/usr/share/octave/packages/image-2.4.1/poly2mask.m is in octave-image 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | ## Copyright (C) 2004 Josep Mones i Teixidor <jmones@puntbarra.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{BW} = } poly2mask (@var{x},@var{y},@var{m},@var{n})
## Convert a polygon to a region mask.
##
## BW=poly2mask(x,y,m,n) converts a polygon, specified by a list of
## vertices in @var{x} and @var{y} and returns in a @var{m}-by-@var{n}
## logical mask @var{BW} the filled polygon. Region inside the polygon
## is set to 1, values outside the shape are set to 0.
##
## @var{x} and @var{y} should always represent a closed polygon, first
## and last points should be coincident. If they are not poly2mask will
## close it for you. If @var{x} or @var{y} are fractional they are
## nearest integer.
##
## If all the polygon or part of it falls outside the masking area
## (1:m,1:n), it is discarded or clipped.
##
## This function uses scan-line polygon filling algorithm as described
## in http://www.cs.rit.edu/~icss571/filling/ with some minor
## modifications: capability of clipping and scan order, which can
## affect the results of the algorithm (algorithm is described not to
## reach ymax, xmax border when filling to avoid enlarging shapes). In
## this function we scan the image backwards (we begin at ymax and end
## at ymin), and we don't reach ymin, xmin, which we believe should be
## compatible with MATLAB.
## @end deftypefn
## TODO: check how to create a logical BW without any conversion
function BW = poly2mask (x, y, m, n)
if (nargin != 4)
print_usage ();
endif
## check x and y
x = round (x (:).');
y = round (y (:).');
if (length (x) < 3)
error ("poly2mask: polygon must have at least 3 vertices.");
endif
if (length (x) != length (y))
error ("poly2mask: length of x doesn't match length of y.");
endif
## create output matrix
BW = false (m, n);
## close polygon if needed
if ((x (1) != x (length (x))) || (y (1) != y (length (y))))
x = horzcat (x, x (1));
y = horzcat (y, y (1));
endif
## build global edge table
ex = [x(1:length (x) - 1); x(1, 2:length (x))]; ## x values for each edge
ey = [y(1:length (y) - 1); y(1, 2:length (y))]; ## y values for each edge
idx = (ey (1, :) != ey (2, :)); ## eliminate horizontal edges
ex = ex (:, idx);
ey = ey (:, idx);
eminy = min (ey); ## minimum y for each edge
emaxy = max (ey); ## maximum y for each edge
t = (ey == [eminy; eminy]); ## values associated to miny
exminy = ex (:) (t); ## x values associated to min y
exmaxy = ex (:) (!t); ## x values associated to max y
emaxy = emaxy.'; ## we want them vertical now...
eminy = eminy.';
m_inv = (exmaxy - exminy)./(emaxy - eminy); ## calculate inverse slope
ge = [emaxy, eminy, exmaxy, m_inv]; ## build global edge table
ge = sortrows (ge, [1, 3]); ## sort on eminy and exminy
## we add an extra dummy edge at the end just to avoid checking
## while indexing it
ge = [-Inf, -Inf, -Inf, -Inf; ge];
## initial parity is even (0)
parity = 0;
## init scan line set to bottom line
sl = ge (size (ge, 1), 1);
## init active edge table
## we use a loop because the table is sorted and edge list could be
## huge
ae = [];
gei = size (ge, 1);
while (sl == ge (gei, 1))
ae = [ge(gei, 2:4); ae];
gei -= 1;
endwhile
## calc minimum y to draw
miny = min (y);
if (miny < 1)
miny = 1;
endif
while (sl >= miny)
## check vert clipping
if (sl <= m)
## draw current scan line
## we have to round because 1/m is fractional
ie = round (reshape (ae (:, 2), 2, size (ae, 1)/2));
## this discards left border of image (this differs from version at
## http://www.cs.rit.edu/~icss571/filling/ which discards right
## border) but keeps an exception when the point is a vertex.
ie (1, :) += (ie (1, :) != ie (2, :));
## we'll clip too, just in case m,n is not big enough
ie (1, (ie (1, :) < 1)) = 1;
ie (2, (ie (2, :) > n)) = n;
## we eliminate segments outside window
ie = ie (:, (ie (1, :) <= n));
ie = ie (:, (ie (2, :) >= 1));
for i = 1:columns (ie)
BW (sl, ie (1, i):ie (2, i)) = true;
endfor
endif
## decrement scan line
sl -= 1;
## eliminate edges that eymax==sl
## this discards ymin border of image (this differs from version at
## http://www.cs.rit.edu/~icss571/filling/ which discards ymax).
ae = ae ((ae (:, 1) != sl), :);
## update x (x1=x0-1/m)
ae (:, 2) -= ae (:, 3);
## update ae with new values
while (sl == ge (gei, 1))
ae = vertcat (ae, ge (gei, 2:4));
gei -= 1;
endwhile
## order the edges in ae by x value
if (rows (ae) > 0)
ae = sortrows (ae, 2);
endif
endwhile
endfunction
## This should create a filled octagon
%!demo
%! s = [0:pi/4:2*pi];
%! x = cos (s) * 90 + 101;
%! y = sin (s) * 90 + 101;
%! bw = poly2mask(x, y, 200, 200);
%! imshow (bw);
## This should create a 5-vertex star
%!demo
%! s = [0:2*pi/5:pi*4];
%! s = s ([1, 3, 5, 2, 4, 6]);
%! x = cos (s) * 90 + 101;
%! y = sin (s) * 90 + 101;
%! bw = poly2mask (x, y, 200, 200);
%! imshow (bw);
%!# Convex polygons
%!shared xs, ys, Rs, xt, yt, Rt
%! xs=[3,3,10,10];
%! ys=[4,12,12,4];
%! Rs=zeros(16,14);
%! Rs(5:12,4:10)=1;
%! Rs=logical(Rs);
%! xt=[1,4,7];
%! yt=[1,4,1];
%! Rt=[0,0,0,0,0,0,0;
%! 0,0,1,1,1,1,0;
%! 0,0,0,1,1,0,0;
%! 0,0,0,1,0,0,0;
%! 0,0,0,0,0,0,0];
%! Rt=logical(Rt);
%!assert(poly2mask(xs,ys,16,14),Rs); # rectangle
%!assert(poly2mask(xs,ys,8,7),Rs(1:8,1:7)); # clipped
%!assert(poly2mask(xs-7,ys-8,8,7),Rs(9:16,8:14)); # more clipping
%!assert(poly2mask(xt,yt,5,7),Rt); # triangle
%!assert(poly2mask(xt,yt,3,3),Rt(1:3,1:3)); # clipped
%!# Concave polygons
%!test
%! x=[3,3,5,5,8,8,10,10];
%! y=[4,12,12,8,8,11,11,4];
%! R=zeros(16,14);
%! R(5:12,4:5)=1;
%! R(5:8,6:8)=1;
%! R(5:11,9:10)=1;
%! R=logical(R);
%! assert(poly2mask(x,y,16,14), R);
%!# Complex polygons
%!test
%! x=[1,5,1,5];
%! y=[1,1,4,4];
%! R=[0,0,0,0,0,0;
%! 0,0,1,1,0,0;
%! 0,0,1,1,0,0;
%! 0,1,1,1,1,0;
%! 0,0,0,0,0,0];
%! R=logical(R);
%! assert(poly2mask(x,y,5,6), R);
|