This file is indexed.

/usr/share/octave/packages/linear-algebra-2.2.2/ndcovlt.m is in octave-linear-algebra 2.2.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
## Copyright (C) 2010 VZLU Prague, a.s., Czech Republic
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {@var{y} =} ndcovlt (@var{x}, @var{t1}, @var{t2}, @dots{})
## Computes an n-dimensional covariant linear transform of an n-d tensor, given a
## transformation matrix for each dimension. The number of columns of each transformation
## matrix must match the corresponding extent of @var{x}, and the number of rows determines
## the corresponding extent of @var{y}. For example:
## 
## @example
##   size (@var{x}, 2) == columns (@var{t2})
##   size (@var{y}, 2) == rows (@var{t2})
## @end example
##
## The element @code{@var{y}(i1, i2, @dots{})} is defined as a sum of
##
## @example
##   @var{x}(j1, j2, @dots{}) * @var{t1}(i1, j1) * @var{t2}(i2, j2) * @dots{}
## @end example
##
## over all j1, j2, @dots{}. For two dimensions, this reduces to
## @example
##   @var{y} = @var{t1} * @var{x} * @var{t2}.'
## @end example
## 
## [] passed as a transformation matrix is converted to identity matrix for
## the corresponding dimension.
##
## @end deftypefn

## Author: Jaroslav Hajek <highegg@gmail.com>

function y = ndcovlt (x, varargin)
  nd = max (ndims (x), nargin - 1);
  varargin = resize (varargin, 1, nd);

  # check dimensions
  for i = 1:nd
    ti = varargin{i};
    if (isnumeric (ti) && ndims (ti) == 2)
      [r, c] = size (ti);
      if (r + c == 0)
        varargin{i} = eye (size (x, i));
      elseif (c != size (x, i))
        error ("ndcovt: dimension mismatch for x-th transformation matrix");
      endif
    else
      error ("ndcovt: transformation matrices must be numeric 2d matrices");
    endif
  endfor

  if (isempty (x))
    szy = cellfun (@rows, varargin);
    y = zeros (szy);
    return
  endif

  ldp = [2:nd, 1];
  ## First transformation.
  y = ldtrans (x, varargin{1});

  ## Always shift one dimension.
  for i = 2:nd-1
    y = ldtrans (permute (y, ldp), varargin{i});
  endfor

  ## Permute to normal order now to save one permutation.
  if (nd > 2)
    y = ipermute (y, [nd-1:nd, 1:nd-2]);
  endif

  ## Now multiply from the right.
  szy = size (y);
  szy(end+1:nd-1) = 1;
  m = varargin{nd};
  szy(nd) = rows (m);
  y = reshape (y, [], size (y, nd));
  y = reshape (y * m.', szy);

endfunction

function y = ldtrans (x, m)
  sz = size (x);
  sz(1) = rows (m);
  y = reshape (m * x(:,:), sz);
endfunction