This file is indexed.

/usr/share/octave/packages/linear-algebra-2.2.2/ndmult.m is in octave-linear-algebra 2.2.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
## Copyright (C) 2013 - Juan Pablo Carbajal
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

## Author: Juan Pablo Carbajal <ajuanpi+dev@gmail.com>

## -*- texinfo -*-
## @deftypefn {Function File} {@var{C} =} ndmult (@var{A},@var{B},@var{dim})
## Multidimensional scalar product
##
## Given multidimensional arrays @var{A} and @var{B} with entries
## A(i1,12,@dots{},in) and B(j1,j2,@dots{},jm) and the 1-by-2 dimesion array @var{dim}
## with entries [N,K]. Assume that
##
## @example
## shape(@var{A},N) == shape(@var{B},K)
## @end example
##
## Then the function calculates the product
##
## @example
## @group
##
## C (i1,@dots{},iN-1,iN+1,@dots{},in,j1,@dots{},jK-1,jK+1,@dots{},jm) =
##  = sum_over_s A(i1,@dots{},iN-1,s,iN+1,@dots{},in)*B(j1,@dots{},jK-1,s,jK+1,@dots{},jm)
##
## @end group
## @end example
##
## For example if @command{size(@var{A}) == [2,3,4]} and @command{size(@var{B}) == [5,3]}
## then the @command{@var{C} = ndmult(A,B,[2,2])} produces @command{size(@var{C}) == [2,4,5]}.
##
## This function is useful, for example,  when calculating grammian matrices of a set of signals
## produced from different experiments.
## @example
##   nT      = 100;
##   t       = 2*pi*linspace (0,1,nT)';
##   signals = zeros(nT,3,2); % 2 experiments measuring 3 signals at nT timestamps
##
##   signals(:,:,1) = [sin(2*t) cos(2*t) sin(4*t).^2];
##   signals(:,:,2) = [sin(2*t+pi/4) cos(2*t+pi/4) sin(4*t+pi/6).^2];
##
##   sT(:,:,1) = signals(:,:,1)';
##   sT(:,:,2) = signals(:,:,2)';
##   G = ndmult (signals,sT,[1 2]);
##
## @end example
## In the example G contains the scalar product of all the singals against each other.
## This can be verified in the following way:
## @example
##   sA = 1 eA = 1; % First signal in first experiment;
##   sB = 1 eA = 2; % First signal in second experiment;
##   [G(s1,e1,s2,e2)  signals(:,s1,e1)'*signals(:,s2,e2)]
## @end example
## You may want to reoeder the scalar products into a 2-by-2 arrangement (representing pairs of experiments)
## of gramian matrices. The following command @command{G = permute(G,[1 3 2 4])} does it.
##
## @end deftypefn

function M = ndmult (A,B,dim)

  dA = dim(1);
  dB = dim(2);

  sA   = size (A);
  nA   = length (sA);
  perA = [1:(dA-1) (dA+1):(nA-1) nA dA](1:nA);
  Ap = permute (A, perA);
  Ap = reshape (Ap, prod (sA(perA(1:end-1))), sA(perA(end)));

  sB   = size (B);
  nB   = length (sB);
  perB = [dB 1:(dB-1) (dB+1):(nB-1) nB](1:nB);
  Bp = permute (B, perB);
  Bp = reshape (Bp, sB(perB(1)), prod (sB(perB(2:end))));

  M  = Ap * Bp;
  s = [sA(perA(1:end-1)) sB(perB(2:end))];
  M  = squeeze (reshape (M, s));

endfunction

%!demo
%! A =@(l)[1 l; 0 1];
%! N = 5;
%! p = linspace (-1,1,N);
%! T = zeros (2,2,N);
%! # A book of x-shears, one transformation per page.
%! for i=1:N
%!   T(:,:,i) = A(p(i));
%! endfor
%!
%! # The unit square
%! P = [0 0; 1 0; 1 1; 0 1];
%!
%! C = ndmult (T,P,[2 2]);
%! # Re-order to get a book of polygons
%! C = permute (C,[3 1 2]);
%!
%! try
%!   pkg load geometry
%!   do_plot = true;
%! catch
%!   printf ("Geometry package needed to plot this demo\n.");
%!   do_plot = false;
%! end
%! if do_plot
%!   clf
%!   drawPolygon (P,"k","linewidth",2);
%!   hold on
%!   c = jet(N);
%!   for i=1:N
%!     drawPolygon (C(:,:,i),":","color",c(i,:),"linewidth",2);
%!   endfor
%!   axis equal
%!   set(gca,"visible","off");
%!   hold off
%! endif
%!
%! # -------------------------------------------------
%! # The handler A describes a parametrized planar geometrical
%! # transformation (shear in the x-direction).
%! # Choosing N values of the parameter we obtain a 2x2xN matrix.
%! # We can apply all these transformations to the poligon defined
%! # by matrix P in one operation.
%! # The poligon resulting from the i-th parameter value is stored
%! # in C(:,:,i).
%! # You can plot them using the geometry package.