/usr/share/octave/packages/general-2.0.0/doc-cache is in octave-general 2.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | # doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 8
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
adresamp2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 340
-- Function File: [XS, YS] = adresamp2 (X, Y, N, EPS)
Perform an adaptive resampling of a planar curve. The arrays X and
Y specify x and y coordinates of the points of the curve. On
return, the same curve is approximated by XS, YS that have length N
and the angles between successive segments are approximately equal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Perform an adaptive resampling of a planar curve.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cauchy
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 764
-- Function File: cauchy (N, R, X, F )
Return the Taylor coefficients and numerical differentiation of a
function F for the first N-1 coefficients or derivatives using the
fft. N is the number of points to evaluate, R is the radius of
convergence, needs to be chosen less then the smallest singularity,
X is point to evaluate the Taylor expansion or differentiation.
For example,
If X is a scalar, the function F is evaluated in a row vector of
length N. If X is a column vector, F is evaluated in a matrix of
length(x)-by-N elements and must return a matrix of the same size.
d = cauchy(16, 1.5, 0, @(x) exp(x));
=> d(2) = 1.0000 # first (2-1) derivative of function f (index starts from zero)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Return the Taylor coefficients and numerical differentiation of a
function F for
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
majle
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3404
MAJLE (Weak) Majorization check
S = MAJLE(X,Y) checks if the real part of X is (weakly) majorized by
the real part of Y, where X and Y must be numeric (full or sparse)
arrays. It returns S=0, if there is no weak majorization of X by Y,
S=1, if there is a weak majorization of X by Y, or S=2, if there is a
strong majorization of X by Y. The shapes of X and Y are ignored.
NUMEL(X) and NUMEL(Y) may be different, in which case one of them is
appended with zeros to match the sizes with the other and, in case of
any negative components, a special warning is issued.
S = MAJLE(X,Y,MAJLETOL) allows in addition to specify the tolerance in
all inequalities [S,Z] = MAJLE(X,Y,MAJLETOL) also outputs a row vector
Z, which appears in the definition of the (weak) majorization. In the
traditional case, where the real vectors X and Y are of the same size,
Z = CUMSUM(SORT(Y,'descend')-SORT(X,'descend')). Here, X is weakly
majorized by Y, if MIN(Z)>0, and strongly majorized if MIN(Z)=0, see
http://en.wikipedia.org/wiki/Majorization
The value of MAJLETOL depends on how X and Y have been computed, i.e.,
on what the level of error in X or Y is. A good minimal starting point
should be MAJLETOL=eps*MAX(NUMEL(X),NUMEL(Y)). The default is 0.
% Examples:
x = [2 2 2]; y = [1 2 3]; s = majle(x,y)
% returns the value 2.
x = [2 2 2]; y = [1 2 4]; s = majle(x,y)
% returns the value 1.
x = [2 2 2]; y = [1 2 2]; s = majle(x,y)
% returns the value 0.
x = [2 2 2]; y = [1 2 2]; [s,z] = majle(x,y)
% also returns the vector z = [ 0 0 -1].
x = [2 2 2]; y = [1 2 2]; s = majle(x,y,1)
% returns the value 2.
x = [2 2]; y = [1 2 2]; s = majle(x,y)
% returns the value 1 and warns on tailing with zeros
x = [2 2]; y = [-1 2 2]; s = majle(x,y)
% returns the value 0 and gives two warnings on tailing with zeros
x = [2 -inf]; y = [4 inf]; [s,z] = majle(x,y)
% returns s = 1 and z = [Inf Inf].
x = [2 inf]; y = [4 inf]; [s,z] = majle(x,y)
% returns s = 1 and z = [NaN NaN] and a warning on NaNs in z.
x=speye(2); y=sparse([0 2; -1 1]); s = majle(x,y)
% returns the value 2.
x = [2 2; 2 2]; y = [1 3 4]; [s,z] = majle(x,y) %and
x = [2 2; 2 2]+i; y = [1 3 4]-2*i; [s,z] = majle(x,y)
% both return s = 2 and z = [2 3 2 0].
x = [1 1 1 1 0]; y = [1 1 1 1 1 0 0]'; s = majle(x,y)
% returns the value 1 and warns on tailing with zeros
% One can use this function to check numerically the validity of the
Schur-Horn,Lidskii-Mirsky-Wielandt, and Gelfand-Naimark theorems:
clear all; n=100; majleTol=n*n*eps;
A = randn(n,n); A = A'+A; eA = -sort(-eig(A)); dA = diag(A);
majle(dA,eA,majleTol) % returns the value 2
% which is the Schur-Horn theorem; and
B=randn(n,n); B=B'+B; eB=-sort(-eig(B));
eAmB=-sort(-eig(A-B));
majle(eA-eB,eAmB,majleTol) % returns the value 2
% which is the Lidskii-Mirsky-Wielandt theorem; finally
A = randn(n,n); sA = -sort(-svd(A));
B = randn(n,n); sB = -sort(-svd(B));
sAB = -sort(-svd(A*B));
majle(log2(sAB)-log2(sA), log2(sB), majleTol) % retuns the value 2
majle(log2(sAB)-log2(sB), log2(sA), majleTol) % retuns the value 2
% which are the log versions of the Gelfand-Naimark theorems
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
MAJLE (Weak) Majorization check
S = MAJLE(X,Y) checks if the real part of X
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
safeprod
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 393
-- Function File: P = safeprod (X, DIM)
-- Function File: [P, E] = safeprod (X, DIM)
This function forms product(s) of elements of the array X along the
dimension specified by DIM, analogically to 'prod', but avoids
overflows and underflows if possible. If called with 2 output
arguments, P and E are computed so that the product is 'P * 2^E'.
See also: prod,log2.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
This function forms product(s) of elements of the array X along the
dimension sp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tablify
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1164
-- Function File: [Y1, ...] = tablify (X1, ...)
Create a table out of the input arguments, if possible. The table
is created by extending row and column vectors to like dimensions.
If the dimensions of input vectors are not commensurate an error
will occur. Dimensions are commensurate if they have the same
number of rows and columns, a single row and the same number of
columns, or the same number of rows and a single column. In other
words, vectors will only be extended along singleton dimensions.
For example:
[a, b] = tablify ([1 2; 3 4], 5)
=> a = [ 1, 2; 3, 4 ]
=> b = [ 5, 5; 5, 5 ]
[a, b, c] = tablify (1, [1 2 3 4], [5;6;7])
=>
b = [ 1 1 1 1; 1 1 1 1; 1 1 1 1]
=> b = [ 1 2 3 4; 1 2 3 4; 1 2 3 4]
=> c = [ 5 5 5 5; 6 6 6 6; 7 7 7 7 ]
The following example attempts to expand vectors that do not have
commensurate dimensions and will produce an error.
tablify([1 2],[3 4 5])
Note that use of array operations and broadcasting is more
efficient for many situations.
See also: common_size.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Create a table out of the input arguments, if possible.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
unresamp2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 334
-- Function File: [XS, YS] = unresamp2 (X, Y, N)
Perform a uniform resampling of a planar curve. The arrays X and Y
specify x and y coordinates of the points of the curve. On return,
the same curve is approximated by XS, YS that have length N and the
distances between successive points are approximately equal.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Perform a uniform resampling of a planar curve.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
unvech
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 470
-- Function File: M = unvech (V, SCALE)
Performs the reverse of 'vech' on the vector V.
Given a Nx1 array V describing the lower triangular part of a
matrix (as obtained from 'vech'), it returns the full matrix.
The upper triangular part of the matrix will be multiplied by SCALE
such that 1 and -1 can be used for symmetric and antisymmetric
matrix respectively. SCALE must be a scalar and defaults to 1.
See also: vech, ind2sub.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Performs the reverse of 'vech' on the vector V.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ztvals
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 289
-- Function File: function ztvals (X, TOL)
Replaces tiny elements of the vector X by zeros. Equivalent to
X(abs(X) < TOL * norm (X, Inf)) = 0
TOL specifies the chopping tolerance. It defaults to 1e-10 for
double precision and 1e-5 for single precision inputs.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Replaces tiny elements of the vector X by zeros.
|