x(0) = x0
inf
J(x0) = INT (x' Q x + u' R u + 2 x' S u) dt
0
L = eig (A - B*G)
See also: care, dare, dlqr.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Linear-quadratic regulator.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
lsim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1845
-- Function File: lsim (SYS, U)
-- Function File: lsim (SYS1, SYS2, ..., SYSN, U)
-- Function File: lsim (SYS1, 'STYLE1', ..., SYSN, 'STYLEN', U)
-- Function File: lsim (SYS1, ..., U, T)
-- Function File: lsim (SYS1, ..., U, T, X0)
-- Function File: [Y, T, X] = lsim (SYS, U)
-- Function File: [Y, T, X] = lsim (SYS, U, T)
-- Function File: [Y, T, X] = lsim (SYS, U, T, X0)
Simulate LTI model response to arbitrary inputs. If no output
arguments are given, the system response is plotted on the screen.
*Inputs*
SYS
LTI model. System must be proper, i.e. it must not have more
zeros than poles.
U
Vector or array of input signal. Needs 'length(t)' rows and
as many columns as there are inputs. If SYS is a single-input
system, row vectors U of length 'length(t)' are accepted as
well.
T
Time vector. Should be evenly spaced. If SYS is a
continuous-time system and T is a real scalar, SYS is
discretized with sampling time 'tsam = t/(rows(u)-1)'. If SYS
is a discrete-time system and T is not specified, vector T is
assumed to be '0 : tsam : tsam*(rows(u)-1)'.
X0
Vector of initial conditions for each state. If not
specified, a zero vector is assumed.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
Y
Output response array. Has as many rows as time samples
(length of t) and as many columns as outputs.
T
Time row vector. It is always evenly spaced.
X
State trajectories array. Has 'length (t)' rows and as many
columns as states.
See also: impulse, initial, step.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Simulate LTI model response to arbitrary inputs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
ltimodels
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 142
-- Function File: test ltimodels
-- Function File: ltimodels
-- Function File: ltimodels (SYSTYPE)
Test suite and help for LTI models.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Test suite and help for LTI models.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
lyap
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 525
-- Function File: X = lyap (A, B)
-- Function File: X = lyap (A, B, C)
-- Function File: X = lyap (A, B, [], E)
Solve continuous-time Lyapunov or Sylvester equations.
*Equations*
AX + XA' + B = 0 (Lyapunov Equation)
AX + XB + C = 0 (Sylvester Equation)
AXE' + EXA' + B = 0 (Generalized Lyapunov Equation)
*Algorithm*
Uses SLICOT SB03MD, SB04MD and SG03AD by courtesy of NICONET e.V.
(http://www.slicot.org)
See also: lyapchol, dlyap, dlyapchol.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Solve continuous-time Lyapunov or Sylvester equations.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
lyapchol
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 477
-- Function File: U = lyapchol (A, B)
-- Function File: U = lyapchol (A, B, E)
Compute Cholesky factor of continuous-time Lyapunov equations.
*Equations*
A U' U + U' U A' + B B' = 0 (Lyapunov Equation)
A U' U E' + E U' U A' + B B' = 0 (Generalized Lyapunov Equation)
*Algorithm*
Uses SLICOT SB03OD and SG03BD by courtesy of NICONET e.V.
(http://www.slicot.org)
See also: lyap, dlyap, dlyapchol.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Compute Cholesky factor of continuous-time Lyapunov equations.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mag2db
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 275
-- Function File: DB = mag2db (MAG)
Convert Magnitude to Decibels (dB).
*Inputs*
MAG
Magnitude value(s). Both real-valued scalars and matrices are
accepted.
*Outputs*
DB
Decibel (dB) value(s).
See also: db2mag.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Convert Magnitude to Decibels (dB).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
margin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3106
-- Function File: [GAMMA, PHI, W_GAMMA, W_PHI] = margin (SYS)
-- Function File: [GAMMA, PHI, W_GAMMA, W_PHI] = margin (SYS, TOL)
Gain and phase margin of a system. If no output arguments are
given, both gain and phase margin are plotted on a bode diagram.
Otherwise, the margins and their corresponding frequencies are
computed and returned. A more robust criterion to assess the
stability of a feedback system is the sensitivity Ms computed by
function 'sensitivity'.
*Inputs*
SYS
LTI model. Must be a single-input and single-output (SISO)
system.
TOL
Imaginary parts below TOL are assumed to be zero. If not
specified, default value 'sqrt (eps)' is taken.
*Outputs*
GAMMA
Gain margin (as gain, not dBs).
PHI
Phase margin (in degrees).
W_GAMMA
Frequency for the gain margin (in rad/s).
W_PHI
Frequency for the phase margin (in rad/s).
*Algorithm*
Uses function 'roots' to calculate the frequencies W_GAMMA, W_PHI
from special polynomials created from the transfer function of SYS
as listed below in section <<Equations>>.
*Equations*
CONTINUOUS-TIME SYSTEMS
Gain Margin
_ _
L(jw) = L(jw) BTW: L(jw) = L(-jw) = conj (L(jw))
num(jw) num(-jw)
------- = --------
den(jw) den(-jw)
num(jw) den(-jw) = num(-jw) den(jw)
imag (num(jw) den(-jw)) = 0
imag (num(-jw) den(jw)) = 0
Phase Margin
|num(jw)|
|L(jw)| = |-------| = 1
|den(jw)|
_ 2 2
z z = Re z + Im z
num(jw) num(-jw)
------- * -------- = 1
den(jw) den(-jw)
num(jw) num(-jw) - den(jw) den(-jw) = 0
real (num(jw) num(-jw) - den(jw) den(-jw)) = 0
DISCRETE-TIME SYSTEMS
Gain Margin
jwT log z
L(z) = L(1/z) BTW: z = e --> w = -----
j T
num(z) num(1/z)
------ = --------
den(z) den(1/z)
num(z) den(1/z) - num(1/z) den(z) = 0
Phase Margin
|num(z)|
|L(z)| = |------| = 1
|den(z)|
L(z) L(1/z) = 1
num(z) num(1/z)
------ * -------- = 1
den(z) den(1/z)
num(z) num(1/z) - den(z) den(1/z) = 0
PS: How to get L(1/z)
4 3 2
p(z) = a z + b z + c z + d z + e
-4 -3 -2 -1
p(1/z) = a z + b z + c z + d z + e
-4 2 3 4
= z ( a + b z + c z + d z + e z )
4 3 2 4
= ( e z + d z + c z + b z + a ) / ( z )
See also: sensitivity, roots.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Gain and phase margin of a system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mixsyn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7030
-- Function File: [K, N, GAMMA, INFO] = mixsyn (G, W1, W2, W3, ...)
Solve stacked S/KS/T H-infinity problem. Mixed-sensitivity is the
name given to transfer function shaping problems in which the
sensitivity function
-1
S = (I + G K)
is shaped along with one or more other closed-loop transfer
functions such as K S or the complementary sensitivity function
-1
T = I - S = (I + G K)
in a typical one degree-of-freedom configuration, where G denotes
the plant and K the (sub-)optimal controller to be found. The
shaping of multivariable transfer functions is based on the idea
that a satisfactory definition of gain (range of gain) for a matrix
transfer function is given by the singular values
of the transfer function. Hence the classical loop-shaping ideas
of feedback design can be generalized to multivariable systems. In
addition to the requirement that K stabilizes G, the closed-loop
objectives are as follows [1]:
1. For _disturbance rejection_ make
small.
2. For _noise attenuation_ make
small.
3. For _reference tracking_ make
4. For _input usage (control energy) reduction_ make
small.
5. For _robust stability_ in the presence of an additive
perturbation
make
small.
6. For _robust stability_ in the presence of a multiplicative
output perturbation
make
small.
In order to find a robust controller for the so-called stacked
S/KS/T H-infinity problem, the user function 'mixsyn' minimizes the
following criterion
| W1 S |
min || N(K) || N = | W2 K S |
K oo | W3 T |
'[K, N] = mixsyn (G, W1, W2, W3)'. The user-defined weighting
functions W1, W2 and W3 bound the largest singular values of the
closed-loop transfer functions S (for performance), K S (to
penalize large inputs) and T (for robustness and to avoid
sensitivity to noise), respectively [1]. A few points are to be
considered when choosing the weights. The weigths WI must all be
proper and stable. Therefore if one wishes, for example, to
minimize S at low frequencies by a weighting W1 including integral
action,
1
-
s
needs to be approximated by
1
----- where e << 1.
s + e
Similarly one might be interested in weighting K S with a
non-proper weight W2 to ensure that K is small outside the system
bandwidth. The trick here is to replace a non-proper term such as
1 + T1 s
1 + T1 s by --------, where T2 << T1.
1 + T2 s
[1, 2].
*Inputs*
G
LTI model of plant.
W1
LTI model of performance weight. Bounds the largest singular
values of sensitivity S. Model must be empty '[]', SISO or of
appropriate size.
W2
LTI model to penalize large control inputs. Bounds the
largest singular values of KS. Model must be empty '[]', SISO
or of appropriate size.
W3
LTI model of robustness and noise sensitivity weight. Bounds
the largest singular values of complementary sensitivity T.
Model must be empty '[]', SISO or of appropriate size.
...
Optional arguments of 'hinfsyn'. Type 'help hinfsyn' for more
information.
All inputs must be proper/realizable. Scalars, vectors and
matrices are possible instead of LTI models.
*Outputs*
K
State-space model of the H-infinity (sub-)optimal controller.
N
State-space model of the lower LFT of P and K.
INFO
Structure containing additional information.
INFO.GAMMA
L-infinity norm of N.
INFO.RCOND
Vector RCOND contains estimates of the reciprocal condition
numbers of the matrices which are to be inverted and estimates
of the reciprocal condition numbers of the Riccati equations
which have to be solved during the computation of the
controller K. For details, see the description of the
corresponding SLICOT routine.
*Block Diagram*
| W1 S |
gamma = min||N(K)|| N = | W2 K S | = lft (P, K)
K inf | W3 T |
+------+ z1
+---------------------------------------->| W1 |----->
| +------+
| +------+ z2
| +---------------------->| W2 |----->
| | +------+
r + e | +--------+ u | +--------+ y +------+ z3
----->(+)---+-->| K(s) |----+-->| G(s) |----+---->| W3 |----->
^ - +--------+ +--------+ | +------+
| |
+----------------------------------------+
+--------+
| |-----> z1 (p1x1) z1 = W1 e
r (px1) ----->| P(s) |-----> z2 (p2x1) z2 = W2 u
| |-----> z3 (p3x1) z3 = W3 y
u (mx1) ----->| |-----> e (px1) e = r - y
+--------+
+--------+
r ----->| |-----> z
| P(s) |
u +---->| |-----+ e
| +--------+ |
| |
| +--------+ |
+-----| K(s) |<----+
+--------+
+--------+
r ----->| N(s) |-----> z
+--------+
Extended Plant: P = augw (G, W1, W2, W3)
Controller: K = mixsyn (G, W1, W2, W3)
Entire System: N = lft (P, K)
Open Loop: L = G * K
Closed Loop: T = feedback (L)
*Algorithm*
Relies on functions 'augw' and 'hinfsyn', which use SLICOT SB10FD,
SB10DD and SB10AD by courtesy of NICONET e.V.
(http://www.slicot.org)
*References*
[1] Skogestad, S. and Postlethwaite I. (2005) 'Multivariable
Feedback Control: Analysis and Design: Second Edition'. Wiley,
Chichester, England.
[2] Meinsma, G. (1995) 'Unstable and nonproper weights in
H-infinity control' Automatica, Vol. 31, No. 11, pp. 1655-1658
See also: hinfsyn, augw.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Solve stacked S/KS/T H-infinity problem.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
mktito
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1691
-- Function File: P = mktito (P, NMEAS, NCON)
Partition LTI plant P for robust controller synthesis. If a plant
is partitioned this way, one can omit the inputs NMEAS and NCON
when calling the functions 'hinfsyn' and 'h2syn'.
*Inputs*
P
Generalized plant.
NMEAS
Number of measured outputs v. The last NMEAS outputs of P are
connected to the inputs of controller K. The remaining
outputs z (indices 1 to p-nmeas) are used to calculate the
H-2/H-infinity norm.
NCON
Number of controlled inputs u. The last NCON inputs of P are
connected to the outputs of controller K. The remaining
inputs w (indices 1 to m-ncon) are excited by a harmonic test
signal.
*Outputs*
P
Partitioned plant. The input/output groups and names are
overwritten with designations according to [1].
*Block Diagram*
min||N(K)|| N = lft (P, K)
K norm
+--------+
w ----->| |-----> z
| P(s) |
u +---->| |-----+ v
| +--------+ |
| |
| +--------+ |
+-----| K(s) |<----+
+--------+
+--------+
w ----->| N(s) |-----> z
+--------+
*Reference*
[1] Skogestad, S. and Postlethwaite, I. (2005) 'Multivariable
Feedback Control: Analysis and Design: Second Edition'. Wiley,
Chichester, England.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Partition LTI plant P for robust controller synthesis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
moen4
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5471
-- Function File: [SYS, X0, INFO] = moen4 (DAT, ...)
-- Function File: [SYS, X0, INFO] = moen4 (DAT, N, ...)
-- Function File: [SYS, X0, INFO] = moen4 (DAT, OPT, ...)
-- Function File: [SYS, X0, INFO] = moen4 (DAT, N, OPT, ...)
Estimate state-space model using combined subspace method: MOESP
algorithm for finding the matrices A and C, and N4SID algorithm for
finding the matrices B and D. If no output arguments are given, the
singular values are plotted on the screen in order to estimate the
system order.
*Inputs*
DAT
iddata set containing the measurements, i.e. time-domain
signals.
N
The desired order of the resulting state-space system SYS. If
not specified, N is chosen automatically according to the
singular values and tolerances.
...
Optional pairs of keys and values. ''key1', value1, 'key2',
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
SYS
Discrete-time state-space model.
X0
Initial state vector. If DAT is a multi-experiment dataset,
X0 becomes a cell vector containing an initial state vector
for each experiment.
INFO
Struct containing additional information.
INFO.K
Kalman gain matrix.
INFO.Q
State covariance matrix.
INFO.RY
Output covariance matrix.
INFO.S
State-output cross-covariance matrix.
INFO.L
Noise variance matrix factor. LL'=Ry.
*Option Keys and Values*
'N'
The desired order of the resulting state-space system SYS. S
> N > 0.
'S'
The number of block rows S in the input and output block
Hankel matrices to be processed. S > 0. In the MOESP theory,
S should be larger than N, the estimated dimension of state
vector.
'ALG', 'ALGORITHM'
Specifies the algorithm for computing the triangular factor R,
as follows:
'C'
Cholesky algorithm applied to the correlation matrix of
the input-output data. Default method.
'F'
Fast QR algorithm.
'Q'
QR algorithm applied to the concatenated block Hankel
matrices.
'TOL'
Absolute tolerance used for determining an estimate of the
system order. If TOL >= 0, the estimate is indicated by the
index of the last singular value greater than or equal to TOL.
(Singular values less than TOL are considered as zero.) When
TOL = 0, an internally computed default value, TOL =
S*EPS*SV(1), is used, where SV(1) is the maximal singular
value, and EPS is the relative machine precision. When TOL <
0, the estimate is indicated by the index of the singular
value that has the largest logarithmic gap to its successor.
Default value is 0.
'RCOND'
The tolerance to be used for estimating the rank of matrices.
If the user sets RCOND > 0, the given value of RCOND is used
as a lower bound for the reciprocal condition number; an
m-by-n matrix whose estimated condition number is less than
1/RCOND is considered to be of full rank. If the user sets
RCOND <= 0, then an implicitly computed, default tolerance,
defined by RCOND = m*n*EPS, is used instead, where EPS is the
relative machine precision. Default value is 0.
'CONFIRM'
Specifies whether or not the user's confirmation of the system
order estimate is desired, as follows:
TRUE
User's confirmation.
FALSE
No confirmation. Default value.
'NOISEINPUT'
The desired type of noise input channels.
'N'
No error inputs. Default value.
x[k+1] = A x[k] + B u[k]
y[k] = C x[k] + D u[k]
'E'
Return SYS as a (p-by-m+p) state-space model with both
measured input channels u and noise channels e with
covariance matrix RY.
x[k+1] = A x[k] + B u[k] + K e[k]
y[k] = C x[k] + D u[k] + e[k]
'V'
Return SYS as a (p-by-m+p) state-space model with both
measured input channels u and white noise channels v with
identity covariance matrix.
x[k+1] = A x[k] + B u[k] + K L v[k]
y[k] = C x[k] + D u[k] + L v[k]
e = L v, L L' = Ry
'K'
Return SYS as a Kalman predictor for simulation.
^ ^ ^
x[k+1] = A x[k] + B u[k] + K(y[k] - y[k])
^ ^
y[k] = C x[k] + D u[k]
^ ^
x[k+1] = (A-KC) x[k] + (B-KD) u[k] + K y[k]
^ ^
y[k] = C x[k] + D u[k] + 0 y[k]
*Algorithm*
Uses SLICOT IB01AD, IB01BD and IB01CD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Estimate state-space model using combined subspace method: MOESP
algorithm for f
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
moesp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5402
-- Function File: [SYS, X0, INFO] = moesp (DAT, ...)
-- Function File: [SYS, X0, INFO] = moesp (DAT, N, ...)
-- Function File: [SYS, X0, INFO] = moesp (DAT, OPT, ...)
-- Function File: [SYS, X0, INFO] = moesp (DAT, N, OPT, ...)
Estimate state-space model using MOESP algorithm. MOESP:
Multivariable Output Error State sPace. If no output arguments are
given, the singular values are plotted on the screen in order to
estimate the system order.
*Inputs*
DAT
iddata set containing the measurements, i.e. time-domain
signals.
N
The desired order of the resulting state-space system SYS. If
not specified, N is chosen automatically according to the
singular values and tolerances.
...
Optional pairs of keys and values. ''key1', value1, 'key2',
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
SYS
Discrete-time state-space model.
X0
Initial state vector. If DAT is a multi-experiment dataset,
X0 becomes a cell vector containing an initial state vector
for each experiment.
INFO
Struct containing additional information.
INFO.K
Kalman gain matrix.
INFO.Q
State covariance matrix.
INFO.RY
Output covariance matrix.
INFO.S
State-output cross-covariance matrix.
INFO.L
Noise variance matrix factor. LL'=Ry.
*Option Keys and Values*
'N'
The desired order of the resulting state-space system SYS. S
> N > 0.
'S'
The number of block rows S in the input and output block
Hankel matrices to be processed. S > 0. In the MOESP theory,
S should be larger than N, the estimated dimension of state
vector.
'ALG', 'ALGORITHM'
Specifies the algorithm for computing the triangular factor R,
as follows:
'C'
Cholesky algorithm applied to the correlation matrix of
the input-output data. Default method.
'F'
Fast QR algorithm.
'Q'
QR algorithm applied to the concatenated block Hankel
matrices.
'TOL'
Absolute tolerance used for determining an estimate of the
system order. If TOL >= 0, the estimate is indicated by the
index of the last singular value greater than or equal to TOL.
(Singular values less than TOL are considered as zero.) When
TOL = 0, an internally computed default value, TOL =
S*EPS*SV(1), is used, where SV(1) is the maximal singular
value, and EPS is the relative machine precision. When TOL <
0, the estimate is indicated by the index of the singular
value that has the largest logarithmic gap to its successor.
Default value is 0.
'RCOND'
The tolerance to be used for estimating the rank of matrices.
If the user sets RCOND > 0, the given value of RCOND is used
as a lower bound for the reciprocal condition number; an
m-by-n matrix whose estimated condition number is less than
1/RCOND is considered to be of full rank. If the user sets
RCOND <= 0, then an implicitly computed, default tolerance,
defined by RCOND = m*n*EPS, is used instead, where EPS is the
relative machine precision. Default value is 0.
'CONFIRM'
Specifies whether or not the user's confirmation of the system
order estimate is desired, as follows:
TRUE
User's confirmation.
FALSE
No confirmation. Default value.
'NOISEINPUT'
The desired type of noise input channels.
'N'
No error inputs. Default value.
x[k+1] = A x[k] + B u[k]
y[k] = C x[k] + D u[k]
'E'
Return SYS as a (p-by-m+p) state-space model with both
measured input channels u and noise channels e with
covariance matrix RY.
x[k+1] = A x[k] + B u[k] + K e[k]
y[k] = C x[k] + D u[k] + e[k]
'V'
Return SYS as a (p-by-m+p) state-space model with both
measured input channels u and white noise channels v with
identity covariance matrix.
x[k+1] = A x[k] + B u[k] + K L v[k]
y[k] = C x[k] + D u[k] + L v[k]
e = L v, L L' = Ry
'K'
Return SYS as a Kalman predictor for simulation.
^ ^ ^
x[k+1] = A x[k] + B u[k] + K(y[k] - y[k])
^ ^
y[k] = C x[k] + D u[k]
^ ^
x[k+1] = (A-KC) x[k] + (B-KD) u[k] + K y[k]
^ ^
y[k] = C x[k] + D u[k] + 0 y[k]
*Algorithm*
Uses SLICOT IB01AD, IB01BD and IB01CD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Estimate state-space model using MOESP algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
n4sid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5430
-- Function File: [SYS, X0, INFO] = n4sid (DAT, ...)
-- Function File: [SYS, X0, INFO] = n4sid (DAT, N, ...)
-- Function File: [SYS, X0, INFO] = n4sid (DAT, OPT, ...)
-- Function File: [SYS, X0, INFO] = n4sid (DAT, N, OPT, ...)
Estimate state-space model using N4SID algorithm. N4SID: Numerical
algorithm for Subspace State Space System IDentification. If no
output arguments are given, the singular values are plotted on the
screen in order to estimate the system order.
*Inputs*
DAT
iddata set containing the measurements, i.e. time-domain
signals.
N
The desired order of the resulting state-space system SYS. If
not specified, N is chosen automatically according to the
singular values and tolerances.
...
Optional pairs of keys and values. ''key1', value1, 'key2',
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
SYS
Discrete-time state-space model.
X0
Initial state vector. If DAT is a multi-experiment dataset,
X0 becomes a cell vector containing an initial state vector
for each experiment.
INFO
Struct containing additional information.
INFO.K
Kalman gain matrix.
INFO.Q
State covariance matrix.
INFO.RY
Output covariance matrix.
INFO.S
State-output cross-covariance matrix.
INFO.L
Noise variance matrix factor. LL'=Ry.
*Option Keys and Values*
'N'
The desired order of the resulting state-space system SYS. S
> N > 0.
'S'
The number of block rows S in the input and output block
Hankel matrices to be processed. S > 0. In the MOESP theory,
S should be larger than N, the estimated dimension of state
vector.
'ALG', 'ALGORITHM'
Specifies the algorithm for computing the triangular factor R,
as follows:
'C'
Cholesky algorithm applied to the correlation matrix of
the input-output data. Default method.
'F'
Fast QR algorithm.
'Q'
QR algorithm applied to the concatenated block Hankel
matrices.
'TOL'
Absolute tolerance used for determining an estimate of the
system order. If TOL >= 0, the estimate is indicated by the
index of the last singular value greater than or equal to TOL.
(Singular values less than TOL are considered as zero.) When
TOL = 0, an internally computed default value, TOL =
S*EPS*SV(1), is used, where SV(1) is the maximal singular
value, and EPS is the relative machine precision. When TOL <
0, the estimate is indicated by the index of the singular
value that has the largest logarithmic gap to its successor.
Default value is 0.
'RCOND'
The tolerance to be used for estimating the rank of matrices.
If the user sets RCOND > 0, the given value of RCOND is used
as a lower bound for the reciprocal condition number; an
m-by-n matrix whose estimated condition number is less than
1/RCOND is considered to be of full rank. If the user sets
RCOND <= 0, then an implicitly computed, default tolerance,
defined by RCOND = m*n*EPS, is used instead, where EPS is the
relative machine precision. Default value is 0.
'CONFIRM'
Specifies whether or not the user's confirmation of the system
order estimate is desired, as follows:
TRUE
User's confirmation.
FALSE
No confirmation. Default value.
'NOISEINPUT'
The desired type of noise input channels.
'N'
No error inputs. Default value.
x[k+1] = A x[k] + B u[k]
y[k] = C x[k] + D u[k]
'E'
Return SYS as a (p-by-m+p) state-space model with both
measured input channels u and noise channels e with
covariance matrix RY.
x[k+1] = A x[k] + B u[k] + K e[k]
y[k] = C x[k] + D u[k] + e[k]
'V'
Return SYS as a (p-by-m+p) state-space model with both
measured input channels u and white noise channels v with
identity covariance matrix.
x[k+1] = A x[k] + B u[k] + K L v[k]
y[k] = C x[k] + D u[k] + L v[k]
e = L v, L L' = Ry
'K'
Return SYS as a Kalman predictor for simulation.
^ ^ ^
x[k+1] = A x[k] + B u[k] + K(y[k] - y[k])
^ ^
y[k] = C x[k] + D u[k]
^ ^
x[k+1] = (A-KC) x[k] + (B-KD) u[k] + K y[k]
^ ^
y[k] = C x[k] + D u[k] + 0 y[k]
*Algorithm*
Uses SLICOT IB01AD, IB01BD and IB01CD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Estimate state-space model using N4SID algorithm.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ncfsyn
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4802
-- Function File: [K, N, GAMMA, INFO] = ncfsyn (G, W1, W2, FACTOR)
Loop shaping H-infinity synthesis. Compute positive feedback
controller using the McFarlane/Glover loop shaping design procedure
[1]. Using a precompensator W1 and/or a postcompensator W2, the
singular values of the nominal plant G are shaped to give a desired
open-loop shape. The nominal plant G and shaping functions W1, W2
are combined to form the shaped plant, GS where 'Gs = W2 G W1'. We
assume that W1 and W2 are such that GS contains no hidden modes.
It is relatively easy to approximate the closed-loop requirements
by the following open-loop objectives [2]:
1. For _disturbance rejection_ make
large; valid for frequencies at which
2. For _noise attenuation_ make
small; valid for frequencies at which
3. For _reference tracking_ make
large; valid for frequencies at which
4. For _robust stability_ to a multiplicative output perturbation
small; valid for frequencies at which
.
Then a stabilizing controller KS is synthesized for shaped plant
GS. The final positive feedback controller K is then constructed
by combining the
H-infinity
controller KS with the shaping functions W1 and W2 such that 'K =
W1 Ks W2'. In [1] is stated further that the given robust
stabilization objective can be interpreted as a
H-infinity
problem formulation of minimizing the
H-infinity
norm of the frequency weighted gain from disturbances on the plant
input and output to the controller input and output as follows:
-1 -1 -1
min || N(K) || , N = | W1 | (I - K G) | W1 G W2 |
K oo | W2 G |
'[K, N] = ncfsyn (G, W1, W2, f)' The function 'ncfsyn' - the
somewhat cryptic name stands for _normalized coprime factorization
synthesis_ - allows the specification of an additional argument,
factor F. Default value 'f = 1' implies that an optimal controller
is required, whereas 'f > 1' implies that a suboptimal controller
is required, achieving a performance that is F times less than
optimal.
*Inputs*
G
LTI model of plant.
W1
LTI model of precompensator. Model must be SISO or of
appropriate size. An identity matrix is taken if W1 is not
specified or if an empty model '[]' is passed.
W2
LTI model of postcompensator. Model must be SISO or of
appropriate size. An identity matrix is taken if W2 is not
specified or if an empty model '[]' is passed.
FACTOR
'factor = 1' implies that an optimal controller is required.
'factor > 1' implies that a suboptimal controller is required,
achieving a performance that is FACTOR times less than
optimal. Default value is 1.
*Outputs*
K
State-space model of the H-infinity loop-shaping controller.
Note that K is a _positive_ feedback controller.
N
State-space model of the closed loop depicted below.
INFO
Structure containing additional information.
INFO.GAMMA
L-infinity norm of N. 'gamma = norm (N, inf)'.
INFO.EMAX
Nugap robustness. 'emax = inv (gamma)'.
INFO.GS
Shaped plant. 'Gs = W2 * G * W1'.
INFO.KS
Controller for shaped plant. 'Ks = ncfsyn (Gs)'.
INFO.RCOND
Estimates of the reciprocal condition numbers of the Riccati
equations and a few other things. For details, see the
description of the corresponding SLICOT routine.
*Block Diagram of N*
^ z1 ^ z2
| |
w1 + | +--------+ | +--------+
----->(+)---+-->| Ks |----+--->(+)---->| Gs |----+
^ + +--------+ ^ +--------+ |
| w2 | |
| |
+-------------------------------------------------+
*Algorithm*
Uses SLICOT SB10ID, SB10KD and SB10ZD by courtesy of NICONET e.V.
(http://www.slicot.org)
*References*
[1] D. McFarlane and K. Glover, 'A Loop Shaping Design Procedure
Using H-infinity Synthesis', IEEE Transactions on Automatic
Control, Vol. 37, No. 6, June 1992.
[2] S. Skogestad and I. Postlethwaite, 'Multivariable Feedback
Control: Analysis and Design: Second Edition'. Wiley, Chichester,
England, 2005.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Loop shaping H-infinity synthesis.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nichols
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1252
-- Function File: nichols (SYS)
-- Function File: nichols (SYS1, SYS2, ..., SYSN)
-- Function File: nichols (SYS1, SYS2, ..., SYSN, W)
-- Function File: nichols (SYS1, 'STYLE1', ..., SYSN, 'STYLEN')
-- Function File: [MAG, PHA, W] = nichols (SYS)
-- Function File: [MAG, PHA, W] = nichols (SYS, W)
Nichols chart of frequency response. If no output arguments are
given, the response is printed on the screen.
*Inputs*
SYS
LTI system. Must be a single-input and single-output (SISO)
system.
W
Optional vector of frequency values. If W is not specified,
it is calculated by the zeros and poles of the system.
Alternatively, the cell '{wmin, wmax}' specifies a frequency
range, where WMIN and WMAX denote minimum and maximum
frequencies in rad/s.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
MAG
Vector of magnitude. Has length of frequency vector W.
PHA
Vector of phase. Has length of frequency vector W.
W
Vector of frequency values used.
See also: bode, nyquist, sigma.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Nichols chart of frequency response.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nyquist
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1259
-- Function File: nyquist (SYS)
-- Function File: nyquist (SYS1, SYS2, ..., SYSN)
-- Function File: nyquist (SYS1, SYS2, ..., SYSN, W)
-- Function File: nyquist (SYS1, 'STYLE1', ..., SYSN, 'STYLEN')
-- Function File: [RE, IM, W] = nyquist (SYS)
-- Function File: [RE, IM, W] = nyquist (SYS, W)
Nyquist diagram of frequency response. If no output arguments are
given, the response is printed on the screen.
*Inputs*
SYS
LTI system. Must be a single-input and single-output (SISO)
system.
W
Optional vector of frequency values. If W is not specified,
it is calculated by the zeros and poles of the system.
Alternatively, the cell '{wmin, wmax}' specifies a frequency
range, where WMIN and WMAX denote minimum and maximum
frequencies in rad/s.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
RE
Vector of real parts. Has length of frequency vector W.
IM
Vector of imaginary parts. Has length of frequency vector W.
W
Vector of frequency values used.
See also: bode, nichols, sigma.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Nyquist diagram of frequency response.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
obsv
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 448
-- Function File: OB = obsv (SYS)
-- Function File: OB = obsv (A, C)
Return observability matrix.
*Inputs*
SYS
LTI model.
A
State matrix (n-by-n).
C
Measurement matrix (p-by-n).
*Outputs*
OB
Observability matrix.
*Equation*
| C |
| CA |
Ob = | CA^2 |
| ... |
| CA^(n-1) |
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Return observability matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
obsvf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 926
-- Function File: [SYSBAR, T, K] = obsvf (SYS)
-- Function File: [SYSBAR, T, K] = obsvf (SYS, TOL)
-- Function File: [ABAR, BBAR, CBAR, T, K] = obsvf (A, B, C)
-- Function File: [ABAR, BBAR, CBAR, T, K] = obsvf (A, B, C, TOL)
If Ob=obsv(A,C) has rank r <= n = SIZE(A,1), then there is a
similarity transformation Tc such that To = [t1;t2] where t1 is c
and t2 is orthogonal to t1
Abar = To \\ A * To , Bbar = To \\ B , Cbar = C * To
and the transformed system has the form
| Ao 0 | | Bo |
Abar = |----------|, Bbar = | --- |, Cbar = [Co | 0 ].
| A21 Ano| | Bno |
where (Ao,Bo) is observable, and Co(sI-Ao)^(-1)Bo = C(sI-A)^(-1)B.
And system is detectable if Ano has no eigenvalues in the right
half plane. The last output K is a vector of length n containing
the number of observable states.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
If Ob=obsv(A,C) has rank r <= n = SIZE(A,1), then there is a similarity
transfor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
optiPID
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3022
Numerical optimization of a PID controller using an objective function.
The objective function is located in the file 'optiPIDfun'. Type 'which
optiPID' to locate, 'edit optiPID' to open and simply 'optiPID' to run
the example file. In this example called 'optiPID', loosely based on
[1], it is assumed that the plant
1
P(s) = -----------------------
(s^2 + s + 1) (s + 1)^4
is controlled by a PID controller with second-order roll-off
1 1
C(s) = Kp (1 + ---- + Td s) -------------
Ti s (tau s + 1)^2
in the usual negative feedback structure
L(s) P(s) C(s)
T(s) = -------- = -------------
1 + L(s) 1 + P(s) C(s)
The plant P(s) is of higher order but benign. The initial values for
the controller parameters Kp, Ti and Td are obtained by applying the
Astroem and Haegglund rules [2]. These values are to be improved using
a numerical optimization as shown below. As with all numerical methods,
this approach can never guarantee that a proposed solution is a global
minimum. Therefore, good initial guesses for the parameters to be
optimized are very important. The Octave function 'fminsearch'
minimizes the objective function J, which is chosen to be
inf
J(Kp, Ti, Td) = mu1 INT t |e(t)| dt + mu2 (||y(t)|| - 1) + mu3 ||S(jw)||
0 inf inf
This particular objective function penalizes the integral of
time-weighted absolute error
inf
ITAE = INT t |e(t)| dt
0
and the maximum overshoot
y - 1 = ||y(t)|| - 1
max inf
to a unity reference step in the time domain. In the frequency
domain, the sensitivity
Ms = ||S(jw)||
inf
is minimized for good robustness, where S(jw) denotes the
_sensitivity_ transfer function
1 1
S(s) = -------- = -------------
1 + L(s) 1 + P(s) C(s)
The constants mu1, mu2 and mu3 are _relative weighting factors_ or
<<tuning knobs>> which reflect the importance of the different design
goals. Varying these factors corresponds to changing the emphasis from,
say, high performance to good robustness. The main advantage of this
approach is the possibility to explore the tradeoffs of the design
problem in a systematic way. In a first approach, all three design
objectives are weigthed equally. In subsequent iterations, the
parameters mu1 = 1, mu2 = 10 and mu3 = 20 are found to yield
satisfactory closed-loop performance. This controller results in a
system with virtually no overshoot and a phase margin of 64 degrees.
*References*
[1] Guzzella, L. 'Analysis and Design of SISO Control Systems', VDF
Hochschulverlag, ETH Zurich, 2007
[2] Astroem, K. and Haegglund, T. 'PID Controllers: Theory, Design and
Tuning', Second Edition, Instrument Society of America, 1995
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Numerical optimization of a PID controller using an objective function.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
optiPIDctrl
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 397
===============================================================================
optiPIDctrl Lukas Reichlin February 2012
===============================================================================
Return PID controller with roll-off for given parameters Kp, Ti and Td.
===============================================================================
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
===============================================================================
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
optiPIDfun
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 464
===============================================================================
optiPIDfun Lukas Reichlin July 2009
===============================================================================
Objective Function
Reference: Guzzella, L. (2007) Analysis and Synthesis of SISO Control Systems.
vdf Hochschulverlag, Zurich
===============================================================================
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
===============================================================================
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
options
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 918
-- Function File: OPT = options ('KEY1', VALUE1, 'KEY2', VALUE2, ...)
Create options struct OPT from a number of key and value pairs.
For use with order reduction and system identification functions.
Option structs are a way to avoid typing the same key and value
pairs over and over again.
*Inputs*
KEY, PROPERTY
The name of the property.
VALUE
The value of the property.
*Outputs*
OPT
Struct with fields for each key.
*Example*
octave:1> opt = options ("method", "spa", "tol", 1e-6)
opt =
scalar structure containing the fields:
method = spa
tol = 1.0000e-06
octave:2> save filename opt
octave:3> # save the struct 'opt' to file 'filename' for later use
octave:4> load filename
octave:5> # load struct 'opt' from file 'filename'
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Create options struct OPT from a number of key and value pairs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
pid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 371
-- Function File: C = pid (KP)
-- Function File: C = pid (KP, KI)
-- Function File: C = pid (KP, KI, KD)
-- Function File: C = pid (KP, KI, KD, TF)
Return the transfer function C of the PID controller in parallel
form with first-order roll-off.
Ki Kd s
C(s) = Kp + ---- + --------
s Tf s + 1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Return the transfer function C of the PID controller in parallel form
with first
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pidstd
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 397
-- Function File: C = pidstd (KP)
-- Function File: C = pidstd (KP, TI)
-- Function File: C = pidstd (KP, TI, TD)
-- Function File: C = pidstd (KP, TI, TD, N)
Return the transfer function C of the PID controller in standard
form with first-order roll-off.
1 Td s
C(s) = Kp (1 + ---- + ----------)
Ti s Td/N s + 1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Return the transfer function C of the PID controller in standard form
with first
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
place
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1997
-- Function File: F = place (SYS, P)
-- Function File: F = place (A, B, P)
-- Function File: [F, INFO] = place (SYS, P, ALPHA)
-- Function File: [F, INFO] = place (A, B, P, ALPHA)
Pole assignment for a given matrix pair (A,B) such that 'p = eig
(A-B*F)'. If parameter ALPHA is specified, poles with real parts
(continuous-time) or moduli (discrete-time) below ALPHA are left
untouched.
*Inputs*
SYS
Continuous- or discrete-time LTI system.
A
State matrix (n-by-n) of a continuous-time system.
B
Input matrix (n-by-m) of a continuous-time system.
P
Desired eigenvalues of the closed-loop system state-matrix
A-B*F. 'length (p) <= rows (A)'.
ALPHA
Specifies the maximum admissible value, either for real parts
or for moduli, of the eigenvalues of A which will not be
modified by the eigenvalue assignment algorithm. 'alpha >= 0'
for discrete-time systems.
*Outputs*
F
State feedback gain matrix.
INFO
Structure containing additional information.
INFO.NFP
The number of fixed poles, i.e. eigenvalues of A having real
parts less than ALPHA, or moduli less than ALPHA. These
eigenvalues are not modified by 'place'.
INFO.NAP
The number of assigned eigenvalues. 'nap = n-nfp-nup'.
INFO.NUP
The number of uncontrollable eigenvalues detected by the
eigenvalue assignment algorithm.
INFO.Z
The orthogonal matrix Z reduces the closed-loop system state
matrix 'A + B*F' to upper real Schur form. Note the positive
sign in 'A + B*F'.
*Note*
Place is also suitable to design estimator gains:
L = place (A.', C.', p).'
L = place (sys.', p).' # useful for discrete-time systems
*Algorithm*
Uses SLICOT SB01BD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Pole assignment for a given matrix pair (A,B) such that 'p = eig
(A-B*F)'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
pzmap
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 679
-- Function File: pzmap (SYS)
-- Function File: pzmap (SYS1, SYS2, ..., SYSN)
-- Function File: pzmap (SYS1, 'STYLE1', ..., SYSN, 'STYLEN')
-- Function File: [P, Z] = pzmap (SYS)
Plot the poles and zeros of an LTI system in the complex plane. If
no output arguments are given, the result is plotted on the screen.
Otherwise, the poles and zeros are computed and returned.
*Inputs*
SYS
LTI model.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
P
Poles of SYS.
Z
Invariant zeros of SYS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Plot the poles and zeros of an LTI system in the complex plane.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
ramp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1694
-- Function File: ramp (SYS)
-- Function File: ramp (SYS1, SYS2, ..., SYSN)
-- Function File: ramp (SYS1, 'STYLE1', ..., SYSN, 'STYLEN')
-- Function File: ramp (SYS1, ..., T)
-- Function File: ramp (SYS1, ..., TFINAL)
-- Function File: ramp (SYS1, ..., TFINAL, DT)
-- Function File: [Y, T, X] = ramp (SYS)
-- Function File: [Y, T, X] = ramp (SYS, T)
-- Function File: [Y, T, X] = ramp (SYS, TFINAL)
-- Function File: [Y, T, X] = ramp (SYS, TFINAL, DT)
Ramp response of LTI system. If no output arguments are given, the
response is printed on the screen.
r(t) = t * h(t)
*Inputs*
SYS
LTI model.
T
Time vector. Should be evenly spaced. If not specified, it
is calculated by the poles of the system to reflect adequately
the response transients.
TFINAL
Optional simulation horizon. If not specified, it is
calculated by the poles of the system to reflect adequately
the response transients.
DT
Optional sampling time. Be sure to choose it small enough to
capture transient phenomena. If not specified, it is
calculated by the poles of the system.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
Y
Output response array. Has as many rows as time samples
(length of t) and as many columns as outputs.
T
Time row vector.
X
State trajectories array. Has 'length (t)' rows and as many
columns as states.
See also: impulse, initial, lsim, step.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Ramp response of LTI system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
repsys
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 353
-- Function File: RSYS = repsys (SYS, M, N)
-- Function File: RSYS = repsys (SYS, [M, N])
-- Function File: RSYS = repsys (SYS, M)
Form a block transfer matrix of SYS with M copies vertically and N
copies horizontally. If N is not specified, it is set to M.
'repsys (sys, 2, 3)' is equivalent to '[sys, sys, sys; sys, sys,
sys]'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Form a block transfer matrix of SYS with M copies vertically and N
copies horizo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rlocus
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 910
-- Function File: rlocus (SYS)
-- Function File: [RLDATA, K] = rlocus (SYS, INCREMENT, MIN_K, MAX_K)
Display root locus plot of the specified SISO system.
*Inputs*
SYS
LTI model. Must be a single-input and single-output (SISO)
system.
INCREMENT
The increment used in computing gain values.
MIN_K
Minimum value of K.
MAX_K
Maximum value of K.
*Outputs*
RLDATA
Data points plotted: in column 1 real values, in column 2 the
imaginary values.
K
Gains for real axis break points.
*Block Diagram*
u + +---+ +------+ y
------>(+)----->| k |----->| SISO |-------+------->
^ - +---+ +------+ |
| |
+---------------------------------+
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Display root locus plot of the specified SISO system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
sensitivity
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1880
-- Function File: [MS, WS] = sensitivity (L)
-- Function File: [MS, WS] = sensitivity (P, C)
-- Function File: [MS, WS] = sensitivity (P, C1, C2, ...)
Return sensitivity margin MS. The quantity MS is simply the
inverse of the shortest distance from the Nyquist curve to the
critical point -1. Reasonable values of MS are in the range from
1.3 to 2.
Ms = ||S(jw)||
inf
If no output arguments are given, the critical distance 1/Ms is
plotted on a Nyquist diagram. In contrast to gain and phase margin
as computed by function 'margin', the sensitivity MS is a more
robust criterion to assess the stability of a feedback system.
*Inputs*
L
Open loop transfer function. L can be any type of LTI system,
but it must be square.
P
Plant model. Any type of LTI system.
C
Controller model. Any type of LTI system.
C1, C2, ...
If several controllers are specified, function 'sensitivity'
computes the sensitivity MS for each of them in combination
with plant P.
*Outputs*
MS
Sensitivity margin MS as defined in [1]. Scalar value. If
several controllers are specified, MS becomes a row vector
with as many entries as controllers.
WS
The frequency [rad/s] corresponding to the sensitivity peak.
Scalar value. If several controllers are specified, WS
becomes a row vector with as many entries as controllers.
*Algorithm*
Uses SLICOT AB13DD by courtesy of NICONET e.V.
(http://www.slicot.org) to calculate the infinity norm of the
sensitivity function.
*References*
[1] Astro"m, K. and Ha"gglund, T. (1995) PID Controllers: Theory,
Design and Tuning, Second Edition. Instrument Society of America.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 29
Return sensitivity margin MS.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
sigma
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1374
-- Function File: sigma (SYS)
-- Function File: sigma (SYS1, SYS2, ..., SYSN)
-- Function File: sigma (SYS1, SYS2, ..., SYSN, W)
-- Function File: sigma (SYS1, 'STYLE1', ..., SYSN, 'STYLEN')
-- Function File: [SV, W] = sigma (SYS)
-- Function File: [SV, W] = sigma (SYS, W)
Singular values of frequency response. If no output arguments are
given, the singular value plot is printed on the screen.
*Inputs*
SYS
LTI system. Multiple inputs and/or outputs (MIMO systems)
make practical sense.
W
Optional vector of frequency values. If W is not specified,
it is calculated by the zeros and poles of the system.
Alternatively, the cell '{wmin, wmax}' specifies a frequency
range, where WMIN and WMAX denote minimum and maximum
frequencies in rad/s.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
SV
Array of singular values. For a system with m inputs and p
outputs, the array sv has 'min (m, p)' rows and as many
columns as frequency points 'length (w)'. The singular values
at the frequency 'w(k)' are given by 'sv(:,k)'.
W
Vector of frequency values used.
See also: bodemag, svd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Singular values of frequency response.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
spaconred
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6245
-- Function File: [KR, INFO] = spaconred (G, K, ...)
-- Function File: [KR, INFO] = spaconred (G, K, NCR, ...)
-- Function File: [KR, INFO] = spaconred (G, K, OPT, ...)
-- Function File: [KR, INFO] = spaconred (G, K, NCR, OPT, ...)
Controller reduction by frequency-weighted Singular Perturbation
Approximation (SPA). Given a plant G and a stabilizing controller
K, determine a reduced order controller KR such that the
closed-loop system is stable and closed-loop performance is
retained.
The algorithm tries to minimize the frequency-weighted error
||V (K-Kr) W|| = min
inf
where V and W denote output and input weightings.
*Inputs*
G
LTI model of the plant. It has m inputs, p outputs and n
states.
K
LTI model of the controller. It has p inputs, m outputs and
nc states.
NCR
The desired order of the resulting reduced order controller
KR. If not specified, NCR is chosen automatically according
to the description of key 'ORDER'.
...
Optional pairs of keys and values. '"key1", value1, "key2",
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
KR
State-space model of reduced order controller.
INFO
Struct containing additional information.
INFO.NCR
The order of the obtained reduced order controller KR.
INFO.NCS
The order of the alpha-stable part of original controller
K.
INFO.HSVC
The Hankel singular values of the alpha-stable part of K.
The NCS Hankel singular values are ordered decreasingly.
*Option Keys and Values*
'ORDER', 'NCR'
The desired order of the resulting reduced order controller
KR. If not specified, NCR is chosen automatically such that
states with Hankel singular values INFO.HSVC > TOL1 are
retained.
'METHOD'
Order reduction approach to be used as follows:
'SR', 'S'
Use the square-root Singular Perturbation Approximation
method.
'BFSR', 'P'
Use the balancing-free square-root Singular Perturbation
Approximation method. Default method.
'WEIGHT'
Specifies the type of frequency-weighting as follows:
'NONE'
No weightings are used (V = I, W = I).
'LEFT', 'OUTPUT'
Use stability enforcing left (output) weighting
-1
V = (I-G*K) *G , W = I
'RIGHT', 'INPUT'
Use stability enforcing right (input) weighting
-1
V = I , W = (I-G*K) *G
'BOTH', 'PERFORMANCE'
Use stability and performance enforcing weightings
-1 -1
V = (I-G*K) *G , W = (I-G*K)
Default value.
'FEEDBACK'
Specifies whether K is a positive or negative feedback
controller:
'+'
Use positive feedback controller. Default value.
'-'
Use negative feedback controller.
'ALPHA'
Specifies the ALPHA-stability boundary for the eigenvalues of
the state dynamics matrix K.A. For a continuous-time
controller, ALPHA <= 0 is the boundary value for the real
parts of eigenvalues, while for a discrete-time controller, 0
<= ALPHA <= 1 represents the boundary value for the moduli of
eigenvalues. The ALPHA-stability domain does not include the
boundary. Default value is 0 for continuous-time controllers
and 1 for discrete-time controllers.
'TOL1'
If 'ORDER' is not specified, TOL1 contains the tolerance for
determining the order of the reduced controller. For model
reduction, the recommended value of TOL1 is c*info.hsvc(1),
where c lies in the interval [0.00001, 0.001]. Default value
is info.ncs*eps*info.hsvc(1). If 'ORDER' is specified, the
value of TOL1 is ignored.
'TOL2'
The tolerance for determining the order of a minimal
realization of the ALPHA-stable part of the given controller.
TOL2 <= TOL1. If not specified, ncs*eps*info.hsvc(1) is
chosen.
'GRAM-CTRB'
Specifies the choice of frequency-weighted controllability
Grammian as follows:
'STANDARD'
Choice corresponding to standard Enns' method [1].
Default method.
'ENHANCED'
Choice corresponding to the stability enhanced modified
Enns' method of [2].
'GRAM-OBSV'
Specifies the choice of frequency-weighted observability
Grammian as follows:
'STANDARD'
Choice corresponding to standard Enns' method [1].
Default method.
'ENHANCED'
Choice corresponding to the stability enhanced modified
Enns' method of [2].
'EQUIL', 'SCALE'
Boolean indicating whether equilibration (scaling) should be
performed on G and K prior to order reduction. Default value
is false if both 'G.scaled == true, K.scaled == true' and true
otherwise. Note that for MIMO models, proper scaling of both
inputs and outputs is of utmost importance. The input and
output scaling can *not* be done by the equilibration option
or the 'prescale' function because these functions perform
state transformations only. Furthermore, signals should not
be scaled simply to a certain range. For all inputs (or
outputs), a certain change should be of the same importance
for the model.
*Algorithm*
Uses SLICOT SB16AD by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Controller reduction by frequency-weighted Singular Perturbation
Approximation (
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
spamodred
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7196
-- Function File: [GR, INFO] = spamodred (G, ...)
-- Function File: [GR, INFO] = spamodred (G, NR, ...)
-- Function File: [GR, INFO] = spamodred (G, OPT, ...)
-- Function File: [GR, INFO] = spamodred (G, NR, OPT, ...)
Model order reduction by frequency weighted Singular Perturbation
Approximation (SPA). The aim of model reduction is to find an LTI
system GR of order NR (nr < n) such that the input-output behaviour
of GR approximates the one from original system G.
SPA is an absolute error method which tries to minimize
||G-Gr|| = min
inf
||V (G-Gr) W|| = min
inf
where V and W denote output and input weightings.
*Inputs*
G
LTI model to be reduced.
NR
The desired order of the resulting reduced order system GR.
If not specified, NR is chosen automatically according to the
description of key 'ORDER'.
...
Optional pairs of keys and values. '"key1", value1, "key2",
value2'.
OPT
Optional struct with keys as field names. Struct OPT can be
created directly or by function 'options'. 'opt.key1 =
value1, opt.key2 = value2'.
*Outputs*
GR
Reduced order state-space model.
INFO
Struct containing additional information.
INFO.N
The order of the original system G.
INFO.NS
The order of the ALPHA-stable subsystem of the original
system G.
INFO.HSV
The Hankel singular values of the ALPHA-stable part of
the original system G, ordered decreasingly.
INFO.NU
The order of the ALPHA-unstable subsystem of both the
original system G and the reduced-order system GR.
INFO.NR
The order of the obtained reduced order system GR.
*Option Keys and Values*
'ORDER', 'NR'
The desired order of the resulting reduced order system GR.
If not specified, NR is chosen automatically such that states
with Hankel singular values INFO.HSV > TOL1 are retained.
'LEFT', 'OUTPUT'
LTI model of the left/output frequency weighting V. Default
value is an identity matrix.
'RIGHT', 'INPUT'
LTI model of the right/input frequency weighting W. Default
value is an identity matrix.
'METHOD'
Approximation method for the L-infinity norm to be used as
follows:
'SR', 'S'
Use the square-root Singular Perturbation Approximation
method.
'BFSR', 'P'
Use the balancing-free square-root Singular Perturbation
Approximation method. Default method.
'ALPHA'
Specifies the ALPHA-stability boundary for the eigenvalues of
the state dynamics matrix G.A. For a continuous-time system,
ALPHA <= 0 is the boundary value for the real parts of
eigenvalues, while for a discrete-time system, 0 <= ALPHA <= 1
represents the boundary value for the moduli of eigenvalues.
The ALPHA-stability domain does not include the boundary.
Default value is 0 for continuous-time systems and 1 for
discrete-time systems.
'TOL1'
If 'ORDER' is not specified, TOL1 contains the tolerance for
determining the order of the reduced model. For model
reduction, the recommended value of TOL1 is c*info.hsv(1),
where c lies in the interval [0.00001, 0.001]. Default value
is info.ns*eps*info.hsv(1). If 'ORDER' is specified, the
value of TOL1 is ignored.
'TOL2'
The tolerance for determining the order of a minimal
realization of the ALPHA-stable part of the given model. TOL2
<= TOL1. If not specified, ns*eps*info.hsv(1) is chosen.
'GRAM-CTRB'
Specifies the choice of frequency-weighted controllability
Grammian as follows:
'STANDARD'
Choice corresponding to a combination method [4] of the
approaches of Enns [1] and Lin-Chiu [2,3]. Default
method.
'ENHANCED'
Choice corresponding to the stability enhanced modified
combination method of [4].
'GRAM-OBSV'
Specifies the choice of frequency-weighted observability
Grammian as follows:
'STANDARD'
Choice corresponding to a combination method [4] of the
approaches of Enns [1] and Lin-Chiu [2,3]. Default
method.
'ENHANCED'
Choice corresponding to the stability enhanced modified
combination method of [4].
'ALPHA-CTRB'
Combination method parameter for defining the
frequency-weighted controllability Grammian. abs(alphac) <=
1. If alphac = 0, the choice of Grammian corresponds to the
method of Enns [1], while if alphac = 1, the choice of
Grammian corresponds to the method of Lin and Chiu [2,3].
Default value is 0.
'ALPHA-OBSV'
Combination method parameter for defining the
frequency-weighted observability Grammian. abs(alphao) <= 1.
If alphao = 0, the choice of Grammian corresponds to the
method of Enns [1], while if alphao = 1, the choice of
Grammian corresponds to the method of Lin and Chiu [2,3].
Default value is 0.
'EQUIL', 'SCALE'
Boolean indicating whether equilibration (scaling) should be
performed on system G prior to order reduction. Default value
is true if 'G.scaled == false' and false if 'G.scaled ==
true'. Note that for MIMO models, proper scaling of both
inputs and outputs is of utmost importance. The input and
output scaling can *not* be done by the equilibration option
or the 'prescale' function because these functions perform
state transformations only. Furthermore, signals should not
be scaled simply to a certain range. For all inputs (or
outputs), a certain change should be of the same importance
for the model.
*References*
[1] Enns, D. 'Model reduction with balanced realizations: An error
bound and a frequency weighted generalization'. Proc. 23-th CDC,
Las Vegas, pp. 127-132, 1984.
[2] Lin, C.-A. and Chiu, T.-Y. 'Model reduction via
frequency-weighted balanced realization'. Control Theory and
Advanced Technology, vol. 8, pp. 341-351, 1992.
[3] Sreeram, V., Anderson, B.D.O and Madievski, A.G. 'New results
on frequency weighted balanced reduction technique'. Proc. ACC,
Seattle, Washington, pp. 4004-4009, 1995.
[4] Varga, A. and Anderson, B.D.O. 'Square-root balancing-free
methods for the frequency-weighted balancing related model
reduction'. (report in preparation)
*Algorithm*
Uses SLICOT AB09ID by courtesy of NICONET e.V.
(http://www.slicot.org)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Model order reduction by frequency weighted Singular Perturbation
Approximation
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
step
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1661
-- Function File: step (SYS)
-- Function File: step (SYS1, SYS2, ..., SYSN)
-- Function File: step (SYS1, 'STYLE1', ..., SYSN, 'STYLEN')
-- Function File: step (SYS1, ..., T)
-- Function File: step (SYS1, ..., TFINAL)
-- Function File: step (SYS1, ..., TFINAL, DT)
-- Function File: [Y, T, X] = step (SYS)
-- Function File: [Y, T, X] = step (SYS, T)
-- Function File: [Y, T, X] = step (SYS, TFINAL)
-- Function File: [Y, T, X] = step (SYS, TFINAL, DT)
Step response of LTI system. If no output arguments are given, the
response is printed on the screen.
*Inputs*
SYS
LTI model.
T
Time vector. Should be evenly spaced. If not specified, it
is calculated by the poles of the system to reflect adequately
the response transients.
TFINAL
Optional simulation horizon. If not specified, it is
calculated by the poles of the system to reflect adequately
the response transients.
DT
Optional sampling time. Be sure to choose it small enough to
capture transient phenomena. If not specified, it is
calculated by the poles of the system.
'STYLE'
Line style and color, e.g. 'r' for a solid red line or '-.k'
for a dash-dotted black line. See 'help plot' for details.
*Outputs*
Y
Output response array. Has as many rows as time samples
(length of t) and as many columns as outputs.
T
Time row vector.
X
State trajectories array. Has 'length (t)' rows and as many
columns as states.
See also: impulse, initial, lsim.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
Step response of LTI system.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
strseq
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 248
-- Function File: STRVEC = strseq (STR, IDX)
Return a cell vector of indexed strings by appending the indices
IDX to the string STR.
strseq ("x", 1:3) = {"x1"; "x2"; "x3"}
strseq ("u", [1, 2, 5]) = {"u1"; "u2"; "u5"}
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Return a cell vector of indexed strings by appending the indices IDX to
the stri
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
sumblk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 820
-- Function File: S = sumblk (FORMULA)
-- Function File: S = sumblk (FORMULA, N)
Create summing junction S from string FORMULA for name-based
interconnections.
*Inputs*
FORMULA
String containing the formula of the summing junction, e.g.
'e = r - y + d'
N
Signal size. Default value is 1.
*Outputs*
S
State-space model of the summing junction.
*Example*
octave:1> S = sumblk ('e = r - y + d')
S.d =
r y d
e 1 -1 1
Static gain.
octave:2> S = sumblk ('e = r - y + d', 2)
S.d =
r1 r2 y1 y2 d1 d2
e1 1 0 -1 0 1 0
e2 0 1 0 -1 0 1
Static gain.
See also: connect.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Create summing junction S from string FORMULA for name-based
interconnections.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
test_control
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1134
-- Script File: test_control
Execute all available tests at once. The Octave control package is
based on the SLICOT (http://www.slicot.org) library. SLICOT needs
BLAS and LAPACK libraries which are also prerequisites for Octave
itself. In case of failing tests, it is highly recommended to use
Netlib's reference BLAS (http://www.netlib.org/blas/) and LAPACK
(http://www.netlib.org/lapack/) for building Octave. Using ATLAS
may lead to sign changes in some entries of the state-space
matrices. In general, these sign changes are not 'wrong' and can
be regarded as the result of state transformations. Such state
transformations (but not input/output transformations) have no
influence on the input-output behaviour of the system. For better
numerics, the control package uses such transformations by default
when calculating the frequency responses and a few other things.
However, arguments like the Hankel singular Values (HSV) must not
change. Differing HSVs and failing algorithms are known for using
Framework Accelerate from Mac OS X 10.7.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Execute all available tests at once.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
tfpoly2str
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 315
-- Function File: STR = tfpoly2str (P)
-- Function File: STR = tfpoly2str (P, TFVAR)
Return the string of polynomial vector P with string TFVAR^-1 as
variable. Note that there is an almost identical function for the
'tfpoly' class which returns a string with TFVAR (not TFVAR^-1) as
variable.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Return the string of polynomial vector P with string TFVAR^-1 as
variable.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
tfpolyones
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Return (pxm) cell of tfpoly([1]). For internal use only.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Return (pxm) cell of tfpoly([1]).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
tfpolyzeros
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Return (pxm) cell of tfpoly([0]). For internal use only.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Return (pxm) cell of tfpoly([0]).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
thiran
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1455
-- Function File: SYS = thiran (TAU, TSAM)
Approximation of continuous-time delay using a discrete-time
allpass Thiran filter.
Thiran filters can approximate continuous-time delays that are
non-integer multiples of the sampling time (fractional delays).
This approximation gives a better matching of the phase shift
between the continuous- and the discrete-time system. If there is
no fractional part in the delay, then the standard discrete-time
delay representation is used.
*Inputs*
TAU
A continuous-time delay, given in time units (seconds).
TSAM
The sampling time of the resulting Thiran filter.
*Outputs*
SYS
Transfer function model of the resulting filter. The order of
the filter is determined automatically.
*Example*
octave:1> sys = thiran (1.33, 0.5)
Transfer function 'sys' from input 'u1' to output ...
0.003859 z^3 - 0.03947 z^2 + 0.2787 z + 1
y1: -----------------------------------------
z^3 + 0.2787 z^2 - 0.03947 z + 0.003859
Sampling time: 0.5 s
Discrete-time model.
octave:2> sys = thiran (1, 0.5)
Transfer function 'sys' from input 'u1' to output ...
1
y1: ---
z^2
Sampling time: 0.5 s
Discrete-time model.
See also: absorbdelay, pade.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Approximation of continuous-time delay using a discrete-time allpass
Thiran filt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
zpk
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1380
-- Function File: S = zpk ('S')
-- Function File: Z = zpk ('Z', TSAM)
-- Function File: SYS = zpk (SYS)
-- Function File: SYS = zpk (K, ...)
-- Function File: SYS = zpk (Z, P, K, ...)
-- Function File: SYS = zpk (Z, P, K, TSAM, ...)
-- Function File: SYS = zpk (Z, P, K, TSAM, ...)
Create transfer function model from zero-pole-gain data. This is
just a stop-gap compatibility wrapper since zpk models are not yet
implemented.
*Inputs*
SYS
LTI model to be converted to transfer function.
Z
Cell of vectors containing the zeros for each channel. z{i,j}
contains the zeros from input j to output i. In the SISO
case, a single vector is accepted as well.
P
Cell of vectors containing the poles for each channel. p{i,j}
contains the poles from input j to output i. In the SISO
case, a single vector is accepted as well.
K
Matrix containing the gains for each channel. k(i,j) contains
the gain from input j to output i.
TSAM
Sampling time in seconds. If TSAM is not specified, a
continuous-time model is assumed.
...
Optional pairs of properties and values. Type 'set (tf)' for
more information.
*Outputs*
SYS
Transfer function model.
See also: tf, ss, dss, frd.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Create transfer function model from zero-pole-gain data.
|