This file is indexed.

/usr/share/octave/packages/nurbs-1.3.10/basiskntins.m is in octave-nurbs 1.3.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
function S = basiskntins (deg,t,u)

% Compute the coefficient matrix for non-uniform B-splines subdivision.
%
% This represents the B-spline basis given by a coarse knot vector
%  in terms of the B-spline basis of a finer knot vector.
%
% The function is implemented for the univariate case. It is based on 
%  the paper:
%
% G. Casciola, L. Romani, A general matrix representation for non-uniform
%  B-spline subdivision with boundary control, ALMA-DL, University of Bologna (2007)
%
% Calling Sequence:
% 
%    S = basiskntins (deg, t, u);
%
%    INPUT:
%   
%      deg - degree of the first knot vector
%      t   - coarse knot vector
%      u   - fine knot vector
%   
%    OUTPUT:
%   
%      B - Value of the basis functions at the points
%          size(B)=[numel(u),(p+1)] for curves
%          or [numel(u)*numel(v), (p+1)*(q+1)] for surfaces
%
%      N - Indices of the basis functions that are nonvanishing at each
%          point. size(N) == size(B)
%   
%    Copyright (C) 2015 Rafael Vazquez
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

nt = length(t);
nu = length(u);
S = sparse (nu-deg-1,nt-deg-1);
[t_mult,t_single,nt_s] = knot_mult(deg,t);
[u_mult,u_single,nu_s] = knot_mult(deg,u);
st = deg+1;
su = deg+1;
row = 1;
col = 1;
Sl = bs2bs(deg,t,u,st,su);
S(row:deg+row,col:deg+col) = Sl;
t_single(nt+1) = t(nt-deg);
i = 1;

for j=1:nu_s
  if (u_single(j) == t_single(i))
    st = st+t_mult(i);
    col = col+t_mult(i);
    i = i+1;
  end
  su = su+u_mult(j);
  row = row+u_mult(j);
  Sl = bs2bs(deg,t,u,st,su);
  S(row:deg+row,col:deg+col) = Sl;
end

end


function [t_mult,t_single,nt_s] = knot_mult(d,t)
epsilon = 1e-14 * (t(end) - t(1));

nt = length(t);
nt_s = 0;
m = 1;
for i = d+2:nt-d-1
  if ((t(i+1) - t(i)) > epsilon)
    nt_s = nt_s+1;
    t_mult(nt_s) = m;
    t_single(nt_s) = t(i);
    m=1;
  else
    m = m+1;
  end
end
t_single(nt_s+1)=t(nt-d);
t_mult(nt_s+1)=0;

end

function S = bs2bs(d,t,u,k,l)

S = zeros(d+1);
S(1,:) = bs2bs_first_row(d,t,u,k,l);

for ir=1:d
  S(ir+1,:) = bs2bs_i_row(d,t,u,k,l,ir,S(ir,:));
end
end

function S = bs2bs_first_row(d,t,u,k,l)

S = eye(1,d+1);
for h=1:d
  beta_2=0.0;
  uu=u(l+1-h);
  for j=h:-1:1
    d1=uu-t(k+j-h);
    d2=t(k+j)-uu;
    beta_1=S(j)/(d2+d1);
    S(j+1)=d1*beta_1+beta_2;
    beta_2=d2*beta_1;
  end
  S(1)=beta_2;
end
end

function Si = bs2bs_i_row(d,t,u,k,l,ir,S)

Si(1) = S(1)*(t(k+1)-u(l+ir))/(t(k+1)-u(l+ir-d));

for j=1:d
  den=t(k+j+1)-u(l+ir-d);
  fact=(t(k+j+1)-t(k+j-d))/(t(k+j)-t(k+j-d-1));
  Si(j+1)=(fact*(S(j)*(u(l+ir)-t(k+j-d-1))-Si(j) * ...
    (u(l+ir-d)-t(k+j-d-1)))+S(j+1)*(t(k+j+1)-u(l+ir)))/den;
end
end

%!test
%! knt1 = [0 0 0 1/2 1 1 1];
%! knt2 = [0 0 0 1/4 1/2 3/4 1 1 1];
%! C = basiskntins (2, knt1, knt2);
%! assert (full(C), [1 0 0 0; 1/2 1/2 0 0; 0 3/4 1/4 0; 0 1/4 3/4 0; 0 0 1/2 1/2; 0 0 0 1]);

%!test
%! crv = nrbtestcrv;
%! crv2 = nrbkntins (crv, [0.1, 0.3, 0.4, 0.5, 0.6, 0.8, 0.96 0.98]);
%! C = basiskntins (crv.order-1,crv.knots,crv2.knots);
%! for ii = 1:4
%!   assert (max (abs(C*crv.coefs(ii,:)' - crv2.coefs(ii,:)')) < 1e-14 )
%! end

%!test
%! crv = nrbtestcrv;
%! crv2 = nrbkntins (crv, [0.50000001, 0.5000001, 0.500001, 0.50001, 0.5001]);
%! C = basiskntins (crv.order-1,crv.knots,crv2.knots);
%! for ii = 1:4
%!   assert (max (abs(C*crv.coefs(ii,:)' - crv2.coefs(ii,:)')) < 1e-14 )
%! end

%!test
%! crv = nrbtestcrv;
%! crv2 = nrbkntins (crv, [0.1, 0.3, 0.4, 0.5, 0.6, 0.8, 0.96 0.98]);
%! C = basiskntins (crv.order-1,crv.knots,crv2.knots);
%! x = linspace (0, 1, 10);
%! s = findspan (crv.number-1, crv.order-1, x, crv.knots);
%! s2 = findspan (crv2.number-1, crv2.order-1, x, crv2.knots);
%! N = basisfun (s, x, crv.order-1, crv.knots);
%! N2 = basisfun (s2, x, crv2.order-1, crv2.knots);
%! c = numbasisfun (s, x, crv.order-1, crv.knots) + 1;
%! c2 = numbasisfun (s2, x, crv2.order-1, crv2.knots) + 1;
%! for ii = 1:numel(x)
%!   assert (abs(N2(ii,:) * C(c2(ii,:),c(ii,:)) - N(ii,:)) < 1e-14)
%! end