/usr/share/octave/packages/linear-algebra-2.2.2/ndmult.m is in octave-linear-algebra 2.2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | ## Copyright (C) 2013 - Juan Pablo Carbajal
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## Author: Juan Pablo Carbajal <ajuanpi+dev@gmail.com>
## -*- texinfo -*-
## @deftypefn {Function File} {@var{C} =} ndmult (@var{A},@var{B},@var{dim})
## Multidimensional scalar product
##
## Given multidimensional arrays @var{A} and @var{B} with entries
## A(i1,12,@dots{},in) and B(j1,j2,@dots{},jm) and the 1-by-2 dimesion array @var{dim}
## with entries [N,K]. Assume that
##
## @example
## shape(@var{A},N) == shape(@var{B},K)
## @end example
##
## Then the function calculates the product
##
## @example
## @group
##
## C (i1,@dots{},iN-1,iN+1,@dots{},in,j1,@dots{},jK-1,jK+1,@dots{},jm) =
## = sum_over_s A(i1,@dots{},iN-1,s,iN+1,@dots{},in)*B(j1,@dots{},jK-1,s,jK+1,@dots{},jm)
##
## @end group
## @end example
##
## For example if @command{size(@var{A}) == [2,3,4]} and @command{size(@var{B}) == [5,3]}
## then the @command{@var{C} = ndmult(A,B,[2,2])} produces @command{size(@var{C}) == [2,4,5]}.
##
## This function is useful, for example, when calculating grammian matrices of a set of signals
## produced from different experiments.
## @example
## nT = 100;
## t = 2*pi*linspace (0,1,nT)';
## signals = zeros(nT,3,2); % 2 experiments measuring 3 signals at nT timestamps
##
## signals(:,:,1) = [sin(2*t) cos(2*t) sin(4*t).^2];
## signals(:,:,2) = [sin(2*t+pi/4) cos(2*t+pi/4) sin(4*t+pi/6).^2];
##
## sT(:,:,1) = signals(:,:,1)';
## sT(:,:,2) = signals(:,:,2)';
## G = ndmult (signals,sT,[1 2]);
##
## @end example
## In the example G contains the scalar product of all the singals against each other.
## This can be verified in the following way:
## @example
## sA = 1 eA = 1; % First signal in first experiment;
## sB = 1 eA = 2; % First signal in second experiment;
## [G(s1,e1,s2,e2) signals(:,s1,e1)'*signals(:,s2,e2)]
## @end example
## You may want to reoeder the scalar products into a 2-by-2 arrangement (representing pairs of experiments)
## of gramian matrices. The following command @command{G = permute(G,[1 3 2 4])} does it.
##
## @end deftypefn
function M = ndmult (A,B,dim)
dA = dim(1);
dB = dim(2);
sA = size (A);
nA = length (sA);
perA = [1:(dA-1) (dA+1):(nA-1) nA dA](1:nA);
Ap = permute (A, perA);
Ap = reshape (Ap, prod (sA(perA(1:end-1))), sA(perA(end)));
sB = size (B);
nB = length (sB);
perB = [dB 1:(dB-1) (dB+1):(nB-1) nB](1:nB);
Bp = permute (B, perB);
Bp = reshape (Bp, sB(perB(1)), prod (sB(perB(2:end))));
M = Ap * Bp;
s = [sA(perA(1:end-1)) sB(perB(2:end))];
M = squeeze (reshape (M, s));
endfunction
%!demo
%! A =@(l)[1 l; 0 1];
%! N = 5;
%! p = linspace (-1,1,N);
%! T = zeros (2,2,N);
%! # A book of x-shears, one transformation per page.
%! for i=1:N
%! T(:,:,i) = A(p(i));
%! endfor
%!
%! # The unit square
%! P = [0 0; 1 0; 1 1; 0 1];
%!
%! C = ndmult (T,P,[2 2]);
%! # Re-order to get a book of polygons
%! C = permute (C,[3 1 2]);
%!
%! try
%! pkg load geometry
%! do_plot = true;
%! catch
%! printf ("Geometry package needed to plot this demo\n.");
%! do_plot = false;
%! end
%! if do_plot
%! clf
%! drawPolygon (P,"k","linewidth",2);
%! hold on
%! c = jet(N);
%! for i=1:N
%! drawPolygon (C(:,:,i),":","color",c(i,:),"linewidth",2);
%! endfor
%! axis equal
%! set(gca,"visible","off");
%! hold off
%! endif
%!
%! # -------------------------------------------------
%! # The handler A describes a parametrized planar geometrical
%! # transformation (shear in the x-direction).
%! # Choosing N values of the parameter we obtain a 2x2xN matrix.
%! # We can apply all these transformations to the poligon defined
%! # by matrix P in one operation.
%! # The poligon resulting from the i-th parameter value is stored
%! # in C(:,:,i).
%! # You can plot them using the geometry package.
|