/usr/share/octave/packages/image-2.4.1/col2im.m is in octave-image 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | ## Copyright (C) 2013 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} col2im (@var{B}, @var{block_size}, @var{A_size})
## @deftypefnx {Function File} {} col2im (@var{B}, @var{block_size}, @var{A_size}, @var{block_type})
## Rearrange block columns back into matrix.
##
## Rearranges columns of the matrix @var{B}, representing blocks of size
## @var{block_size} from a matrix of size @var{A_size}, back into its
## original size (usually close to @var{A_size}. This function is most
## useful as reverse operation to @code{im2col}.
##
##
## Blocks are assumed to be from one of two types as defined by
## @var{block_type} (defaults to @qcode{"sliding"}):
##
## @table @asis
## @item @qcode{"distinct"}
## Each column of @var{B} is assumed to be distinct blocks, with no
## overlapping elements, of size @var{block_size}, to rebuild a matrix of
## size @var{A_size}. Any padding that may have been required to form
## @var{B} from a matrix of @var{A_size}, is removed accordingly.
##
## @item @qcode{"sliding"}
## This reshapes @var{B} into a matrix of size
## @code{@var{A_size} - @var{block_size} +1}. Sliding blocks are most useful
## to apply a sliding window filter with functions that act along columns.
## In this situation, @var{B} is usually a row vector, so that if
## @var{block_size} is [1 1], @var{A_SIZE} will be the size of the output
## matrix. When converting a matrix into blocks with @code{im2col}, there
## will be less blocks to account to borders, so if @var{block_size} is the
## same in both @code{col2im} and @code{im2col}, @var{A_size} can be the size
## out the output from @code{im2col}.
##
## @end table
##
## Blocks are assumed to have been from a matrix, the same direction elements
## are organized in an Octave matrix (top to bottom, then left to right), and
## the direction that blocks are taken in @code{im2col}.
##
## @group
## @example
## ## Get distinct blocks of size [2 3] from A into columns, and
## ## put them back together into the original position
## A = reshape (1:24, [4 6])
## B = im2col (A, [2 3], "distinct")
## col2im (B, [2 3], [4 6], "distinct")
## @end example
##
## @example
## ## Get sliding blocks of size [2 3] from A into columns, calculate
## ## the mean of each block (mean of each column), and reconstruct A.
## ## This is the equivalent to a sliding window filter and ignoring
## ## borders.
## A = reshape (1:24, [4 6])
## B = im2col (A, [2 3], "sliding")
## C = mean (B);
## col2im (C, [1 1], [3 4], "sliding")
## @end example
## @end group
##
## @seealso{blockproc, bestblk, colfilt, im2col, nlfilter, reshape}
## @end deftypefn
function A = col2im (B, block_size, A_size, block_type = "sliding")
if (nargin < 3 || nargin > 4)
print_usage ();
elseif (! isnumeric (B) && ! islogical (B))
error ("col2im: B must be a numeric of logical matrix or vector");
elseif (! isnumeric (block_size) || ! isvector (block_size))
error("col2im: BLOCK_SIZE must be a numeric vector");
elseif (! isnumeric (A_size) || ! isvector (A_size))
error("col2im: A_SIZE must be a numeric vector");
elseif (! ischar (block_type))
error ("col2im: BLOCK_TYPE must be a string");
endif
## Make sure dimensions are row vectors
block_size = block_size(:).';
A_size = A_size(:).';
## expand size to include singleton dimensions if required
block_size(end+1:numel (A_size)) = 1;
A_size(end+1:numel (block_size)) = 1;
switch (tolower (block_type))
case "distinct"
## A_size is out_size for distinct blocks
if (prod (block_size) != rows (B))
error (["col2im: number of rows in B, must equal number of " ...
"elements per block (prod (BLOCK_SIZE))"]);
elseif (numel (B) < prod (A_size))
error ("col2im: not enough elements in B for a matrix of A_SIZE");
endif
## Calculate the number of blocks accross each dimension, and
## how much of padding we will need to remove (we calculate the
## number of cumulative elements by dimension, so the first
## element is the number of rows that are pad, the second
## second is the number of columns that are pad times the number
## of elements in a column, and so on for other dimensions)
blocks = ceil (A_size ./ block_size);
padding = mod (-A_size, block_size) .* [1 cumprod(A_size(1:end-1))];
cum_blk_size = [1 cumprod(block_size(1:end-1))];
cum_blocks = [1 cumprod(blocks(1:end-1))];
## End of each block dimension in the column
end_blk = ceil (cum_blk_size .* (block_size -1));
## How much in the columns we need to shift to move to the
## next block per dimension.
stride = rows (B) * cum_blocks;
## Last block for each dimension
last_blk = stride .* (blocks -1);
ind = 1;
for dim = 1:numel(A_size)
ind = ind(:) .+ (0:cum_blk_size(dim):end_blk(dim));
ind = ind(:) .+ (0:stride(dim):last_blk(dim));
ind(end+1-padding(dim):end) = []; # remove padding
endfor
A = reshape (B(ind(:)), A_size);
case "sliding"
out_size = A_size - block_size +1;
if (prod (out_size) != numel (B))
error ("col2im: can't resize B in matrix sized (A_SIZE - BLOCK_SIZE +1)");
endif
A = reshape (B, out_size);
otherwise
error ("col2im: invalid BLOCK_TYPE `%s'.", block_type);
endswitch
endfunction
%!demo
%! ## Divide A using distinct blocks and then reverse the operation
%! A = [ 1:10
%! 11:20
%! 21:30
%! 31:40];
%! B = im2col (A, [2 5], "distinct")
%! C = col2im (B, [2 5], [4 10], "distinct")
%!demo
%! ## Get sliding blocks of size from A into columns, calculate the
%! ## mean of each block (mean of each column), and reconstruct A
%! ## after a median filter.
%! A = reshape (1:24, [4 6])
%! B = im2col (A, [2 3], "sliding")
%! C = mean (B);
%! col2im (C, [1 1], [3 4], "sliding")
%!error <BLOCK_TYPE> col2im (ones (10), [5 5], [10 10], "wrong_block_type");
%!error <resize B> col2im (ones (10), [1 1], [ 7 7], "sliding");
%!error <rows in B> col2im (ones (10), [3 3], [10 10], "distinct")
%!error <rows in B> col2im (ones (10), [5 5], [10 11], "distinct");
## test sliding
%!assert (col2im (sum (im2col (magic (10), [3 3], "sliding")), [1 1], [8 8]),
%! convn (magic (10), ones (3, 3), "valid"));
%!test
%! B = ones (1, (10-2+1)*(7-3+1));
%! A = ones ((10-2+1), (7-3+1));
%! assert (col2im (B, [2 3], [10 7]), A);
%!
%! ## same but different classes
%! assert (col2im (int16 (B), [2 3], [10 7]), int16 (A));
%! assert (col2im (single (B), [2 3], [10 7]), single (A));
%! assert (col2im (logical (B), [2 3], [10 7]), logical (A));
## test default to sliding
%!test
%! a = rand (10)(:);
%! assert (col2im (a, [1 1], [10 10]), col2im (a, [1 1], [10 10], "sliding"))
## test distinct
%!shared A, B
%! v = [1:10]';
%! r = reshape (1:10, [2 5]);
%! B = [v v+10 v+20 v+30 v+40 v+50];
%! A = [r r+30
%! r+10 r+40
%! r+20 r+50];
%! assert (col2im (B, [2 5], [6 10], "distinct"), A);
## respect different classes
%!assert (col2im (int16 (B), [2 5], [6 10], "distinct"), int16 (A));
%!assert (col2im (logical (B), [2 5], [6 10], "distinct"), logical (A));
%!assert (col2im (single (B), [2 5], [6 10], "distinct"), single (A));
## Test for columns with padding
%!test
%! a = rand (10, 8);
%! b = im2col (a, [5 5], "distinct");
%! assert (col2im (b, [5 5], [10 8], "distinct"), a);
%!
%! a = rand (8);
%! b = im2col (a, [5 5], "distinct");
%! assert (col2im (b, [5 5], [8 8], "distinct"), a);
## Test N-dimensional
%!shared a, b
%! ## Same number of multiple dimensions
%! a = rand (10, 10, 10);
%! b = im2col (a, [5 5 5], "distinct");
%!assert (col2im (b, [5 5 5], [10 10 10], "distinct"), a);
%!
%! ## Different number of dimensions
%! a = rand (10, 10, 10);
%! b = im2col (a, [5 5], "distinct");
%!assert (col2im (b, [5 5], [10 10 10], "distinct"), a);
%!
%! ## Removing padding from multiple dimensions
%! a = rand (10, 10, 7);
%! b = im2col (a, [5 5 3], "distinct");
%!assert (col2im (b, [5 5 3], [10 10 7], "distinct"), a);
%!
%! a = rand (10, 10, 7);
%! b = im2col (a, [5 5 5 2], "distinct");
%!assert (col2im (b, [5 5 5 2], [10 10 7], "distinct"), a);
|