This file is indexed.

/usr/share/octave/packages/image-2.4.1/qtdecomp.m is in octave-image 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
## Copyright (C) 2004 Josep Mones i Teixidor <jmones@puntbarra.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{S} =} qtdecomp (@var{I})
## @deftypefnx {Function File} {@var{S} =} qtdecomp (@var{I}, @var{threshold})
## @deftypefnx {Function File} {@var{S} =} qtdecomp (@var{I}, @var{threshold}, @var{mindim})
## @deftypefnx {Function File} {@var{S} =} qtdecomp (@var{I}, @var{threshold}, [@var{mindim} @var{maxdim}])
## @deftypefnx {Function File} {@var{S} =} qtdecomp (@var{I}, @var{fun})
## @deftypefnx {Function File} {@var{S} =} qtdecomp (@var{I}, @var{fun}, @var{P1}, @var{P2}, @dots{})
## Performs quadtree decomposition.
##
## qtdecomp decomposes a square image @var{I} into four equal-sized
## blocks. Then it performs some kind of test on each block to decide if
## it should decompose them further. This process is repeated
## iteratively until there's no block left to be decomposed.
##
## Note that blocks are not decomposed if their dimensions are not even.
##
## The output is a sparse matrix whose non-zero elements determine the
## position of the block (the element is at top-left position in the
## block) and size of each block (the value of the element determines
## length of a side of the square-shaped block).
##
## S = qtdecomp(I) decomposes an intensity image @var{I} as described
## above. By default it doesn't split a block if all elements are equal.
##
## S = qtdecomp(I, threshold) decomposes an image as described, but only
## splits a block if the maximum value in the block minus the minimum
## value is greater than @var{threshold}, which is a value between 0 and
## 1. If @var{I} is of class uint8, @var{threshold} is multiplied by 255
## before use. Also, if@var{I} is of class uint16, @var{threshold} is 
## multiplied by 65535.
##
## S = qtdecomp(I, threshold, mindim) decomposes an image using the
## @var{threshold} as just described, but doesn't produce blocks smaller
## than mindim.
##
## S = qtdecomp(I, threshold, [mindim maxdim]) decomposes an image as
## described, but produces blocks that can't be bigger than maxdim. It
## decomposes to maxdim even if it isn't needed if only @var{threshold}
## was considered.
##
## S = qtdecomp(I, fun) decomposes an image @var{I} and uses function
## @var{fun} to decide if a block should be splitted or not. @var{fun}
## is called with a m-by-m-by-k  array of m-by-m blocks to be
## considered, and should return a vector of size k, whose elements
## represent each block in the stacked array. @var{fun} sets the
## corresponding value to 1 if the block should be split, and 0
## otherwise.
##
## S = qtdecomp(I, fun, @dots{}) behaves as qtdecomp(I, fun) but passes
## extra parameters to @var{fun}.
##
## @seealso{qtgetblk, qtsetblk}
## @end deftypefn

function S = qtdecomp (I, p1, varargin)
  if (nargin < 1)
    print_usage;
  elseif (! issquare (I))
    error("qtdecomp: I should be square.");
  endif

  ## current size (assumed to be square)
  curr_size=size(I,1);

  ## initial mindim to a sensible value
  mindim=1;
 
  ## sensible default maxdim value
  maxdim=curr_size;

  if (nargin<2)
    ## Initialize decision method variable
    ## We could have implemented threshold as a function and use an
    ## uniform interface (function handle) to decide whether to split or
    ## not blocks. We have decided not to do so because block
    ## rearrangement that is needed as a parameter to functions is
    ## expensive.
    decision_method=0;
  elseif (isreal(p1))
    ## p1 is threshold
    threshold=p1;
    decision_method=1;

    if(strcmp(typeinfo(I), 'uint8 matrix'))
      threshold*=255;
    elseif(strcmp(typeinfo(I), 'uint16 matrix'))
      threshold*=65535;
    endif

    if (nargin>3)
      print_usage;
    elseif (nargin==3)
      dims=varargin{1};
      if (isvector(dims)&&length(dims)==2)
        mindim=dims(1);
        maxdim=dims(2);
      elseif (isreal(dims))
        mindim=dims;
      else
        error("qtdecomp: third parameter must be 'mindim' or '[mindim maxdim]'");
      endif
      ## we won't check if mindim or maxdim are powers of 2. It's too
      ## restrictive and don't need it at all.
    endif
    
  elseif strcmp(typeinfo(p1),"function handle") ...
          || strcmp(typeinfo(p1),"inline function")
    ## function handles seem to return true to isscalar
    fun=p1;
    decision_method=2;
  else
    error("qtdecomp: second parameter must be a integer (threshold) or a function handle (fun).");
  endif
  
  ## initialize results matrices
  res=[];

  ## bool to flag end
  finished=false;

  ## array of offsets to blocks to evaluate
  offsets=[1,1];

  if (maxdim<mindim)
    error("qtdecomp: mindim must be smaller than maxdim.");
  endif

  ## See if we have to split a minimum regardless other considerations.
  if (maxdim<curr_size)
    initial_splits=ceil(log2(curr_size/maxdim));
    if(initial_splits>0)
      divs=2^initial_splits;
      if (rem(curr_size,divs)!=0)
        error("qtdecomp: Can't decompose I enough times to fulfill maxdim requirement.");
      endif
      ## update curr_size
      curr_size/=divs;
      if(curr_size<mindim)
        error("qtdecomp: maxdim restriction collides with mindim restriction.");
      endif
      els=([0:divs-1]*curr_size+1).';
      offsets=[kron(els,ones(divs,1)), kron(ones(divs,1),els)];
    endif
  endif

  while(!finished && rows(offsets)>0)
    ## check other ending conditions:
    ## is size is odd?
    ## is splitted size < than mindim?
    if ((rem(curr_size,2)!=0)||((curr_size/2)<mindim))
      ## can't continue, lets add current evaluation blocks to results
      res=[res; offsets, ones(size(offsets,1),1)*curr_size];
      finished = true;
    else
      if (decision_method<2)
        db=logical(ones(rows(offsets),1));
        for r=1:rows(offsets)
          o=offsets(r,:);
          fo=offsets(r,:)+curr_size-1;

          if(decision_method==0)
            ## is everything equal?
            if (all(I(o(1),o(2))==I(o(1):fo(1),o(2):fo(2))))
              db(r)=0;
            endif
          else
            ## check threshold
            t=I(o(1):fo(1),o(2):fo(2));
            t=t(:);
            if ((max(t)-min(t))<=threshold)
              db(r)=0;
            endif
          endif
        endfor
      elseif(decision_method==2)
        ## function handle decision method
        ## build blocks
        b=zeros(curr_size,curr_size,rows(offsets));
        rbc=offsets(:,1:2)+curr_size-1;
        for r=1:rows(offsets)
          b(:,:,r)=I(offsets(r,1):rbc(r,1),offsets(r,2):rbc(r,2));
        endfor

        db=feval(fun, b, varargin{:});
      else
        error("qtdecomp: execution shouldn't reach here. Please report this as a bug.");
      endif

      ## Add blocks that won't divide to results
      nd=offsets(find(!db),:);
      res=[res; nd, ones(size(nd,1),1)*curr_size];
      
      ## Update curr_size for next iteration
      curr_size/=2;
      
      ## Prepare offsets for next iteration
      otemp=offsets(find(db),:);
      hs=ones(rows(otemp),1)*curr_size;
      zs=zeros(size(hs));
      offsets=[otemp;otemp+[hs,zs];otemp+[zs,hs];otemp+[hs,hs]];
    endif
  endwhile

  S=sparse(res(:,1),res(:,2),res(:,3),size(I,1),size(I,2));
endfunction

%!demo
%! full(qtdecomp(eye(8)))
%! %It finds 2 big blocks of 0 and it decomposes further where 0 and 1 are mixed.

%!# Test if odd-sized limits split
%!assert(full(qtdecomp(eye(5))), reshape([5,zeros(1,24)],5,5));
%!assert(full(qtdecomp(eye(6))), repmat(reshape([3,zeros(1,8)],3,3),2,2));

%!# Test 'equal' method
%!test
%! a=ones(2,2);
%! b=[2,0;0,0];
%! assert(full(qtdecomp(eye(4))), [a,b;b,a]);

%!shared A, B2, B4, f
%! A=[ 1, 4, 2, 5,54,55,61,62;
%!     3, 6, 3, 1,58,53,67,65;
%!     3, 6, 3, 1,58,53,67,65;
%!     3, 6, 3, 1,58,53,67,65;
%!    23,42,42,42,99,99,99,99;
%!    27,42,42,42,99,99,99,99;
%!    23,22,26,25,99,99,99,99;
%!    22,22,24,22,99,99,99,99];
%! B2=[2,0;0,0];
%! B4=zeros(4); B4(1,1)=4;

%!test
%! R=[ones(4,8); [ones(2),B2;ones(2,4)], B4];
%! assert(full(qtdecomp(A)), R);
%! assert(full(qtdecomp(A,0)), R);

%!# Test 'threshold' method
%!test
%! R=[ones(4,8); [ones(2),B2;B2,ones(2)],B4];
%! assert(full(qtdecomp(A,1)), R);

%!test
%! R=[[B4,[B2,B2;B2,B2]]; [[ones(2),B2;B2,B2],B4]];
%! assert(full(qtdecomp(A,10)), R);

%!test
%! R=[[B4,[B2,B2;B2,B2]]; [[B2,B2;B2,B2],B4]];
%! assert(full(qtdecomp(A,10,2)), R);
%!
%! assert(full(qtdecomp(A,100,[2, 4])), [B4,B4;B4,B4]);

%!test
%! f = @(A, c1 = 54, c2 = 0, c3 = 0) y = (A (1, 1, :) != ((c1+c2+c3) * ones (1, 1, size (A, 3))))(:);
%!
%! assert(full(qtdecomp(A,f)),[ones(4),B4;ones(4,8)]); 
%! assert(full(qtdecomp(A,f,54)),[ones(4),B4;ones(4,8)]);
%! assert(full(qtdecomp(A,f,4,40,10)),[ones(4),B4;ones(4,8)]);

%!test
%!# no params
%! first_eq=inline("(A(1,1,:)!=(54*ones(1,1,size(A,3))))(:)","A");
%! assert(full(qtdecomp(A,first_eq)),[ones(4),B4;ones(4,8)]);

%!test
%!# 1 param
%! first_eq=inline("(A(1,1,:)!=(c*ones(1,1,size(A,3))))(:)","A","c");
%! assert(full(qtdecomp(A,first_eq,54)),[ones(4),B4;ones(4,8)]);

%!test
%!# 3 params
%! first_eq=inline("(A(1,1,:)!=((c1+c2+c3)*ones(1,1,size(A,3))))(:)","A","c1","c2","c3");
%! assert(full(qtdecomp(A,first_eq,4,40,10)),[ones(4),B4;ones(4,8)]);