/usr/share/octave/packages/econometrics-1.1.1/doc-cache is in octave-econometrics 1:1.1.1-2build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 | # doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 28
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
delta_method
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
Computes Delta method mean and covariance of a nonlinear
transformation defined by "func"
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Computes Delta method mean and covariance of a nonlinear
transformation define
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
gmm_estimate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 927
usage: [theta, obj_value, convergence, iters] =
gmm_estimate(theta, data, weight, moments, momentargs, control, nslaves)
inputs:
theta: column vector initial parameters
data: data matrix
weight: the GMM weight matrix
moments: name of function computes the moments
(should return nXg matrix of contributions)
momentargs: (cell) additional inputs needed to compute moments.
May be empty ("")
control: (optional) BFGS or SA controls (see bfgsmin and samin).
May be empty ("").
nslaves: (optional) number of slaves if executed in parallel
(requires MPITB)
outputs:
theta: GMM estimate of parameters
obj_value: the value of the gmm obj. function
convergence: return code from bfgsmin
(1 means success, see bfgsmin for details)
iters: number of BFGS iteration used
please type "gmm_example" while in octave to see an example
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
usage: [theta, obj_value, convergence, iters] =
gmm_estimate(theta,
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
gmm_example
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
GMM example file, shows initial consistent estimator,
estimation of efficient weight, and second round
efficient estimator
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
GMM example file, shows initial consistent estimator,
estimation of efficient
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
gmm_obj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 206
The GMM objective function, for internal use by gmm_estimate
This is scaled so that it converges to a finite number.
To get the chi-square specification
test you need to multiply by n (the sample size)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
The GMM objective function, for internal use by gmm_estimate
This is scaled so
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
gmm_results
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1145
usage: [theta, V, obj_value] =
gmm_results(theta, data, weight, moments, momentargs, names, title, unscale, control, nslaves)
inputs:
theta: column vector initial parameters
data: data matrix
weight: the GMM weight matrix
moments: name of function computes the moments
(should return nXg matrix of contributions)
momentargs: (cell) additional inputs needed to compute moments.
May be empty ("")
names: vector of parameter names
e.g., names = char("param1", "param2");
title: string, describes model estimated
unscale: (optional) cell that holds means and std. dev. of data
(see scale_data)
control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
nslaves: (optional) number of slaves if executed in parallel
(requires MPITB)
outputs:
theta: GMM estimated parameters
V: estimate of covariance of parameters. Assumes the weight matrix
is optimal (inverse of covariance of moments)
obj_value: the value of the GMM objective function
please type "gmm_example" while in octave to see an example
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
usage: [theta, V, obj_value] =
gmm_results(theta, data, weight, moments, mome
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
gmm_variance
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
GMM variance, which assumes weights are optimal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
GMM variance, which assumes weights are optimal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
gmm_variance_inefficient
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
GMM variance, which assumes weights are not optimal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
GMM variance, which assumes weights are not optimal
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
kernel_density
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1338
kernel_density: multivariate kernel density estimator
usage:
dens = kernel_density(eval_points, data, bandwidth)
inputs:
eval_points: PxK matrix of points at which to calculate the density
data: NxK matrix of data points
bandwidth: positive scalar, the smoothing parameter. The fit
is more smooth as the bandwidth increases.
kernel (optional): string. Name of the kernel function. Default is
Gaussian kernel.
prewhiten bool (optional): default false. If true, rotate data
using Choleski decomposition of inverse of covariance,
to approximate independence after the transformation, which
makes a product kernel a reasonable choice.
do_cv: bool (optional). default false. If true, calculate leave-1-out
density for cross validation
computenodes: int (optional, default 0).
Number of compute nodes for parallel evaluation
debug: bool (optional, default false). show results on compute nodes if doing
a parallel run
outputs:
dens: Px1 vector: the fitted density value at each of the P evaluation points.
References:
Wand, M.P. and Jones, M.C. (1995), 'Kernel smoothing'.
http://www.xplore-stat.de/ebooks/scripts/spm/html/spmhtmlframe73.html
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
kernel_density: multivariate kernel density estimator
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
kernel_density_cvscore
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
cvscore = kernel_density_cvscore(bandwidth, data, kernel)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
cvscore = kernel_density_cvscore(bandwidth, data, kernel)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
kernel_example
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 161
kernel_example: examples of how to use kernel density and regression functions
requires the optim and plot packages from Octave Forge
usage: kernel_example;
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
kernel_example: examples of how to use kernel density and regression functions
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
kernel_optimal_bandwidth
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 341
kernel_optimal_bandwidth: find optimal bandwith doing leave-one-out cross validation
inputs:
* data: data matrix
* depvar: column vector or empty ("").
If empty, do kernel density, orherwise, kernel regression
* kernel (optional, string) the kernel function to use
output:
* h: the optimal bandwidth
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
kernel_optimal_bandwidth: find optimal bandwith doing leave-one-out cross valid
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
kernel_regression
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1248
kernel_regression: kernel regression estimator
usage:
fit = kernel_regression(eval_points, depvar, condvars, bandwidth)
inputs:
eval_points: PxK matrix of points at which to calculate the density
depvar: Nx1 vector of observations of the dependent variable
condvars: NxK matrix of data points
bandwidth (optional): positive scalar, the smoothing parameter.
Default is N ^ (-1/(4+K))
kernel (optional): string. Name of the kernel function. Default is
Gaussian kernel.
prewhiten bool (optional): default true. If true, rotate data
using Choleski decomposition of inverse of covariance,
to approximate independence after the transformation, which
makes a product kernel a reasonable choice.
do_cv: bool (optional). default false. If true, calculate leave-1-out
fit to calculate the cross validation score
computenodes: int (optional, default 0).
Number of compute nodes for parallel evaluation
debug: bool (optional, default false). show results on compute nodes if doing
a parallel run
outputs:
fit: Px1 vector: the fitted value at each of the P evaluation points.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
kernel_regression: kernel regression estimator
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
kernel_regression_cvscore
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
cvscore = kernel_regression_cvscore(bandwidth, data, depvar)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
cvscore = kernel_regression_cvscore(bandwidth, data, depvar)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
mle_estimate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 758
usage:
[theta, obj_value, conv, iters] = mle_estimate(theta, data, model, modelargs, control, nslaves)
inputs:
theta: column vector of model parameters
data: data matrix
model: name of function that computes log-likelihood
modelargs: (cell) additional inputs needed by model. May be empty ("")
control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
nslaves: (optional) number of slaves if executed in parallel (requires MPITB)
outputs:
theta: ML estimated value of parameters
obj_value: the value of the log likelihood function at ML estimate
conv: return code from bfgsmin (1 means success, see bfgsmin for details)
iters: number of BFGS iteration used
please see mle_example.m for examples of how to use this
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
usage:
[theta, obj_value, conv, iters] = mle_estimate(theta, data, model, mode
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
mle_example
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Example to show how to use MLE functions
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Example to show how to use MLE functions
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
mle_obj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
usage: [obj_value, score] = mle_obj(theta, data, model, modelargs, nslaves)
Returns the average log-likelihood for a specified model
This is for internal use by mle_estimate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
usage: [obj_value, score] = mle_obj(theta, data, model, modelargs, nslaves)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
mle_obj_nodes
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
contrib = mle_obj_nodes(theta, data, model, modelargs, nn)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
contrib = mle_obj_nodes(theta, data, model, modelargs, nn)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
mle_results
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 978
usage: [theta, V, obj_value, infocrit] =
mle_results(theta, data, model, modelargs, names, title, unscale, control)
inputs:
theta: column vector of model parameters
data: data matrix
model: name of function that computes log-likelihood
modelargs: (cell) additional inputs needed by model. May be empty ("")
names: vector of parameter names, e.g., use names = char("param1", "param2");
title: string, describes model estimated
unscale: (optional) cell that holds means and std. dev. of data (see scale_data)
control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
nslaves: (optional) number of slaves if executed in parallel (requires MPITB)
outputs:
theta: ML estimated value of parameters
obj_value: the value of the log likelihood function at ML estimate
conv: return code from bfgsmin (1 means success, see bfgsmin for details)
iters: number of BFGS iteration used
Please see mle_example for information on how to use this
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
usage: [theta, V, obj_value, infocrit] =
mle_results(theta, data, model, mo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
nls_estimate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 780
usage:
[theta, obj_value, conv, iters] = nls_estimate(theta, data, model, modelargs, control, nslaves)
inputs:
theta: column vector of model parameters
data: data matrix
model: name of function that computes the vector of sums of squared errors
modelargs: (cell) additional inputs needed by model. May be empty ("")
control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
nslaves: (optional) number of slaves if executed in parallel (requires MPITB)
outputs:
theta: NLS estimated value of parameters
obj_value: the value of the sum of squared errors at NLS estimate
conv: return code from bfgsmin (1 means success, see bfgsmin for details)
iters: number of BFGS iteration used
please see nls_example.m for examples of how to use this
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
usage:
[theta, obj_value, conv, iters] = nls_estimate(theta, data, model, mode
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
nls_example
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
define arguments for nls_estimate #
starting values
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
define arguments for nls_estimate #
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nls_obj
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 185
usage: [obj_value, score] = nls_obj(theta, data, model, modelargs, nslaves)
Returns the average sum of squared errors for a specified model
This is for internal use by nls_estimate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
usage: [obj_value, score] = nls_obj(theta, data, model, modelargs, nslaves)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
parameterize
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 316
usage: theta = parameterize(theta, otherargs)
This is an empty function, provided so that
delta_method will work as is. Replace it with
the parameter transformations your models use.
Note: you can let "otherargs" contain the model
name so that this function can do parameterizations
for a variety of models
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
usage: theta = parameterize(theta, otherargs)
This is an empty function, pro
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
poisson
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Example likelihood function (Poisson for count data) with score
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Example likelihood function (Poisson for count data) with score
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
poisson_moments
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
the form a user-written moment function should take
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
the form a user-written moment function should take
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
prettyprint
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
this prints matrices with row and column labels
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
this prints matrices with row and column labels
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
prettyprint_c
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
this prints matrices with column labels but no row labels
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
this prints matrices with column labels but no row labels
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
scale_data
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Standardizes and normalizes data matrix,
primarily for use by BFGS
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Standardizes and normalizes data matrix,
primarily for use by BFGS
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
unscale_parameters
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
Unscales parameters that were estimated using scaled data
primarily for use by BFGS
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Unscales parameters that were estimated using scaled data
primarily for use by
|