/usr/share/octave/packages/interval-1.4.1/doc-cache is in octave-interval 1.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 | # doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 9
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
ctc_intersect
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 892
-- Function: ctc_intersect (C1, Y1, C2, Y2)
-- Function: ctc_intersect (C1, C2)
Return a contractor function for the intersection of two sets.
Functions C1 and C2 define two sets ‘S1 = {X | C1 (X) ∈ Y1}’ and
‘S2 = {X | C2 (X) ∈ Y2}’. The return value is a contractor
function for the set ‘S1 ∩ S2 = {X | C1 (X) ∈ Y1 and C2 (X) ∈ Y2}’.
Parameters C1 and C2 must be function handles and must accept the
same number of parameters. See ‘@infsup/fsolve’ for how to define
contractor functions. The user manual also contains an example on
how to use this function.
Instead of solving ‘C1 (X) ∈ Y1’ and ‘C2 (X) ∈ Y2’ separately and
then compute an intersection of the result, you can solve
‘ctc_intersect (C1, Y1, C2, Y2) = 0’.
See also: @infsup/fsolve, ctc_union.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
Return a contractor function for the intersection of two sets.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
ctc_union
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 869
-- Function: ctc_union (C1, Y1, C2, Y2)
-- Function: ctc_union (C1, C2)
Return a contractor function for the union of two sets.
Functions C1 and C2 define two sets ‘S1 = {X | C1 (X) ∈ Y1}’ and
‘S2 = {X | C2 (X) ∈ Y2}’. The return value is a contractor
function for the set ‘S1 ∪ S2 = {X | C1 (X) ∈ Y1 or C2 (X) ∈ Y2}’.
Parameters C1 and C2 must be function handles and must accept the
same number of parameters. See ‘@infsup/fsolve’ for how to define
contractor functions. The user manual also contains an example on
how to use this function.
Instead of solving ‘C1 (X) ∈ Y1’ and ‘C2 (X) ∈ Y2’ separately and
then compute an union of the result, you can solve ‘ctc_union (C1,
Y1, C2, Y2) = 0’.
See also: @infsup/fsolve, ctc_intersect.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Return a contractor function for the union of two sets.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
empty
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 854
-- Function: empty ()
-- Function: empty (N)
-- Function: empty (N, M)
Return the empty interval.
With additional parameters, create an interval vector/matrix, which
comprises empty interval entries.
The empty interval [Empty] contains no real numbers. All interval
functions return an empty result if the input is either empty or
outside of the function’s domain.
The empty interval carries the trivial ‘trv’ decoration, which
denotes that the empty interval cannot be the result of a function
evaluation for a nonempty subset of its domain.
Accuracy: The representation of the empty interval is exact.
x = empty ()
⇒ x = [Empty]_trv
inf (x)
⇒ ans = Inf
sup (x)
⇒ ans = -Inf
See also: @infsup/isempty, entire.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Return the empty interval.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
entire
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1156
-- Function: entire ()
-- Function: entire (N)
-- Function: entire (N, M)
Return the entire set of real numbers.
With additional parameters, create an interval vector/matrix, which
comprises entire interval entries.
The entire set of real numbers [Entire] is a closed interval. If
used as an enclosure for a certain value, it represents a state of
minimum constraints. An interval function which evaluates to
[Entire] yields no information at all if no interval decoration is
present.
The special floating-point values -Inf and Inf represent boundaries
of the entire set of real numbers. However, they are not members
of the interval.
The result of this function carries the defined and continuous
‘dac’ decoration, which denotes that the interval is not bounded
and therefore is no common interval.
Accuracy: The representation of the entire set of real numbers is
exact.
x = entire ()
⇒ x = [Entire]_dac
inf (x)
⇒ ans = -Inf
sup (x)
⇒ ans = Inf
See also: @infsup/isentire, empty.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Return the entire set of real numbers.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
exacttointerval
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1062
-- Function: exacttointerval (S)
-- Function: exacttointerval (L, U)
-- Function: exacttointerval (M)
Create a bare interval. Fail, if the interval cannot exactly
represent the input.
Typically, this function operates on interval literals S. It is
also possible to pass lower and upper boundaries L and U, or create
a point-interval with a midpoint M.
All valid input formats of the ‘infsup’ class constructor are
allowed. If this function creates an interval matrix, all interval
boundaries must be representable with binary64 numbers.
Accuracy: The equation ‘X == exacttointerval (intervaltoexact (X))’
holds for all intervals.
w = exacttointerval ("[ ]")
⇒ w = [Empty]
x = exacttointerval ("[2, 3]")
⇒ x = [2, 3]
y = exacttointerval ("[,]")
⇒ y = [Entire]
z = exacttointerval ("[21e-1]")
⊣ ??? exacttointerval: interval wouldn't be exact
See also: @infsup/intervaltoexact, @infsup/infsup.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Create a bare interval.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
hull
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1442
-- Function: hull (X1, X2, …)
Create an interval enclosure for a list of parameters.
Parameters can be simple numbers, intervals or interval literals as
strings. Scalar values or scalar intervals do broadcast if
combined with matrices or interval matrices.
NaNs represent missing values and are treated like empty intervals.
Inf and -Inf can be used to create unbound intervals, but note that
these values will not be members of the interval. In particular,
it is not possible to create an interval with ‘hull (inf)’.
The result is equivalent to ‘union (infsupdec (X1), union
(infsupdec (X2), …))’, but computed in a more efficient way. In
contrast to the union function, this function is not considered a
set operation and the result carries the best possible decoration,
which is allowed by the input parameters.
Warning: This function is not defined by IEEE Std 1788-2015 and
shall not be confused with the standard’s convexHull function,
which is implemented by ‘union’.
Accuracy: The result is a tight enclosure.
hull (1, 4, 3, 2)
⇒ ans = [1, 4]_com
hull (empty, entire)
⇒ ans = [Entire]_trv
hull ("0.1", "pi", "e")
⇒ ans ⊂ [0.099999, 3.1416]_com
hull ("[0, 3]", "[4, 7]")
⇒ ans = [0, 7]_com
See also: @infsupdec/union.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Create an interval enclosure for a list of parameters.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
interval_bitpack
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 727
-- Function: interval_bitpack (X)
Decode an interval from its interchange format.
The input must either be a matrix of n × 128 bits for n bare
intervals, or a matrix of n × 136 bits for n decorated intervals.
Bits are in increasing order. Byte order depends on the system’s
endianness. First 8 bytes are used for the lower interval
boundary, next 8 bytes are used for the upper interval boundary,
(optionally) last byte is used for the decoration.
The result is a row vector of intervals.
Accuracy: For all valid interchange encodings the following
equation holds: ‘X == bitunpack (interval_bitpack (X))’.
See also: @infsup/bitunpack, @infsupdec/bitunpack.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Decode an interval from its interchange format.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
midrad
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1239
-- Function: midrad (M, R)
-- Function: midrad (M)
-- Function: midrad ()
Create an interval enclosure for [M-R, M+R].
Without input parameters, return the empty interval. With only one
input parameter, the radius R defaults to zero.
Parameters can be simple numbers, intervals or interval literals as
strings. Scalar values or scalar intervals do broadcast if
combined with matrices or interval matrices.
The result is not guaranteed to be tightest if parameters are given
as strings. This is due to intermediate results. The infsupdec
constructor with interval literals in uncertain form ‘m?ruE’ can
instead be used to create tight enclosures of decimal numbers with
a radius.
Accuracy: The result is an accurate enclosure. The result is
tightest if M and R are floating-point numbers or intervals.
midrad (42, 3)
⇒ ans = [39, 45]_com
midrad (0, inf)
⇒ ans = [Entire]_dac
midrad ("1.1", "0.1")
⇒ ans ⊂ [0.99999, 1.2001]_com
midrad ("25", "3/7")
⇒ ans ⊂ [24.571, 25.429]_com
See also: @infsupdec/infsupdec, hull, @infsupdec/mid,
@infsupdec/rad.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
Create an interval enclosure for [M-R, M+R].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
nai
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 777
-- Function: nai ()
Return the ill-formed decorated interval, called NaI (Not an
Interval).
Ill-formed intervals are the result of an illegal interval
creation, e.g. ‘[3, 2]’. They occur if the ‘infsupdec’
constructor is called with an invalid input and survive through
interval arithmetic computations. Boolean comparisons on NaIs
return ‘false’, i.e. ‘[NaI] == [NaI]’ is false.
The interval part of NaI is undefined. The decoration part of NaI
is ‘ill’. The size of NaI is one in each dimension.
The infsup constructor will not produce NaIs, but an error instead.
x = nai ()
⇒ x = [NaI]
x + 42
⇒ ans = [NaI]
See also: @infsupdec/infsupdec.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Return the ill-formed decorated interval, called NaI (Not an Interval).
|