This file is indexed.

/usr/share/octave/packages/image-2.4.1/edge.m is in octave-image 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
## Copyright (C) 1999 Andy Adler <adler@sce.carleton.ca>
## Copyright (C) 2008 Søren Hauberg <soren@hauberg.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{bw} =} edge (@var{im}, @var{method})
## @deftypefnx{Function File} {@var{bw} =} edge (@var{im}, @var{method}, @var{arg1}, @var{arg2})
## @deftypefnx{Function File} {[@var{bw}, @var{thresh}] =} edge (@dots{})
## Detect edges in the given image using various methods. The first input @var{im}
## is the gray scale image in which edges are to be detected. The second argument
## controls which method is used for detecting the edges. The rest of the input
## arguments depend on the selected method. The first output @var{bw} is a 
## @code{logical} image containing the edges. Most methods also returns an automatically
## computed threshold as the second output.
##
## The @var{method} input argument can any of the following strings (the default
## value is "Sobel")
##
## @table @asis
## @item "Sobel"
## Finds the edges in @var{im} using the Sobel approximation to the
## derivatives. Edge points are defined as points where the length of
## the gradient exceeds a threshold and is larger than it's neighbours
## in either the horizontal or vertical direction. The threshold is passed to
## the method in the third input argument @var{arg1}. If one is not given, a
## threshold is automatically computed as 4*@math{M}, where @math{M} is the mean
## of the gradient of the entire image. The optional 4th input argument controls
## the direction in which the gradient is approximated. It can be either
## "horizontal", "vertical", or "both" (default).
##
## @item "Prewitt"
## Finds the edges in @var{im} using the Prewitt approximation to the
## derivatives. This method works just like "Sobel" except a different approximation
## the gradient is used.
##
## @item "Roberts"
## Finds the edges in @var{im} using the Roberts approximation to the
## derivatives. Edge points are defined as points where the length of
## the gradient exceeds a threshold and is larger than it's neighbours
## in either the horizontal or vertical direction. The threshold is passed to
## the method in the third input argument @var{arg1}. If one is not given, a
## threshold is automatically computed as 6*@math{M}, where @math{M} is the mean
## of the gradient of the entire image. The optional 4th input argument can be
## either "thinning" (default) or "nothinning". If it is "thinning" a simple
## thinning procedure is applied to the edge image such that the edges are only
## one pixel wide. If @var{arg2} is "nothinning", this procedure is not applied.
##
## @item "Kirsch"
## Finds the edges in @var{im} using the Kirsch approximation to the
## derivatives. Edge points are defined as points where the length of
## the gradient exceeds a threshold and is larger than it's neighbours
## in either the horizontal or vertical direction. The threshold is passed to
## the method in the third input argument @var{arg1}. If one is not given, a
## threshold is automatically computed as @math{M}, where @math{M} is the mean
## of the gradient of the entire image. The optional 4th input argument controls
## the direction in which the gradient is approximated. It can be either
## "horizontal", "vertical", or "both" (default).
##
## @item "LoG"
## Finds edges in @var{im} by convolving with the Laplacian of Gaussian (LoG)
## filter, and finding zero crossings. Only zero crossings where the 
## filter response is larger than an automatically computed threshold are retained.
## The threshold is passed to the method in the third input argument @var{arg1}.
## If one is not given, a threshold is automatically computed as 0.75*@math{M},
## where @math{M} is the mean of absolute value of LoG filter response. The
## optional 4th input argument sets the spread of the LoG filter. By default
## this value is 2.
##
## @item "Zerocross"
## Finds edges in the image @var{im} by convolving it with the user-supplied filter
## @var{arg2} and finding zero crossings larger than the threshold @var{arg1}. If
## @var{arg1} is [] a threshold is computed as the mean value of the absolute
## filter response.
##
## @item "Canny"
## Finds edges using the Canny edge detector. The optional third input argument
## @var{arg1} sets the thresholds used in the hysteresis thresholding. If 
## @var{arg1} is a two dimensional vector it's first element is used as the lower
## threshold, while the second element is used as the high threshold. If, on the
## other hand, @var{arg1} is a single scalar it is used as the high threshold,
## while the lower threshold is 0.4*@var{arg1}. The optional 4th input argument
## @var{arg2} is the spread of the low-pass Gaussian filter that is used to smooth
## the input image prior to estimating gradients. By default this scale parameter
## is 2.
##
## @item "Lindeberg"
## Finds edges using in @var{im} using the differential geometric single-scale edge
## detector given by Tony Lindeberg. The optional third input argument @var{arg1}
## is the scale (spread of Gaussian filter) at which the edges are computed. By
## default this 2.
##
## @item "Andy"
## A.Adler's idea (c) 1999. Somewhat based on the canny method. The steps are
## @enumerate
## @item
## Do a Sobel edge detection and to generate an image at
## a high and low threshold.
## @item
## Edge extend all edges in the LT image by several pixels,
## in the vertical, horizontal, and 45 degree directions.
## Combine these into edge extended (EE) image.
## @item
## Dilate the EE image by 1 step.
## @item
## Select all EE features that are connected to features in
## the HT image.
## @end enumerate
## 
## The parameters for the method is given in a vector:
## @table @asis
## @item params(1)==0 or 4 or 8
## Perform x connected dilatation (step 3).
## @item params(2)
## Dilatation coefficient (threshold) in step 3.
## @item params(3)
## Length of edge extention convolution (step 2).
## @item params(4)
## Coefficient of extention convolution in step 2.
## @end table
## defaults = [8, 1, 3, 3]
##
## @end table
##
## @seealso{fspecial, nonmax_supress}
## @end deftypefn

function [bw, out_threshold, g45_out, g135_out] = edge (im, method, varargin)
  ## Get the image
  if (nargin == 0)
    error("edge: not enough input arguments");
  endif
  if ( !isgray(im) )
    error("edge: first input must be a gray-scale image");
  endif

  ## Get the method
  if (nargin == 1)
    method = "Sobel";
  endif
  if (!ischar(method))
    error("edge: second argument must be a string");
  endif
  method = lower(method);

  ## Perform the actual edge detection
  switch (method)
    #####################################
    ## S O B E L
    #####################################
    case "sobel"
      ## Get the direction argument
      direction = get_direction(varargin{:});
      ## Create filters;
      h1 = fspecial("sobel"); # horizontal
      h3 = h1'; # vertical
      ## Compute edge strength
      switch(direction)
        case "horizontal"
          strength = abs( conv2(im, h1, "same") );
        case "vertical"
          strength = abs( conv2(im, h3, "same") );
        case "both"
          strength = sqrt( conv2(im, h1, "same").^2 + ...
                           conv2(im, h3, "same").^2 );
      endswitch
      ## Get threshold
      if (nargin > 2 && isscalar(varargin{1}))
        thresh = varargin{1};
      else
        thresh = 2*mean(strength(:));
      endif
      ## Perform thresholding and simple thinning
      strength(strength<=thresh) = 0;
      bw = simple_thinning(strength);

    #####################################
    ## P R E W I T T
    #####################################
    case "prewitt"
      ## Get the direction argument
      direction = get_direction(varargin{:});
      ## Create filters;
      h1 = fspecial("prewitt"); # vertical
      h3 = h1'; # horizontal
      ## Compute edge strength
      switch(direction)
        case "vertical"
          strength = abs( conv2(im, h1, "same") );
        case "horizontal"
          strength = abs( conv2(im, h3, "same") );
        case "both"
          strength = sqrt( conv2(im, h1, "same").^2 + ...
                           conv2(im, h3, "same").^2 );
      endswitch
      ## Get threshold
      if (nargin > 2 && isscalar(varargin{1}))
        thresh = varargin{1};
      else
        thresh = 4*mean(strength(:));
      endif
      ## Perform thresholding and simple thinning
      strength(strength<=thresh) = 0;
      bw = simple_thinning(strength);
    
    #####################################
    ## K I R S C H
    #####################################
    case "kirsch"
      ## Get the direction argument
      direction = get_direction(varargin{:});
      ## Create filters;
      h1 = fspecial("kirsch"); # vertical
      h3 = h1'; # horizontal
      ## Compute edge strength
      switch(direction)
        case "vertical"
          strength = abs( conv2(im, h1, "same") );
        case "horizontal"
          strength = abs( conv2(im, h3, "same") );
        case "both"
          strength = sqrt( conv2(im, h1, "same").^2 + ...
                           conv2(im, h3, "same").^2 );
      endswitch
      ## Get threshold
      if nargin > 2 && isscalar(varargin{1})
        thresh = varargin{1};
      else
        thresh = mean(strength(:));
      endif
      ## Perform thresholding and simple thinning
      strength(strength<=thresh) = 0;
      bw = simple_thinning(strength);

    #####################################
    ## R O B E R T S
    #####################################
    case "roberts"
      ## Get the thinning argument (option)
      if (nargin == 4)
        option = varargin{2};
        if (!ischar(option))
          error("edge: 'option' must be a string");
        endif
        option = lower(option);
        if (!any(strcmp(option, {"thinning", "nothinning"})))
          error("edge: 'option' must be either 'thinning', or 'nothinning'");
        endif
      else
        option = "thinning";
      endif
      ## Create filters;
      h1 = [1 0; 0 -1]; 
      h2 = [0 1; -1 0]; 
      ## Compute edge strength
      g45  = conv2(im, h1, "same");
      g135 = conv2(im, h2, "same");
      strength = abs( g45 ) + abs( g135 );
      ## Get threshold
      if (nargin > 2 && isscalar(varargin{1}))
        thresh = varargin{1};
      else
        thresh = 6*mean(strength(:));
      endif
      ## Perform thresholding and simple thinning
      strength(strength<=thresh) = 0;
      if (strcmp(option, "thinning"))
        bw = simple_thinning(strength);
      else
        bw = (strength > 0);
      endif
      ## Check if g45 and g135 should be returned
      if (nargout == 4)
        g45_out  = g45;
        g135_out = g135;
      endif
    
    #####################################
    ## L A P L A C I A N   O F   G A U S S I A N
    #####################################
    case "log"
      ## Get sigma
      if (nargin == 4 && isscalar(varargin{2}))
        sigma = varargin{2};
      else
        sigma = 2;
      endif
      ## Create the filter
      s = ceil(3*sigma);
      %[x y] = meshgrid(-s:s);
      %f = (x.^2 + y.^2 - sigma^2) .* exp(-(x.^2 + y.^2)/(2*sigma^2));
      %f = f/sum(f(:));
      f = fspecial("log", 2*s+1, sigma);
      ## Perform convolution with the filter f
      g = conv2(im, f, "same");
      ## Get threshold
      if (nargin > 2 && isscalar(varargin{1}))
        thresh = varargin{1};
      else
        thresh = 0.75*mean(abs(g(:)));
      endif
      ## Find zero crossings
      zc = zerocrossings(g);
      bw = (abs(g) >= thresh) & zc;
    
    #####################################
    ## Z E R O   C R O S S I N G 
    #####################################
    case "zerocross"
      ## Get the filter
      if (nargin == 4 && isnumeric (varargin{2}))
        f = varargin{2};
      else
        error("edge: a filter must be given as the fourth argument when 'zerocross' is used");
      endif
      ## Perform convolution with the filter f
      g = conv2(im, f, "same");
      ## Get threshold
      if (nargin > 2 && isscalar(varargin{1}))
        thresh = varargin{1};
      else
        thresh = mean(abs(g(:)));
      endif
      ## Find zero crossings
      zc = zerocrossings(g);
      bw = (abs(g) >= thresh) & zc;

    #####################################
    ## C A N N Y 
    #####################################
    case "canny"
      ## Get sigma
      if (nargin == 4 && isscalar(varargin{2}))
        sigma = varargin{2};
      else
        sigma = 2;
      endif

      ## Change scale
      J = imsmooth(double(im), "Gaussian", sigma);

      ## Canny enhancer
      p = [1 0 -1]/2;
      Jx = conv2(J, p,  "same");
      Jy = conv2(J, p', "same");
      Es = sqrt( Jx.^2 + Jy.^2 );
      Eo = pi - mod (atan2 (Jy, Jx) - pi, pi);

      ## Get thresholds
      if (nargin > 2 && isscalar(varargin{1}))
        thresh = [0.4*varargin{1}, varargin{1}];
      elseif (nargin > 2 && isnumeric (varargin{1}) && numel (varargin{1}) == 2)
        thresh = varargin{1}(:);
      else
        tmp = mean(abs(Es(:)));
        thresh = [0.4*tmp, tmp];
      endif
      bw = nonmax_supress(Es, Eo, thresh(1), thresh(2));

    #####################################
    ## L I N D E B E R G 
    #####################################
    case "lindeberg"
      ## In case the user asks for more then 1 output argument
      ## we define thresh to be -1.
      thresh = -1;
      ## Get sigma
      if (nargin > 2 && isscalar(varargin{1}))
        sigma = varargin{1};
      else
        sigma = 2;
      endif
      ## Filters for computing the derivatives
      Px   = [-1 0 1; -1 0 1; -1 0 1];
      Py   = [1 1 1; 0 0 0; -1 -1 -1];
      Pxx  = conv2(Px,  Px, "full");
      Pyy  = conv2(Py,  Py, "full");
      Pxy  = conv2(Px,  Py, "full");
      Pxxx = conv2(Pxx, Px, "full");
      Pyyy = conv2(Pyy, Py, "full");
      Pxxy = conv2(Pxx, Py, "full");
      Pxyy = conv2(Pyy, Px, "full");
      ## Change scale
      L = imsmooth(double(im), "Gaussian", sigma);
      ## Compute derivatives
      Lx   = conv2(L, Px,   "same");
      Ly   = conv2(L, Py,   "same");
      Lxx  = conv2(L, Pxx,  "same");
      Lyy  = conv2(L, Pyy,  "same");
      Lxy  = conv2(L, Pxy,  "same");
      Lxxx = conv2(L, Pxxx, "same");
      Lyyy = conv2(L, Pyyy, "same");
      Lxxy = conv2(L, Pxxy, "same");
      Lxyy = conv2(L, Pxyy, "same");
      ## Compute directional derivatives
      Lvv  = Lx.^2.*Lxx + 2.*Lx.*Ly.*Lxy + Ly.^2.*Lyy;
      Lvvv = Lx.^3.*Lxxx + 3.*Lx.^2.*Ly.*Lxxy ...
           + 3.*Lx.*Ly.^2.*Lxyy + 3.*Ly.^3.*Lyyy;
      ## Perform edge detection
      bw = zerocrossings(Lvv) & Lvvv < 0;

    #####################################
    ## A N D Y
    #####################################
    case "andy"
      [bw, out_threshold] = andy (im, method, varargin{:});
    
    otherwise
      error("edge: unsupported edge detector: %s", method);
  endswitch
  
  if (nargout > 1)
    out_threshold = thresh;
  endif
endfunction

## An auxiliary function that parses the 'direction' argument from 'varargin'
function direction = get_direction(varargin)
  if (nargin >= 2)
    direction = varargin{2};
    if (!ischar(direction))
      error("edge: direction must be a string");
    endif
    direction = lower(direction);
    if (!any(strcmp(direction, {"horizontal", "vertical", "both"})))
      error("edge :direction must be either 'horizontal', 'vertical', or 'both'");
    endif
  else
    direction = "both";
  endif
endfunction

## An auxiliary function that performs a very simple thinning.
## Strength is an image containing the edge strength.
## bw contains a 1 in (r,c) if
##  1) strength(r,c) is greater than both neighbours in the
##     vertical direction, OR
##  2) strength(r,c) is greater than both neighbours in the
##     horizontal direction.
## Note the use of OR.
function bw = simple_thinning(strength)
  [r c] = size(strength);
  x = ( strength > [ zeros(r,1) strength(:,1:end-1) ] & ...
        strength > [ strength(:,2:end) zeros(r,1) ] );
  y = ( strength > [ zeros(1,c); strength(1:end-1,:) ] & ...
        strength > [ strength(2:end,:); zeros(1,c) ] );
  bw = x | y;
endfunction

## Auxiliary function. Finds the zero crossings of the 
## 2-dimensional function f. (By Etienne Grossmann)
function z = zerocrossings(f)
  z0 = f<0;                 ## Negative
  [R,C] = size(f);
  z = zeros(R,C);
  z(1:R-1,:) |= z0(2:R,:);  ## Grow
  z(2:R,:) |= z0(1:R-1,:);
  z(:,1:C-1) |= z0(:,2:C);
  z(:,2:C) |= z0(:,1:C-1);

  z &= !z0;                  ## "Positive zero-crossings"?
endfunction

## The 'andy' edge detector that was present in older versions of 'edge'.
## The function body has simply been copied from the old implementation.
##   -- Søren Hauberg, march 11th, 2008
function [imout, thresh] = andy(im, method, thresh, param2)
   [n,m]= size(im);
   xx= 2:m-1;
   yy= 2:n-1;

   filt= [1 2 1;0 0 0; -1 -2 -1]/8;  tv= 2;
   imo= conv2(im, rot90(filt), 'same').^2 + conv2(im, filt, 'same').^2;
   if nargin<3 || thresh==[];
      thresh= sqrt( tv* mean(mean( imo(yy,xx) ))  );
   end
#     sum( imo(:)>thresh ) / prod(size(imo))
   dilate= [1 1 1;1 1 1;1 1 1]; tt= 1; sz=3; dt=3;
   if nargin>=4
      # 0 or 4 or 8 connected dilation
      if length(param2) > 0
         if      param2(1)==4 ; dilate= [0 1 0;1 1 1;0 1 0];
         elseif  param2(1)==0 ; dilate= 1;
         end
      end
      # dilation threshold
      if length(param2) > 2; tt= param2(2); end
      # edge extention length
      if length(param2) > 2; sz= param2(3); end
      # edge extention threshold
      if length(param2) > 3; dt= param2(4); end
      
   end
   fobliq= [0 0 0 0 1;0 0 0 .5 .5;0 0 0 1 0;0 0 .5 .5 0;0 0 1 0 0; 
                      0 .5 .5 0 0;0 1 0 0 0;.5 .5 0 0 0;1 0 0 0 0];
   fobliq= fobliq( 5-sz:5+sz, 3-ceil(sz/2):3+ceil(sz/2) );

   xpeak= imo(yy,xx-1) <= imo(yy,xx) & imo(yy,xx) > imo(yy,xx+1) ;
   ypeak= imo(yy-1,xx) <= imo(yy,xx) & imo(yy,xx) > imo(yy+1,xx) ;

   imht= ( imo >= thresh^2 * 2); # high threshold image   
   imht(yy,xx)= imht(yy,xx) & ( xpeak | ypeak );
   imht([1,n],:)=0; imht(:,[1,m])=0;

%  imlt= ( imo >= thresh^2 / 2); # low threshold image   
   imlt= ( imo >= thresh^2 / 1); # low threshold image   
   imlt(yy,xx)= imlt(yy,xx) & ( xpeak | ypeak );
   imlt([1,n],:)=0; imlt(:,[1,m])=0;

# now we edge extend the low thresh image in 4 directions

   imee= ( conv2( imlt, ones(2*sz+1,1)    , 'same') > tt ) | ...
         ( conv2( imlt, ones(1,2*sz+1)    , 'same') > tt ) | ...
         ( conv2( imlt, eye(2*sz+1)       , 'same') > tt ) | ...
         ( conv2( imlt, rot90(eye(2*sz+1)), 'same') > tt ) | ...
         ( conv2( imlt, fobliq            , 'same') > tt ) | ...
         ( conv2( imlt, fobliq'           , 'same') > tt ) | ...
         ( conv2( imlt, rot90(fobliq)     , 'same') > tt ) | ...
         ( conv2( imlt, flipud(fobliq)    , 'same') > tt );
#  imee(yy,xx)= conv2(imee(yy,xx),ones(3),'same') & ( xpeak | ypeak );
   imee= conv2(imee,dilate,'same') > dt; #

%  ff= find( imht==1 );
%  imout = bwselect( imee, rem(ff-1, n)+1, ceil(ff/n), 8);  
   imout = imee;

endfunction