This file is indexed.

/usr/share/octave/packages/econometrics-1.1.1/doc-cache is in octave-econometrics 1:1.1.1-2build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
# doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 28
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
delta_method


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
 Computes Delta method mean and covariance of a nonlinear
 transformation defined by "func"



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Computes Delta method mean and covariance of a nonlinear
 transformation define



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
gmm_estimate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 927
 usage: [theta, obj_value, convergence, iters] =
           gmm_estimate(theta, data, weight, moments, momentargs, control, nslaves)

 inputs:
      theta: column vector initial parameters
       data: data matrix
     weight: the GMM weight matrix
    moments: name of function computes the moments
	      (should return nXg matrix of contributions)
 momentargs: (cell) additional inputs needed to compute moments.
 	      May be empty ("")
    control: (optional) BFGS or SA controls (see bfgsmin and samin).
             May be empty ("").
    nslaves: (optional) number of slaves if executed in parallel
             (requires MPITB)

 outputs:
 theta: GMM estimate of parameters
 obj_value: the value of the gmm obj. function
 convergence: return code from bfgsmin
              (1 means success, see bfgsmin for details)
 iters: number of BFGS iteration used

 please type "gmm_example" while in octave to see an example



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 usage: [theta, obj_value, convergence, iters] =
           gmm_estimate(theta, 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
gmm_example


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 126
 GMM example file, shows initial consistent estimator,
 estimation of efficient weight, and second round
 efficient estimator



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 GMM example file, shows initial consistent estimator,
 estimation of efficient 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
gmm_obj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 206
 The GMM objective function, for internal use by gmm_estimate
 This is scaled so that it converges to a finite number.
 To get the chi-square specification
 test you need to multiply by n (the sample size)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 The GMM objective function, for internal use by gmm_estimate
 This is scaled so



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
gmm_results


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1145
 usage: [theta, V, obj_value] =
  gmm_results(theta, data, weight, moments, momentargs, names, title, unscale, control, nslaves)

 inputs:
      theta: column vector initial parameters
       data: data matrix
     weight: the GMM weight matrix
    moments: name of function computes the moments
             (should return nXg matrix of contributions)
 momentargs: (cell) additional inputs needed to compute moments.
             May be empty ("")
      names: vector of parameter names
             e.g., names = char("param1", "param2");
      title: string, describes model estimated
    unscale: (optional) cell that holds means and std. dev. of data
             (see scale_data)
    control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
    nslaves: (optional) number of slaves if executed in parallel
             (requires MPITB)

 outputs:
 theta: GMM estimated parameters
 V: estimate of covariance of parameters. Assumes the weight matrix
    is optimal (inverse of covariance of moments)
 obj_value: the value of the GMM objective function

 please type "gmm_example" while in octave to see an example



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 usage: [theta, V, obj_value] =
  gmm_results(theta, data, weight, moments, mome



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
gmm_variance


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
 GMM variance, which assumes weights are optimal



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
 GMM variance, which assumes weights are optimal




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
gmm_variance_inefficient


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
 GMM variance, which assumes weights are not optimal



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
 GMM variance, which assumes weights are not optimal




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
kernel_density


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1338
 kernel_density: multivariate kernel density estimator

 usage:
       dens = kernel_density(eval_points, data, bandwidth)

 inputs:
       eval_points: PxK matrix of points at which to calculate the density
       data: NxK matrix of data points
       bandwidth: positive scalar, the smoothing parameter. The fit
               is more smooth as the bandwidth increases.
       kernel (optional): string. Name of the kernel function. Default is
               Gaussian kernel.
       prewhiten bool (optional): default false. If true, rotate data
               using Choleski decomposition of inverse of covariance,
               to approximate independence after the transformation, which
               makes a product kernel a reasonable choice.
       do_cv: bool (optional). default false. If true, calculate leave-1-out
                density for cross validation
       computenodes: int (optional, default 0).
               Number of compute nodes for parallel evaluation
       debug: bool (optional, default false). show results on compute nodes if doing
               a parallel run
 outputs:
       dens: Px1 vector: the fitted density value at each of the P evaluation points.

 References:
 Wand, M.P. and Jones, M.C. (1995), 'Kernel smoothing'.
 http://www.xplore-stat.de/ebooks/scripts/spm/html/spmhtmlframe73.html



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
 kernel_density: multivariate kernel density estimator



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
kernel_density_cvscore


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
 cvscore = kernel_density_cvscore(bandwidth, data, kernel)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
 cvscore = kernel_density_cvscore(bandwidth, data, kernel)




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
kernel_example


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 161
 kernel_example: examples of how to use kernel density and regression functions
 requires the optim and plot packages from Octave Forge

 usage: kernel_example;



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 kernel_example: examples of how to use kernel density and regression functions




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
kernel_optimal_bandwidth


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 341
 kernel_optimal_bandwidth: find optimal bandwith doing leave-one-out cross validation
 inputs:
      * data: data matrix
      * depvar: column vector or empty ("").
              If empty, do kernel density, orherwise, kernel regression
      * kernel (optional, string) the kernel function to use
 output:
      * h: the optimal bandwidth



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 kernel_optimal_bandwidth: find optimal bandwith doing leave-one-out cross valid



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
kernel_regression


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1248
 kernel_regression: kernel regression estimator

 usage:
      fit = kernel_regression(eval_points, depvar, condvars, bandwidth)

 inputs:
      eval_points: PxK matrix of points at which to calculate the density
      depvar: Nx1 vector of observations of the dependent variable
      condvars: NxK matrix of data points
      bandwidth (optional): positive scalar, the smoothing parameter.
              Default is N ^ (-1/(4+K))
      kernel (optional): string. Name of the kernel function. Default is
              Gaussian kernel.
      prewhiten bool (optional): default true. If true, rotate data
              using Choleski decomposition of inverse of covariance,
              to approximate independence after the transformation, which
              makes a product kernel a reasonable choice.
      do_cv: bool (optional). default false. If true, calculate leave-1-out
               fit to calculate the cross validation score
      computenodes: int (optional, default 0).
              Number of compute nodes for parallel evaluation
      debug: bool (optional, default false). show results on compute nodes if doing
              a parallel run
 outputs:
      fit: Px1 vector: the fitted value at each of the P evaluation points.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
 kernel_regression: kernel regression estimator



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 25
kernel_regression_cvscore


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
 cvscore = kernel_regression_cvscore(bandwidth, data, depvar)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
 cvscore = kernel_regression_cvscore(bandwidth, data, depvar)




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
mle_estimate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 758
 usage:
 [theta, obj_value, conv, iters] = mle_estimate(theta, data, model, modelargs, control, nslaves)

 inputs:
 theta: column vector of model parameters
 data: data matrix
 model: name of function that computes log-likelihood
 modelargs: (cell) additional inputs needed by model. May be empty ("")
 control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
 nslaves: (optional) number of slaves if executed in parallel (requires MPITB)

 outputs:
 theta: ML estimated value of parameters
 obj_value: the value of the log likelihood function at ML estimate
 conv: return code from bfgsmin (1 means success, see bfgsmin for details)
 iters: number of BFGS iteration used

 please see mle_example.m for examples of how to use this



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 usage:
 [theta, obj_value, conv, iters] = mle_estimate(theta, data, model, mode



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
mle_example


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
 Example to show how to use MLE functions



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
 Example to show how to use MLE functions




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
mle_obj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 178
 usage: [obj_value, score] = mle_obj(theta, data, model, modelargs, nslaves)

 Returns the average log-likelihood for a specified model
 This is for internal use by mle_estimate



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
 usage: [obj_value, score] = mle_obj(theta, data, model, modelargs, nslaves)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
mle_obj_nodes


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
 contrib = mle_obj_nodes(theta, data, model, modelargs, nn)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
 contrib = mle_obj_nodes(theta, data, model, modelargs, nn)




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
mle_results


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 978
 usage: [theta, V, obj_value, infocrit] =
    mle_results(theta, data, model, modelargs, names, title, unscale, control)

 inputs:
 theta: column vector of model parameters
 data: data matrix
 model: name of function that computes log-likelihood
 modelargs: (cell) additional inputs needed by model. May be empty ("")
 names: vector of parameter names, e.g., use names = char("param1", "param2");
 title: string, describes model estimated
 unscale: (optional) cell that holds means and std. dev. of data (see scale_data)
 control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
 nslaves: (optional) number of slaves if executed in parallel (requires MPITB)

 outputs:
 theta: ML estimated value of parameters
 obj_value: the value of the log likelihood function at ML estimate
 conv: return code from bfgsmin (1 means success, see bfgsmin for details)
 iters: number of BFGS iteration used

 Please see mle_example for information on how to use this



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 usage: [theta, V, obj_value, infocrit] =
    mle_results(theta, data, model, mo



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
nls_estimate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 780
 usage:
 [theta, obj_value, conv, iters] = nls_estimate(theta, data, model, modelargs, control, nslaves)

 inputs:
 theta: column vector of model parameters
 data: data matrix
 model: name of function that computes the vector of sums of squared errors
 modelargs: (cell) additional inputs needed by model. May be empty ("")
 control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
 nslaves: (optional) number of slaves if executed in parallel (requires MPITB)

 outputs:
 theta: NLS estimated value of parameters
 obj_value: the value of the sum of squared errors at NLS estimate
 conv: return code from bfgsmin (1 means success, see bfgsmin for details)
 iters: number of BFGS iteration used

 please see nls_example.m for examples of how to use this



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 usage:
 [theta, obj_value, conv, iters] = nls_estimate(theta, data, model, mode



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
nls_example


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56

 define arguments for nls_estimate #

 starting values



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37

 define arguments for nls_estimate #



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nls_obj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 185
 usage: [obj_value, score] = nls_obj(theta, data, model, modelargs, nslaves)

 Returns the average sum of squared errors for a specified model
 This is for internal use by nls_estimate



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
 usage: [obj_value, score] = nls_obj(theta, data, model, modelargs, nslaves)



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
parameterize


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 316
 usage: theta = parameterize(theta, otherargs)
 
 This is an empty function, provided so that
 delta_method will work as is. Replace it with
 the parameter transformations your models use.
 Note: you can let "otherargs" contain the model
 name so that this function can do parameterizations
 for a variety of models



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 usage: theta = parameterize(theta, otherargs)
 
 This is an empty function, pro



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
poisson


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
 Example likelihood function (Poisson for count data) with score



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
 Example likelihood function (Poisson for count data) with score




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
poisson_moments


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
 the form a user-written moment function should take



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
 the form a user-written moment function should take




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
prettyprint


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
 this prints matrices with row and column labels



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
 this prints matrices with row and column labels




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
prettyprint_c


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
 this prints matrices with column labels but no row labels



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
 this prints matrices with column labels but no row labels




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
scale_data


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 Standardizes and normalizes data matrix,
 primarily for use by BFGS



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 Standardizes and normalizes data matrix,
 primarily for use by BFGS




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
unscale_parameters


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 86
 Unscales parameters that were estimated using scaled data
 primarily for use by BFGS



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Unscales parameters that were estimated using scaled data
 primarily for use by