This file is indexed.

/usr/share/octave/packages/nurbs-1.3.10/doc-cache is in octave-nurbs 1.3.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
# doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 68
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
basisfun


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 775
 BASISFUN:  Basis function for B-Spline

 Calling Sequence:
 
   N = basisfun(iv,uv,p,U)
   
    INPUT:
   
      iv - knot span  ( from FindSpan() )
      uv - parametric points
      p  - spline degree
      U  - knot sequence
   
    OUTPUT:
   
      N - Basis functions vector(numel(uv)*(p+1))
   
    Adapted from Algorithm A2.2 from 'The NURBS BOOK' pg70.

 See also: 

    numbasisfun, basisfunder, findspan

 Copyright (C) 2000 Mark Spink
 Copyright (C) 2007 Daniel Claxton
 Copyright (C) 2009 Carlo de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
 BASISFUN:  Basis function for B-Spline



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
basisfunder


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 795
 BASISFUNDER:  B-Spline Basis function derivatives.

 Calling Sequence:
 
   ders = basisfunder (ii, pl, uu, k, nd)

    INPUT:
   
      ii  - knot span index (see findspan)
      pl  - degree of curve
      uu  - parametric points
      k   - knot vector
      nd  - number of derivatives to compute

    OUTPUT:
   
      ders - ders(n, i, :) (i-1)-th derivative at n-th point
   
    Adapted from Algorithm A2.3 from 'The NURBS BOOK' pg72.

 See also: 

    numbasisfun, basisfun, findspan

    Copyright (C) 2009,2011 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
 BASISFUNDER:  B-Spline Basis function derivatives.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
basiskntins


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1197
 Compute the coefficient matrix for non-uniform B-splines subdivision.

 This represents the B-spline basis given by a coarse knot vector
  in terms of the B-spline basis of a finer knot vector.

 The function is implemented for the univariate case. It is based on 
  the paper:

 G. Casciola, L. Romani, A general matrix representation for non-uniform
  B-spline subdivision with boundary control, ALMA-DL, University of Bologna (2007)

 Calling Sequence:
 
    S = basiskntins (deg, t, u);

    INPUT:
   
      deg - degree of the first knot vector
      t   - coarse knot vector
      u   - fine knot vector
   
    OUTPUT:
   
      B - Value of the basis functions at the points
          size(B)=[numel(u),(p+1)] for curves
          or [numel(u)*numel(v), (p+1)*(q+1)] for surfaces

      N - Indices of the basis functions that are nonvanishing at each
          point. size(N) == size(B)
   
    Copyright (C) 2015 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
 Compute the coefficient matrix for non-uniform B-splines subdivision.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
bspdegelev


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 703
 BSPDEGELEV:  Degree elevate a univariate B-Spline. 
 
 Calling Sequence:
 
   [ic,ik] = bspdegelev(d,c,k,t)
 
   INPUT:
 
   d - Degree of the B-Spline.
   c - Control points, matrix of size (dim,nc).
   k - Knot sequence, row vector of size nk.
   t - Raise the B-Spline degree t times.
 
   OUTPUT:

   ic - Control points of the new B-Spline. 
   ik - Knot vector of the new B-Spline.
 
    Copyright (C) 2000 Mark Spink, 2007 Daniel Claxton

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
 BSPDEGELEV:  Degree elevate a univariate B-Spline.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
bspderiv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 766
 BSPDERIV:  B-Spline derivative.
 
  MATLAB SYNTAX:
 
         [dc,dk] = bspderiv(d,c,k)
  
  INPUT:
 
    d - degree of the B-Spline
    c - control points          double  matrix(mc,nc)
    k - knot sequence           double  vector(nk)
 
  OUTPUT:
 
    dc - control points of the derivative     double  matrix(mc,nc)
    dk - knot sequence of the derivative      double  vector(nk)
 
  Modified version of Algorithm A3.3 from 'The NURBS BOOK' pg98.

    Copyright (C) 2000 Mark Spink, 2007 Daniel Claxton

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
 BSPDERIV:  B-Spline derivative.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bspeval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 713
 BSPEVAL:  Evaluate B-Spline at parametric points.
 
 Calling Sequence:
 
   p = bspeval(d,c,k,u)
 
    INPUT:
 
       d - Degree of the B-Spline.
       c - Control Points, matrix of size (dim,nc).
       k - Knot sequence, row vector of size nk.
       u - Parametric evaluation points, row vector of size nu.
 
    OUTPUT:

       p - Evaluated points, matrix of size (dim,nu)
 
    Copyright (C) 2000 Mark Spink, 2007 Daniel Claxton, 2010 C. de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
 BSPEVAL:  Evaluate B-Spline at parametric points.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
bspkntins


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 855
 BSPKNTINS:  Insert knots into a B-Spline

 Calling Sequence:
 
   [ic,ik] = bspkntins(d,c,k,u)

  INPUT:
 
    d - spline degree             integer
    c - control points            double  matrix(mc,nc)      
    k - knot sequence             double  vector(nk) 
    u - new knots                 double  vector(nu)               
 
  OUTPUT:
 
    ic - new control points double  matrix(mc,nc+nu) 
    ik - new knot sequence  double  vector(nk+nu)
 
  Modified version of Algorithm A5.4 from 'The NURBS BOOK' pg164.
 
    Copyright (C) 2000 Mark Spink, 2007 Daniel Claxton, 2010 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
 BSPKNTINS:  Insert knots into a B-Spline



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
crvkntremove


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1150
 
 CRVKNTREMOVE: Remove one knot from the knot-vector of a NURBS curve.
 
 Calling Sequence:
 
   [rcrv, remflag] = crvkntremove (crv, u, r, s, num, d);
 
 INPUT:
 
   crv		: NURBS curve, see nrbmak.
 
   u           : knot to be removed.
 
   r           : index of the knot to be removed.
 
   s           : multiplicity of the knot to be removed.
 
   num         : number of knot removals requested.

   d           : curve deviation tolerance.

 OUTPUT:

   rcrv        : new NURBS structure for the curve with knot u remuved.
 
   t           : actual number of knot removals performed.
 
 
 
 DESCRIPTION:
 
   Remove knot u from the NURBS curve crv at most num times. 
   Check that the maximum deviation of the curve be less than d.
   Based on algorithm A5.8 NURBS Book (pag183)
  
 SEE ALSO:
 
   nrbkntins

    Copyright (C) 2013 Jacopo Corno
    Copyright (C) 2013 Carlo de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
 
 CRVKNTREMOVE: Remove one knot from the knot-vector of a NURBS curve.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
curvederivcpts


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 970
 Compute control points of n-th derivatives of a B-spline curve.
 
 usage: pk = curvederivcpts (n, p, U, P, d) 
        pk = curvederivcpts (n, p, U, P, d, r1, r2) 

 If r1, r2 are not given, all the control points are computed.

  INPUT:
         n+1 = number of control points
         p   = degree of the spline
         d   = maximum derivative order (d<=p)
         U   = knots
         P   = control points
         r1  = first control point to compute
         r2  = auxiliary index for the last control point to compute
  OUTPUT:
         pk(k,i) = i-th control point of (k-1)-th derivative, r1 <= i <= r2-k

 Adaptation of algorithm A3.3 from the NURBS book, pg98.

    Copyright (C) 2009 Carlo de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
 Compute control points of n-th derivatives of a B-spline curve.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
curvederiveval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 754

 CURVEDERIVEVAL: Compute the derivatives of a B-spline curve.
 
 usage: ck = curvederiveval (n, p, U, P, u, d) 

  INPUT: 

        n+1 = number of control points
        p   = spline order
        U   = knots
        P   = control points
        u   = evaluation point
        d   = derivative order

  OUTPUT:

        ck (k+1) =  curve differentiated k times

 Adaptation of algorithm A3.4 from the NURBS book, pg99

    Copyright (C) 2009 Carlo de Falco
    Copyright (C) 2010 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62

 CURVEDERIVEVAL: Compute the derivatives of a B-spline curve.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
deg2rad


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 696
 DEG2RAD: Convert degrees to radians.
 
 Calling Sequence:
 
   rad = deg2rad(deg);
 
 INPUT:
 
   deg		: Angle in degrees.

 OUTPUT:
 
   rad		: Angle in radians. 
 
 Description:
 
   Convenient utility function for converting degrees to radians, which are
   often the required angular units for functions in the NURBS toolbox.
 
 Examples:
 
   // Convert 35 degrees to radians
   rad = deg2rad(35);

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
 DEG2RAD: Convert degrees to radians.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
findspan


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 634
 FINDSPAN  Find the span of a B-Spline knot vector at a parametric point

 Calling Sequence:
 
   s = findspan(n,p,u,U)
 
  INPUT:
 
    n - number of control points - 1
    p - spline degree
    u - parametric point
    U - knot sequence
 
  OUTPUT:
 
    s - knot span index

  Modification of Algorithm A2.1 from 'The NURBS BOOK' pg68

    Copyright (C) 2010 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
 FINDSPAN  Find the span of a B-Spline knot vector at a parametric point



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
kntbrkdegmult


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 917
 KNTBRKDEGMULT: Construct an open knot vector by giving the sequence of
                knots, the degree and the multiplicity.

   knots = kntbrkdegreg (breaks, degree)
   knots = kntbrkdegreg (breaks, degree, mult)

 INPUT:

     breaks:  sequence of knots.
     degree:  polynomial degree of the splines associated to the knot vector.
     mult:    multiplicity of the knots.

 OUTPUT:

     knots:  knot vector.

 If MULT has as many entries as BREAKS, or as the number of interior
   knots, a different multiplicity will be assigned to each knot. If
   MULT is not present, it will be taken equal to 1.

 Copyright (C) 2010 Carlo de Falco, Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 KNTBRKDEGMULT: Construct an open knot vector by giving the sequence of
        



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
kntbrkdegreg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 939
 KNTBRKDEGREG: Construct an open knot vector by giving the sequence of
                knots, the degree and the regularity.

   knots = kntbrkdegreg (breaks, degree)
   knots = kntbrkdegreg (breaks, degree, regularity)

 INPUT:

     breaks:     sequence of knots.
     degree:     polynomial degree of the splines associated to the knot vector.
     regularity: splines regularity.

 OUTPUT:

     knots:  knot vector.

 If REGULARITY has as many entries as BREAKS, or as the number of interior
   knots, a different regularity will be assigned to each knot. If
   REGULARITY is not present, it will be taken equal to DEGREE-1.

 Copyright (C) 2010 Carlo de Falco, Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 KNTBRKDEGREG: Construct an open knot vector by giving the sequence of
         



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
kntrefine


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1327
 KNTREFINE: Refine a given knot vector by dividing each interval uniformly,
             maintaining the continuity in previously existing knots.

   [rknots]                  = kntrefine (knots, n_sub, degree, regularity)
   [rknots, zeta]            = kntrefine (knots, n_sub, degree, regularity)
   [rknots, zeta, new_knots] = kntrefine (knots, n_sub, degree, regularity)

 INPUT:

     knots:      initial knot vector.
     n_sub:      number of new knots to be added in each interval.
     degree:     polynomial degree of the refined knot vector
     regularity: maximum global regularity 

 OUTPUT:

     rknots:    refined knot vector
     zeta:      refined knot vector without repetitions
     new_knots: new knots, to apply the knot insertion

 The regularity at the new inserted knots is the one given by the user.
 At previously existing knots, the regularity is the minimum
  between the previous regularity, and the one given by the user.
  This ensures optimal convergence rates in the context of IGA.

 Copyright (C) 2010 Carlo de Falco, Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 KNTREFINE: Refine a given knot vector by dividing each interval uniformly,
    



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
kntuniform


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 716
 KNTUNIFORM: generate uniform open knot vectors in the reference domain.

   [csi, zeta] = kntuniform (num, degree, regularity)

 INPUT:
     
     num:        number of breaks (in each direction)
     degree:     polynomial degree (in each direction)
     regularity: global regularity (in each direction)

 OUTPUT:

     csi:  knots
     zeta: breaks = knots without repetitions
 
 Copyright (C) 2009, 2010 Carlo de Falco
 Copyright (C) 2011 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
 KNTUNIFORM: generate uniform open knot vectors in the reference domain.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nrb2iges


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 736
 NRB2IGES : Write a NURBS curve or surface to an IGES file.

 Calling Sequence:
 
   nrb2iges (nurbs, filename);
 
 INPUT:
 
   nurbs    : NURBS curve or surface, see nrbmak.
   filename : name of the output file.
  
 Description:
 
   The data of the nurbs structure is written in a file following the IGES
   format. For a more in-depth explanation see, for example:
   <http://engineeronadisk.com/V2/notes_design/engineeronadisk-76.html>.

    Copyright (C) 2014 Jacopo Corno

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
 NRB2IGES : Write a NURBS curve or surface to an IGES file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nrb4surf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1088
 
 NRB4SURF: Constructs a NURBS bilinear surface.
 
 Calling Sequence:
 
   srf = nrb4surf(p11,p12,p21,p22)
 
 INPUT:
 
   p11		: Cartesian coordinate of the lhs bottom corner point.
 
   p12		: Cartesian coordinate of the rhs bottom corner point.
 
   p21		: Cartesian coordinate of the lhs top corner point.
  
   p22		: Cartesian coordinate of the rhs top corner point.

 OUTPUT:
 
   srf		: NURBS bilinear surface, see nrbmak. 
 
 Description:
 
   Constructs a bilinear surface defined by four coordinates.
 
   The position of the corner points
 
          ^ V direction
          |
          ----------------
          |p21        p22|
          |              |
          |    SRF       |
          |              |
          |p11        p12|
          -------------------> U direction
 

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
 
 NRB4SURF: Constructs a NURBS bilinear surface.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
nrbbasisfun


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1176
 NRBBASISFUN: Basis functions for NURBS

 Calling Sequence:
 
    B     = nrbbasisfun (u, crv)
    B     = nrbbasisfun ({u, v}, srf)
   [B, N] = nrbbasisfun ({u, v}, srf)
   [B, N] = nrbbasisfun (pts, srf)

    INPUT:
   
      u   - parametric coordinates along u direction
      v   - parametric coordinates along v direction
      pts - array of scattered points in parametric domain, array size: (2,num_points)
      crv - NURBS curve
      srf - NURBS surface
   
    If the parametric coordinates are given in a cell-array, the values
     are computed in a tensor product set of points

    OUTPUT:
   
      B - Value of the basis functions at the points
          size(B)=[numel(u),(p+1)] for curves
          or [numel(u)*numel(v), (p+1)*(q+1)] for surfaces

      N - Indices of the basis functions that are nonvanishing at each
          point. size(N) == size(B)
   

    Copyright (C) 2009 Carlo de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
 NRBBASISFUN: Basis functions for NURBS



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
nrbbasisfunder


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1429
 NRBBASISFUNDER:  NURBS basis functions derivatives

 Calling Sequence:
 
   Bu          = nrbbasisfunder (u, crv)
   [Bu, N]     = nrbbasisfunder (u, crv)
   [Bu, Bv]    = nrbbasisfunder ({u, v}, srf)
   [Bu, Bv, N] = nrbbasisfunder ({u, v}, srf)
   [Bu, Bv, N] = nrbbasisfunder (pts, srf)

    INPUT:
   
      u   - parametric coordinates along u direction
      v   - parametric coordinates along v direction
      pts - array of scattered points in parametric domain, array size: (2,num_points)
      crv - NURBS curve
      srf - NURBS surface

    If the parametric coordinates are given in a cell-array, the values
     are computed in a tensor product set of points
   
    OUTPUT:
   
      Bu - Basis functions derivatives WRT direction u
           size(Bu)=[numel(u),(p+1)] for curves
           or [numel(u)*numel(v), (p+1)*(q+1)] for surfaces

      Bv - Basis functions derivatives WRT direction v
           size(Bv)=[numel(v),(p+1)] for curves
           or [numel(u)*numel(v), (p+1)*(q+1)] for surfaces

      N - Indices of the basis functions that are nonvanishing at each
          point. size(N) == size(B)
   
    Copyright (C) 2009 Carlo de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
 NRBBASISFUNDER:  NURBS basis functions derivatives



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nrbcirc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 999
 
 NRBCIRC: Construct a circular arc.
 
 Calling Sequence:
 
   crv = nrbcirc()
   crv = nrbcirc(radius)
   crv = nrbcirc(radius,center)
   crv = nrbcirc(radius,center,sang,eang)
 
 INPUT:
 
   radius	: Radius of the circle, default 1.0
 
   center	: Center of the circle, default (0,0,0)
 
   sang	: Start angle, default 0 radians (0 degrees)
 
   eang	: End angle, default 2*pi radians (360 degrees)
 
 OUTPUT:

   crv		: NURBS curve for a circular arc.
 
 Description:
 
   Constructs NURBS data structure for a circular arc in the x-y plane. If
   no rhs arguments are supplied a unit circle with center (0.0,0.0) is
   constructed. 
 
   Angles are defined as positive in the anti-clockwise direction.

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
 
 NRBCIRC: Construct a circular arc.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nrbcoons


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2143
 
 NRBCOONS: Construction of a Coons patch.
 
 Calling Sequence:
 
   srf = nrbcoons(ucrv1, ucrv2, vcrv1, vcrv2)
 
 INPUT:
 
   ucrv1	: NURBS curve defining the bottom U direction boundary of
 		the constructed NURBS surface.
 
   ucrv2	: NURBS curve defining the top U direction boundary of
 		the constructed NURBS surface.
 
   vcrv1	: NURBS curve defining the bottom V direction boundary of
 		the constructed NURBS surface.
 
   vcrv2	: NURBS curve defining the top V direction boundary of
 		the constructed NURBS surface.

 OUTPUT:
 
   srf		: Coons NURBS surface patch.
 
 Description:
 
   Construction of a bilinearly blended Coons surface patch from four NURBS
   curves that define the boundary.
 
   The orientation of the four NURBS boundary curves.
 
          ^ V direction
          |
          |     ucrv2
          ------->--------
          |              |
          |              |
    vcrv1 ^   Surface    ^ vcrv2
          |              |
          |              |
          ------->-----------> U direction
                ucrv1
 
 
 Examples:
 
   // Define four NURBS curves and construct a Coons surface patch.
   pnts = [ 0.0  3.0  4.5  6.5 8.0 10.0;
            0.0  0.0  0.0  0.0 0.0  0.0; 
            2.0  2.0  7.0  4.0 7.0  9.0];   
   crv1 = nrbmak(pnts, [0 0 0 1/3 0.5 2/3 1 1 1]);
 
   pnts= [ 0.0  3.0  5.0  8.0 10.0;
           10.0 10.0 10.0 10.0 10.0;
           3.0  5.0  8.0  6.0 10.0];
   crv2 = nrbmak(pnts, [0 0 0 1/3 2/3 1 1 1]);
 
   pnts= [ 0.0 0.0 0.0 0.0;
           0.0 3.0 8.0 10.0;
           2.0 0.0 5.0 3.0];
   crv3 = nrbmak(pnts, [0 0 0 0.5 1 1 1]);
 
   pnts= [ 10.0 10.0 10.0 10.0 10.0;
           0.0   3.0  5.0  8.0 10.0;
           9.0   7.0  7.0 10.0 10.0];
   crv4 = nrbmak(pnts, [0 0 0 0.25 0.75 1 1 1]);
 
   srf = nrbcoons(crv1, crv2, crv3, crv4);
   nrbplot(srf,[20 20],220,45);

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
 
 NRBCOONS: Construction of a Coons patch.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
nrbcrvderiveval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 752
 NRBCRVDERIVEVAL: Evaluate n-th order derivatives of a NURBS curve.

 usage: skl = nrbcrvderiveval (crv, u, d) 

   INPUT:

   crv : NURBS curve structure, see nrbmak

   u   : parametric coordinate of the points where we compute the derivatives

   d   : number of partial derivatives to compute


   OUTPUT: 

   ck (i, j, l) = i-th component derived j-1 times at the l-th point.

 Adaptation of algorithm A4.2 from the NURBS book, pg127

    Copyright (C) 2010 Carlo de Falco, Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
 NRBCRVDERIVEVAL: Evaluate n-th order derivatives of a NURBS curve.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
nrbctrlplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 676
 NRBCTRLPLOT: Plot a NURBS entity along with its control points.
 
 Calling Sequence:
 
   nrbctrlplot (nurbs)
 
 INPUT:
 
   nurbs: NURBS curve, surface or volume, see nrbmak.
 
 Example:

   Plot the test curve and test surface with their control polygon and
    control net, respectively

   nrbctrlplot(nrbtestcrv)
   nrbctrlplot(nrbtestsrf)

 See also:
 
   nrbkntplot

    Copyright (C) 2011, 2012 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
 NRBCTRLPLOT: Plot a NURBS entity along with its control points.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
nrbcylind


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 988
 
 NRBCYLIND: Construct a cylinder or cylindrical patch.
 
 Calling Sequence:
 
   srf = nrbcylind()
   srf = nrbcylind(height)
   srf = nrbcylind(height,radius)
   srf = nrbcylind(height,radius,center)
   srf = nrbcylind(height,radius,center,sang,eang)
 
 INPUT:
 
   height	: Height of the cylinder along the axis, default 1.0
 
   radius	: Radius of the cylinder, default 1.0
 
   center	: Center of the cylinder, default (0,0,0)
 
   sang	: Start angle relative to the origin, default 0.
 
   eang	: End angle relative to the origin, default 2*pi.

 OUTPUT: 

   srf     : cylindrical surface patch 
 
 Description:
 
   Construct a cylinder or cylindrical patch by extruding a circular arc.

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
 
 NRBCYLIND: Construct a cylinder or cylindrical patch.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbdegelev


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1411
 
 NRBDEGELEV: Elevate the degree of the NURBS curve, surface or volume.
 
 Calling Sequence:
 
   ecrv = nrbdegelev(crv,utimes);
   esrf = nrbdegelev(srf,[utimes,vtimes]);
   evol = nrbdegelev(vol,[utimes,vtimes,wtimes]);
 
 INPUT:
 
   crv		: NURBS curve, see nrbmak.
 
   srf		: NURBS surface, see nrbmak.
 
   vol		: NURBS volume, see nrbmak.
 
   utimes	: Increase the degree along U direction utimes.
 
   vtimes	: Increase the degree along V direction vtimes.
 
   wtimes	: Increase the degree along W direction vtimes.

 OUTPUT:

   ecrv	: new NURBS structure for a curve with degree elevated.
 
   esrf	: new NURBS structure for a surface with degree elevated.
 
   evol	: new NURBS structure for a volume with degree elevated.
 
 
 Description:
 
   Degree elevates the NURBS curve or surface. This function uses the
   B-Spline function bspdegelev, which interface to an internal 'C'
   routine.
 
 Examples:
 
   Increase the NURBS surface twice along the V direction.
   esrf = nrbdegelev(srf, [0, 2]); 
 
 See also:
 
   bspdegelev

    Copyright (C) 2000 Mark Spink, 2010 Rafel Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
 
 NRBDEGELEV: Elevate the degree of the NURBS curve, surface or volume.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nrbderiv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1370
 
 NRBDERIV: Construct the first and second derivative representation of a
           NURBS curve, surface or volume.
 
 Calling Sequence:
 
   ders = nrbderiv (nrb);
   [ders, ders2] = nrbderiv (nrb);
 
 INPUT:
 
   nrb		: NURBS data structure, see nrbmak.

 OUTPUT:
 
   ders:  A data structure that represents the first
 		    derivatives of a NURBS curve, surface or volume.
   ders2: A data structure that represents the second
 		    derivatives of a NURBS curve, surface or volume.
 
 Description:
 
   The derivatives of a B-Spline are themselves a B-Spline of lower degree,
   giving an efficient means of evaluating multiple derivatives. However,
   although the same approach can be applied to NURBS, the situation for
   NURBS is more complex. We have followed in this function the same idea
   that was already used for the first derivative in the function nrbderiv.
   The second derivative data structure can be evaluated later with the
   function nrbdeval.
 
 See also:
 
       nrbdeval

 Copyright (C) 2000 Mark Spink
 Copyright (C) 2010 Carlo de Falco
 Copyright (C) 2010, 2011 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 
 NRBDERIV: Construct the first and second derivative representation of a
     



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nrbdeval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1418
 NRBDEVAL: Evaluation of the derivative and second derivatives of NURBS curve, surface or volume.

     [pnt, jac] = nrbdeval (crv, dcrv, tt)
     [pnt, jac] = nrbdeval (srf, dsrf, {tu tv})
     [pnt, jac] = nrbdeval (vol, dvol, {tu tv tw})
     [pnt, jac, hess] = nrbdeval (crv, dcrv, dcrv2, tt)
     [pnt, jac, hess] = nrbdeval (srf, dsrf, dsrf2, {tu tv})
     [pnt, jac, hess] = nrbdeval (vol, dvol, {tu tv tw})

 INPUTS:

   crv,   srf,   vol   - original NURBS curve, surface or volume.
   dcrv,  dsrf,  dvol  - NURBS derivative representation of crv, srf 
                          or vol (see nrbderiv2)
   dcrv2, dsrf2, dvol2 - NURBS second derivative representation of crv,
                          srf or vol (see nrbderiv2)
   tt     - parametric evaluation points
            If the nurbs is a surface or a volume then tt is a cell
            {tu, tv} or {tu, tv, tw} are the parametric coordinates

 OUTPUT:

   pnt  - evaluated points.
   jac  - evaluated first derivatives (Jacobian).
   hess - evaluated second derivatives (Hessian).

 Copyright (C) 2000 Mark Spink 
 Copyright (C) 2010 Carlo de Falco
 Copyright (C) 2010, 2011 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 NRBDEVAL: Evaluation of the derivative and second derivatives of NURBS curve, s



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nrbeval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1809
 
 NRBEVAL: Evaluate a NURBS at parametric points.
 
 Calling Sequences:
 
   [p,w] = nrbeval(crv,ut)
   [p,w] = nrbeval(srf,{ut,vt})
   [p,w] = nrbeval(vol,{ut,vt,wt})
   [p,w] = nrbeval(srf,pts)
 
 INPUT:
 
   crv		: NURBS curve, see nrbmak.
 
   srf		: NURBS surface, see nrbmak.

   vol		: NURBS volume, see nrbmak.
 
   ut		: Parametric evaluation points along U direction.

   vt		: Parametric evaluation points along V direction.
 
   wt		: Parametric evaluation points along W direction.

   pts     : Array of scattered points in parametric domain
 
 OUTPUT:

   p		: Evaluated points on the NURBS curve, surface or volume as 
 		Cartesian coordinates (x,y,z). If w is included on the lhs argument
 		list the points are returned as homogeneous coordinates (wx,wy,wz).
 
   w		: Weights of the homogeneous coordinates of the evaluated
 		points. Note inclusion of this argument changes the type 
 		of coordinates returned in p (see above).
 
 Description:
 
   Evaluation of NURBS curves, surfaces or volume at parametric points along  
   the U, V and W directions. Either homogeneous coordinates are returned
   if the weights are requested in the lhs arguments, or as Cartesian coordinates.
   This function utilises the 'C' interface bspeval.
 
 Examples:
 
   Evaluate the NURBS circle at twenty points from 0.0 to 1.0
 
   nrb = nrbcirc;
   ut = linspace(0.0,1.0,20);
   p = nrbeval(nrb,ut);
 
 See also:
  
     bspeval

 Copyright (C) 2000 Mark Spink 
 Copyright (C) 2010 Carlo de Falco
 Copyright (C) 2010, 2011, 2015 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
 
 NRBEVAL: Evaluate a NURBS at parametric points.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
nrbexport


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1378

 NRBEXPORT: export NURBS geometries to a format compatible with the one used in GeoPDEs.
 
 Calling Sequence:
 
   nrbexport (nurbs, filename);
   nrbexport (nurbs, interfaces, boundaries, filename);
   nrbexport (nurbs, interfaces, boundaries, subdomains, filename);
   nrbexport (nurbs, filename, version);
   nrbexport (nurbs, interfaces, boundaries, filename, version);
   nrbexport (nurbs, interfaces, boundaries, subdomains, filename, version);
 
 INPUT:
 
   nurbs    :  NURBS curve, surface or volume, see nrbmak.
   interfaces: interface information for GeoPDEs (see nrbmultipatch)
   boundaries: boundary information for GeoPDEs (see nrbmultipatch)
   filename :  name of the output file.
   version  :  either '-V0.7' or '-V2.1', to select the file format
 
 
 Description:
 
   The data of the nurbs structure is written in the file, in a format 
     that can be read by GeoPDEs. By default, the file is saved in the
     format used by GeoPDEs 2.1. For the format of GeoPDEs 2.0 use the
     option '-v0.7'. Earlier versions of GeoPDEs are not supported.

    Copyright (C) 2011, 2014, 2015 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80

 NRBEXPORT: export NURBS geometries to a format compatible with the one used in



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbextract


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1117

 NRBEXTRACT: construct NURBS curves by extracting the boundaries of a NURBS surface, or NURBS surfaces by extracting the boundary of a NURBS volume.
 It only works for geometries constructed with open knot vectors.
 
 Calling Sequence:
 
   crvs = nrbextract(surf);
 
 INPUT:
 
   surf        : NURBS surface or volume, see nrbmak.
 
 OUTPUT: 
 
   crvs        : array of NURBS curves or NURBS surfaces extracted.
 
 Description:
 
  Constructs either an array of four NURBS curves, by extracting the boundaries
  of a NURBS surface, or an array of six surfaces, by extracting the boundaries
  of a NURBS volume. The new entities are ordered in the following way

    1: U = 0
    2: U = 1
    3: V = 0
    4: V = 1
    5: W = 0 (only for volumes)
    6: W = 1 (only for volumes)

    Copyright (C) 2010,2014 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80

 NRBEXTRACT: construct NURBS curves by extracting the boundaries of a NURBS su



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbextrude


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1283

 NRBEXTRUDE: Construct a NURBS surface by extruding a NURBS curve, or 
  construct a NURBS volume by extruding a NURBS surface.
 
 Calling Sequence:
 
   srf = nrbextrude(crv,vec);
 
 INPUT:
 
   crv		: NURBS curve or surface to extrude, see nrbmak.
 
   vec		: Vector along which the entity is extruded.

 OUTPUT: 
 
   srf		: NURBS surface or volume constructed.
 
 Description:
 
   Constructs either a NURBS surface by extruding a NURBS curve along a  
   defined vector, or a NURBS volume by extruding a NURBS surface. In the 
   first case, the NURBS curve forms the U direction of the surface edge, and
   is extruded along the vector in the V direction. In the second case, the 
   original surface forms the U and V direction of the volume, and is extruded
   along the W direction.

 Examples:
 
   Form a hollow cylinder by extruding a circle along the z-axis.

   srf = nrbextrude(nrbcirc, [0,0,1]);

    Copyright (C) 2000 Mark Spink
    Copyright (C) 2010 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80

 NRBEXTRUDE: Construct a NURBS surface by extruding a NURBS curve, or 
  cons



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
nrbkntins


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2029
 
 NRBKNTINS: Insert a single or multiple knots into a NURBS curve,
            surface or volume.
 
 Calling Sequence:
 
   icrv = nrbkntins(crv,iuknots);
   isrf = nrbkntins(srf,{iuknots ivknots});
   ivol = nrbkntins(vol,{iuknots ivknots iwknots});
 
 INPUT:
 
   crv		: NURBS curve, see nrbmak.
 
   srf		: NURBS surface, see nrbmak.
 
   srf		: NURBS volume, see nrbmak.
 
   iuknots	: Knots to be inserted along U direction.
 
   ivknots	: Knots to be inserted along V direction.
 
   iwknots	: Knots to be inserted along W direction.
 
 OUTPUT:
 
   icrv	: new NURBS structure for a curve with knots inserted.
 
   isrf	: new NURBS structure for a surface with knots inserted.
 
   ivol	: new NURBS structure for a volume with knots inserted.
 
 Description:
 
   Inserts knots into the NURBS data structure, these can be knots at
   new positions or at the location of existing knots to increase the
   multiplicity. Note that the knot multiplicity cannot be increased
   beyond the order of the spline. Knots along the V direction can only
   inserted into NURBS surfaces, not curve that are always defined along
   the U direction. This function use the B-Spline function bspkntins,
   which interfaces to an internal 'C' routine.
 
 Examples:
 
   Insert two knots into a curve, one at 0.3 and another
   twice at 0.4

   icrv = nrbkntins(crv, [0.3 0.4 0.4])
 
   Insert into a surface two knots as (1) into the U knot
   sequence and one knot into the V knot sequence at 0.5.

   isrf = nrbkntins(srf, {[0.3 0.4 0.4] [0.5]})
 
 See also:
 
   bspkntins

 Note:

   No knot multiplicity will be increased beyond the order of the spline.

    Copyright (C) 2000 Mark Spink, 2010 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 
 NRBKNTINS: Insert a single or multiple knots into a NURBS curve,
          



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbkntplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 588
 NRBKNTPLOT: Plot a NURBS entity with the knots subdivision.
 
 Calling Sequence:
 
   nrbkntplot(nurbs)
 
 INPUT:
 
   nurbs: NURBS curve, surface or volume, see nrbmak.
 
 Example:

   Plot the test surface with its knot vector

   nrbkntplot(nrbtestsrf)

 See also:
 
   nrbctrlplot

    Copyright (C) 2011, 2012 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
 NRBKNTPLOT: Plot a NURBS entity with the knots subdivision.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nrbline


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 762
 
 NRBLINE: Construct a straight line.
 
 Calling Sequence:
 
   crv = nrbline()
   crv = nrbline(p1,p2)
 
 INPUT:
 
 p1		: 2D or 3D cartesian coordinate of the start point.
 
 p2            : 2D or 3D cartesian coordinate of the end point.

 OUTPUT:
 
 crv		: NURBS curve for a straight line.
 
 Description:
 
   Constructs NURBS data structure for a straight line. If no rhs 
   coordinates are included the function returns a unit straight
   line along the x-axis.

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
 
 NRBLINE: Construct a straight line.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nrbmak


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3966

 NRBMAK: Construct the NURBS structure given the control points
            and the knots.
 
 Calling Sequence:
 
   nurbs   = nrbmak(cntrl,knots);
 
 INPUT:
 
   cntrl       : Control points, these can be either Cartesian or
 		homogeneous coordinates.
 
 		For a curve the control points are represented by a
 		matrix of size (dim,nu), for a surface a multidimensional
 		array of size (dim,nu,nv), for a volume a multidimensional array
 		of size (dim,nu,nv,nw). Where nu is number of points along
 		the parametric U direction, nv the number of points along
 		the V direction and nw the number of points along the W direction. 
 		dim is the dimension. Valid options
 		are
 		2 .... (x,y)        2D Cartesian coordinates
 		3 .... (x,y,z)      3D Cartesian coordinates
 		4 .... (wx,wy,wz,w) 4D homogeneous coordinates
 
   knots	: Non-decreasing knot sequence spanning the interval
               [0.0,1.0]. It's assumed that the geometric entities
               are clamped to the start and end control points by knot
               multiplicities equal to the spline order (open knot vector).
               For curve knots form a vector and for surfaces (volumes)
               the knots are stored by two (three) vectors for U and V (and W)
               in a cell structure {uknots vknots} ({uknots vknots wknots}).
               
 OUTPUT:
 
   nurbs 	: Data structure for representing a NURBS entity
 
 NURBS Structure:
 
   Both curves and surfaces are represented by a structure that is
   compatible with the Spline Toolbox from Mathworks
 
 	nurbs.form   .... Type name 'B-NURBS'
 	nurbs.dim    .... Dimension of the control points
 	nurbs.number .... Number of Control points
       nurbs.coefs  .... Control Points
       nurbs.order  .... Order of the spline
       nurbs.knots  .... Knot sequence
 
   Note: the control points are always converted and stored within the
   NURBS structure as 4D homogeneous coordinates. A curve is always stored 
   along the U direction, and the vknots element is an empty matrix. For
   a surface the spline order is a vector [du,dv] containing the order
   along the U and V directions respectively. For a volume the order is
   a vector [du dv dw]. Recall that order = degree + 1.
 
 Description:
 
   This function is used as a convenient means of constructing the NURBS
   data structure. Many of the other functions in the toolbox rely on the 
   NURBS structure been correctly defined as shown above. The nrbmak not
   only constructs the proper structure, but also checks for consistency.
   The user is still free to build his own structure, in fact a few
   functions in the toolbox do this for convenience.
 
 Examples:
 
   Construct a 2D line from (0.0,0.0) to (1.5,3.0).
   For a straight line a spline of order 2 is required.
   Note that the knot sequence has a multiplicity of 2 at the
   start (0.0,0.0) and end (1.0 1.0) in order to clamp the ends.
 
   line = nrbmak([0.0 1.5; 0.0 3.0],[0.0 0.0 1.0 1.0]);
   nrbplot(line, 2);
 
   Construct a surface in the x-y plane i.e
     
     ^  (0.0,1.0) ------------ (1.0,1.0)
     |      |                      |
     | V    |                      |
     |      |      Surface         |
     |      |                      |
     |      |                      |
     |  (0.0,0.0) ------------ (1.0,0.0)
     |
     |------------------------------------>
                                       U 

   coefs = cat(3,[0 0; 0 1],[1 1; 0 1]);
   knots = {[0 0 1 1]  [0 0 1 1]}
   plane = nrbmak(coefs,knots);
   nrbplot(plane, [2 2]);

    Copyright (C) 2000 Mark Spink, 2010 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80

 NRBMAK: Construct the NURBS structure given the control points
            a



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbmeasure


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1359
 NRBMEASURE: Compute the distance between two given points along a NURBS curve.
 
 Calling Sequence:
 
  [dist, ddistds, ddistde] = nrbmeasure (nrb)
  [dist, ddistds, ddistde] = nrbmeasure (nrb, s, e)
  [dist, ddistds, ddistde] = nrbmeasure (nrb, s, e, tol)
 
 INPUT:
 
   nrb	: a NURBS curve, see nrbmak.
   s   : starting point in the parametric domain.
   e   : ending point in the parametric domain.
   tol : tolerance for numerical quadrature, to be used in quad.
 
 OUTPUT:
 
   dist   : distance between the two points along the NURBS curve.
   ddistds: derivative of the distance function with respect to the point s.
   ddistde: derivative of the distance function with respect to the point e.
 
 Description:
 
   Compute the distance between two given points along a NURBS curve, using 
   quad for numerical integration. The points are given by their coordinates
   in the parametric domain.

 Examples:

  Compute the length of a circular arc constructed as a NURBS.

   c = nrbcirc (1, [0 0], 0, pi/2);
   s = 0; e = 1;
   l = nrbmeasure (c, s, e, 1e-7);

 Copyright (C) 2013 Carlo de Falco
 
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
 NRBMEASURE: Compute the distance between two given points along a NURBS curve.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
nrbmultipatch


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1226

 NRBMULTIPATCH: construct the information for gluing conforming NURBS patches, using the same format as in GeoPDEs.
 
 Calling Sequence:
 
   [interfaces, boundary] = nrbmultipatch (nurbs);
 
 INPUT:
 
   nurbs   : an array of NURBS surfaces or volumes (not both), see nrbmak.
 
 OUTPUT: 
 
   interfaces: array with the information for each interface, that is:
      - number of the first patch (patch1), and the local side number (side1)
      - number of the second patch (patch2), and the local side number (side2)
      - flag (faces and volumes), ornt1, ornt2 (only volumes): information
        on how the two patches match, see below.
   boundary:   array with the boundary faces that do not belong to any interface
      - nsides:  total number of sides on the boundary array (numel(boundary))
      - patches: number of the patch to which the boundary belongs to
      - sides:   number of the local side on the patch
 
    Copyright (C) 2014 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80

 NRBMULTIPATCH: construct the information for gluing conforming NURBS patches, 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
nrbnumbasisfun


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 797

 NRBNUMBASISFUN:  Numbering of basis functions for NURBS

 Calling Sequence:
 
   N      = nrbnumbasisfun (u, crv)
   N      = nrbnumbasisfun ({u, v}, srf)
   N      = nrbnumbasisfun (p, srf)

    INPUT:
   
      u or p(1,:,:)  - parametric points along u direction
      v or p(2,:,:)  - parametric points along v direction
      crv - NURBS curve
      srf - NURBS surface
   
    OUTPUT:

      N - Indices of the basis functions that are nonvanishing at each
          point. size(N) == size(B)

    Copyright (C) 2009 Carlo de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57

 NRBNUMBASISFUN:  Numbering of basis functions for NURBS



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbpermute


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 874
 
 NRBPERMUTE: Rearrange the directions of a NURBS volume or surface.
 
 Calling Sequence:
 
   tvol = nrbpermute(vol,order)

 INPUT:
 
   vol		: NURBS volume or surface, see nrbmak.
   order   : the order to rearrange the directions of the NURBS entity.

 OUTPUT:
 
   tvol	: NURBS volume or surface with rearranged directions.
 
 Description:
 
   Utility function that rearranges the directions of a NURBS volume or
   surface. For surfaces, nrbpermute(srf,[1 2]) is the same as
   nrbtransp(srf). NURBS curves cannot be rearranged.

 Example:

    nrbpermute (vol, [1 3 2])

    Copyright (C) 2013 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 
 NRBPERMUTE: Rearrange the directions of a NURBS volume or surface.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nrbplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1155
 
 NRBPLOT: Plot a NURBS curve or surface, or the boundary of a NURBS volume.
 
 Calling Sequence:
 
   nrbplot (nrb, subd)
   nrbplot (nrb, subd, p, v)
 
 INPUT:
 
   nrb		: NURBS curve, surface or volume, see nrbmak.
 
   npnts	: Number of evaluation points, for a surface or volume, a row 
       vector with the number of points along each direction.
 
   [p,v]       : property/value options

               Valid property/value pairs include:

               Property        Value/{Default}
               -----------------------------------
               light           {off} | on
               colormap        {'copper'}

 Example:

   Plot the test surface with 20 points along the U direction
   and 30 along the V direction

   nrbplot(nrbtestsrf, [20 30])

    Copyright (C) 2000 Mark Spink
    Copyright (C) 2010 Carlo de Falco, Rafael Vazquez
    Copyright (C) 2012 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 77
 
 NRBPLOT: Plot a NURBS curve or surface, or the boundary of a NURBS volume.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
nrbrect


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 854
 
 NRBRECT: Construct NURBS representation of a rectangular curve.
 
 Calling Sequence:
 
   crv = nrbrect()
   crv = nrbrect(size)
   crv = nrbrect(width, height)
 
 INPUT:
 
   size	: Size of the square (width = height).
 
   width	: Width of the rectangle (along x-axis).
 
   height	: Height of the rectangle (along y-axis).

 OUTPUT:

   crv		: NURBS curve, see nrbmak. 
  
 
 Description:
 
   Construct a rectangle or square in the x-y plane with the bottom
   lhs corner at (0,0,0). If no rhs arguments provided the function
   constructs a unit square.

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
 
 NRBRECT: Construct NURBS representation of a rectangular curve.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbreverse


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 732

 NRBREVERSE: Reverse the evaluation directions of a NURBS geometry.
 
 Calling Sequence:
 
   rnrb = nrbreverse(nrb);
   rnrb = nrbreverse(nrb, idir);
 
 INPUT:
 
   nrb		: NURBS data structure, see nrbmak.
   idir        : vector of directions to reverse.

 OUTPUT:
 
   rnrb	: Reversed NURBS.
 
 Description:
 
   Utility function to reverse the evaluation direction of a NURBS
   curve or surface.

    Copyright (C) 2000 Mark Spink
    Copyright (C) 2013 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68

 NRBREVERSE: Reverse the evaluation directions of a NURBS geometry.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbrevolve


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1774
 
 NRBREVOLVE: Construct a NURBS surface by revolving a NURBS curve, or
  construct a NURBS volume by revolving a NURBS surface.
 
 Calling Sequence:
 
   srf = nrbrevolve(crv,pnt,vec[,ang])
 
 INPUT:
 
   crv		: NURBS curve or surface to revolve, see nrbmak.
 
   pnt		: Coordinates of the point used to define the axis
               of rotation.
 
   vec		: Vector defining the direction of the rotation axis.
 
   ang		: Angle to revolve the curve, default 2*pi

 OUTPUT:

   srf		: constructed surface or volume
 
 Description:
 
   Construct a NURBS surface by revolving the profile NURBS curve around
   an axis defined by a point and vector.
 
 Examples:
 
   Construct a sphere by rotating a semicircle around a x-axis.

   crv = nrbcirc(1.0,[0 0 0],0,pi);
   srf = nrbrevolve(crv,[0 0 0],[1 0 0]);
   nrbplot(srf,[20 20]);

 NOTE:

   The algorithm:

     1) vectrans the point to the origin (0,0,0)
     2) rotate the vector into alignment with the z-axis

     for each control point along the curve

     3) determine the radius and angle of control
        point to the z-axis
     4) construct a circular arc in the x-y plane with 
        this radius and start angle and sweep angle theta 
     5) combine the arc and profile, coefs and weights.
  
     next control point

     6) rotate and vectrans the surface back into position
        by reversing 1 and 2.


    Copyright (C) 2000 Mark Spink
    Copyright (C) 2010 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 
 NRBREVOLVE: Construct a NURBS surface by revolving a NURBS curve, or
  cons



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nrbruled


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 892
 NRBRULED: Construct a ruled surface between two NURBS curves.
 
 Calling Sequence:
 
   srf = nrbruled(crv1, crv2)
 
 INPUT:
 
   crv1	: First NURBS curve, see nrbmak.
 
   crv2	: Second NURBS curve, see nrbmak.

 OUTPUT:
 
   srf		: Ruled NURBS surface.
 
 Description:
 
   Constructs a ruled surface between two NURBS curves. The ruled surface is
   ruled along the V direction.
 
 Examples:
 
   Construct a ruled surface between a semicircle and a straight line.
 
   cir = nrbcirc(1,[0 0 0],0,pi);
   line = nrbline([-1 0.5 1],[1 0.5 1]);
   srf = nrbruled(cir,line);
   nrbplot(srf,[20 20]);

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
 NRBRULED: Construct a ruled surface between two NURBS curves.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
nrbsurfderiveval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 772

 NRBSURFDERIVEVAL: Evaluate n-th order derivatives of a NURBS surface

 usage: skl = nrbsurfderiveval (srf, [u; v], d) 

   INPUT:

   srf   : NURBS surface structure, see nrbmak

   u, v  : parametric coordinates of the point where we compute the
      derivatives

   d     : number of partial derivatives to compute


   OUTPUT: 

   skl (i, j, k, l) = i-th component derived j-1,k-1 times at the
     l-th point.

 Adaptation of algorithm A4.4 from the NURBS book, pg137

    Copyright (C) 2009 Carlo de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70

 NRBSURFDERIVEVAL: Evaluate n-th order derivatives of a NURBS surface



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbtestcrv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 338
 NRBTESTCRV: Constructs a simple test curve. 

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 44
 NRBTESTCRV: Constructs a simple test curve.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbtestsrf


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 347
 NRBTESTSRF: Constructs a simple test surface.

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
 NRBTESTSRF: Constructs a simple test surface.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nrbtform


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1315
 
 NRBTFORM: Apply transformation matrix to the NURBS.
 
 Calling Sequence:
 
   tnurbs = nrbtform(nurbs,tmatrix);
 
 INPUT:
 
   nurbs	: NURBS data structure (see nrbmak for details).
 
   tmatrix     : Transformation matrix, a matrix of size (4,4) defining
                 a single or multiple transformations.

 OUTPUT:

   tnurbs	: The return transformed NURBS data structure.
 
 Description:
 
   The NURBS is transform as defined a transformation matrix of size (4,4),
   such as a rotation, translation or change in scale. The transformation
   matrix can define a single transformation or multiple series of
   transformations. The matrix can be simply constructed by the functions
   vecscale, vectrans and vecrot, and also vecrotx, vecroty, and vecrotz.
     
 Examples:
 
   Rotate a square by 45 degrees about the z axis.

   rsqr = nrbtform(nrbrect(), vecrotz(deg2rad(45)));
   nrbplot(rsqr, 1000);
 
 See also:
 
   vecscale, vectrans, vecrot, vecrotx, vecroty, vecrotz

    Copyright (C) 2000 Mark Spink
    Copyright (C) 2010 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
 
 NRBTFORM: Apply transformation matrix to the NURBS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
nrbtransp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 673
 
 NRBTRANSP: Transpose a NURBS surface, by swapping U and V directions.
 
 Calling Sequence:
 
   tsrf = nrbtransp(srf)

 INPUT:
 
   srf		: NURBS surface, see nrbmak.

 OUTPUT:
 
   tsrf	: NURBS surface with U and V diretions transposed.
 
 Description:
 
   Utility function that transposes a NURBS surface, by swapping U and
   V directions. NURBS curves cannot be transposed.

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
 
 NRBTRANSP: Transpose a NURBS surface, by swapping U and V directions.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
nrbunclamp


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 914
 NRBUNCLAMP: Compute the knot vector and control points of the unclamped curve

 Calling Sequence:
 
   ucrv = nrbrunclamp (crv, k)
   ucrv = nrbrunclamp (crv, k, dim)
 
 INPUT:
 
   crv	: NURBS curve, see nrbmak.
   k   : continuity for the unclamping (from 0 up to p-1)
   dim : dimension in which to unclamp (all by default).

 OUTPUT:
 
   ucrv: NURBS curve with unclamped knot vector, see nrbmak
 
 Description:
 
   Unclamps a curve, removing the open knot vector. Computes the new
     knot vector and control points of the unclamped curve.

    Adapted from Algorithm A12.1 from 'The NURBS BOOK' pg577.
 
    Copyright (C) 2013, 2014 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
 NRBUNCLAMP: Compute the knot vector and control points of the unclamped curve



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
numbasisfun


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 666
 NUMBASISFUN:  List non-zero Basis functions for B-Spline in a given knot-span

 Calling Sequence:
 
   N = numbasisfun(i,u,p,U)
   
    INPUT:
   
      i - knot span  ( from FindSpan() )
      u - parametric point
      p - spline degree
      U - knot sequence
   
    OUTPUT:
   
      N - Basis functions (numel(u)x(p+1))
   
 See also: 

    basisfun, basisfunder

    Copyright (C) 2009 Carlo de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
 NUMBASISFUN:  List non-zero Basis functions for B-Spline in a given knot-span



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rad2deg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 697
 
 RAD2DEG: Convert radians to degrees.
 
 Calling Sequence:
 
   rad = rad2deg(deg);
 
 INPUT:
 
   rad		: Angle in radians.

 OUTPUT:

   deg		: Angle in degrees.
 
 Description:
 
   Convenient utility function for converting radians to degrees, which are
   often the required angular units for functions in the NURBS toolbox.
 
 Examples:
 
   Convert 0.3 radians to degrees
 
   deg = rad2deg(0.3);

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
 
 RAD2DEG: Convert radians to degrees.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
surfderivcpts


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 933

 SURFDERIVCPTS: Compute control points of n-th derivatives of a NURBS surface.
 
 usage: pkl = surfderivcpts (n, p, U, m, q, V, P, d) 

  INPUT: 

        n+1, m+1 = number of control points
        p, q     = spline order
        U, V     = knots
        P        = control points
        d        = derivative order

  OUTPUT:

        pkl (k+1, l+1, i+1, j+1) = i,jth control point
                                   of the surface differentiated k
                                   times in the u direction and l
                                   times in the v direction

 Adaptation of algorithm A3.7 from the NURBS book, pg114

    Copyright (C) 2009 Carlo de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79

 SURFDERIVCPTS: Compute control points of n-th derivatives of a NURBS surface.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
surfderiveval


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 870

 SURFDERIVEVAL: Compute the derivatives of a B-spline surface
 
 usage: skl = surfderiveval (n, p, U, m, q, V, P, u, v, d) 

  INPUT: 

        n+1, m+1 = number of control points
        p, q     = spline order
        U, V     = knots
        P        = control points
        u,v      = evaluation points
        d        = derivative order

  OUTPUT:

        skl (k+1, l+1) =  surface differentiated k
                          times in the u direction and l
                          times in the v direction

 Adaptation of algorithm A3.8 from the NURBS book, pg115

    Copyright (C) 2009 Carlo de Falco

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80

 SURFDERIVEVAL: Compute the derivatives of a B-spline surface
 
 usage: skl = s



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
tbasisfun


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 925

 TBASISFUN: Compute a B- or T-Spline basis function, and its derivatives, from its local knot vector.

 usage:

 [N, Nder] = tbasisfun (u, p, U)
 [N, Nder] = tbasisfun ([u; v], [p q], {U, V})
 [N, Nder] = tbasisfun ([u; v; w], [p q r], {U, V, W})
 
 INPUT:

  u or [u; v] : points in parameter space where the basis function is to be
  evaluated 
  
  U or {U, V} : local knot vector

 p or [p q] : polynomial order of the basis function

 OUTPUT:

  N    : basis function evaluated at the given parametric points 
  Nder : basis function gradient evaluated at the given parametric points 

    Copyright (C) 2009 Carlo de Falco
    Copyright (C) 2012 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80

 TBASISFUN: Compute a B- or T-Spline basis function, and its derivatives, from 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
vecangle


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 920
 
 VECANGLE: An alternative to atan, returning an arctangent in the 
             range 0 to 2*pi.
 
 Calling Sequence:
 
   ang = vecmag2(num,dum)
 
 INPUT:
 
   num		: Numerator, vector of size (1,nv).
   dem		: Denominator, vector of size (1,nv).

 OUTPUT:
   ang		: Arctangents, row vector of angles.
 
 Description:
 
   The components of the vector ang are the arctangent of the corresponding
   enties of num./dem. This function is an alternative for 
   atan, returning an angle in the range 0 to 2*pi.
 
 Examples:
 
   Find the atan(1.2,2.0) and atan(1.5,3.4) using vecangle
 
   ang = vecangle([1.2 1.5], [2.0 3.4]);

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 
 VECANGLE: An alternative to atan, returning an arctangent in the 
           



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
veccross


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1004
 
 VECCROSS: The cross product of two vectors.
 
 Calling Sequence:
 
   cross = veccross(vec1,vec2);
 
 INPUT:
 
   vec1	: An array of column vectors represented by a matrix of
   vec2	size (dim,nv), where is the dimension of the vector and
 		nv the number of vectors.

 OUTPUT:
 
   cross	: Array of column vectors, each element is corresponding
 		to the cross product of the respective components in vec1
 		and vec2.
 
 Description:
 
   Cross product of two vectors.
 
 Examples:
 
   Determine the cross products of:
   (2.3,3.4,5.6) and (1.2,4.5,1.2)
   (5.1,0.0,2.3) and (2.5,3.2,4.0)
 
   cross = veccross([2.3 5.1; 3.4 0.0; 5.6 2.3],[1.2 2.5; 4.5 3.2; 1.2 4.0]);

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
 
 VECCROSS: The cross product of two vectors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
vecdot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 946
 
 VECDOT: The dot product of two vectors.
 
 Calling Sequence:
 
   dot = vecdot(vec1,vec2);
 
 INPUT:
 
   vec1	: An array of column vectors represented by a matrix of
   vec2	size (dim,nv), where is the dimension of the vector and
 		nv the number of vectors.

 OUTPUT:

   dot		: Row vector of scalars, each element corresponding to
 		the dot product of the respective components in vec1 and
 		vec2.
 
 Description:
 
   Scalar dot product of two vectors.
 
 Examples:
 
   Determine the dot product of
   (2.3,3.4,5.6) and (1.2,4.5,1.2)
   (5.1,0.0,2.3) and (2.5,3.2,4.0)

   dot = vecdot([2.3 5.1; 3.4 0.0; 5.6 2.3],[1.2 2.5; 4.5 3.2; 1.2 4.0]);

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
 
 VECDOT: The dot product of two vectors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
vecmag


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 807
 
 VECMAG: Magnitude of the vectors.
 
 Calling Sequence:
 
   mvec = vecmag(vec)
 
 INPUT:
 
   vec		: An array of column vectors represented by a matrix of
 		size (dim,nv), where is the dimension of the vector and
 		nv the number of vectors.

 OUTPUT:

   mvec	: Magnitude of the vectors, vector of size (1,nv).
 
 Description:
 
   Determines the magnitude of the vectors.
 
 Examples:
 
   Find the magnitude of the two vectors (0.0,2.0,1.3) and (1.5,3.4,2.3)
 
   mvec = vecmag([0.0 1.5; 2.0 3.4; 1.3 2.3]);

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
 
 VECMAG: Magnitude of the vectors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
vecmag2


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 855
 
 VECMAG2: Squared magnitude of a set of vectors.
 
 Calling Sequence:
 
   mvec = vecmag2(vec)
 
 INPUT:
 
   vec		: An array of column vectors represented by a matrix of
 		size (dim,nv), where dim is the dimension of the vector and
 		nv the number of vectors.

 OUTPUT:
 
   mvec	: Squared magnitude of the vectors, vector of size (1,nv).
 
 Description:
 
   Determines the squared magnitude of the vectors.
 
 Examples:
 
   Find the squared magnitude of the two vectors (0.0,2.0,1.3)
   and (1.5,3.4,2.3)
 
   mvec = vecmag2([0.0 1.5; 2.0 3.4; 1.3 2.3]);

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
 
 VECMAG2: Squared magnitude of a set of vectors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
vecnorm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 850
 
 VECNORM: Normalise the vectors.
 
 Calling Sequence:
 
   nvec = vecnorn(vec);
 
 INPUT:
 
   vec		: An array of column vectors represented by a matrix of
 		size (dim,nv), where is the dimension of the vector and
 		nv the number of vectors.

 OUTPUT:
 
   nvec		: Normalised vectors, matrix the smae size as vec.
 
 Description:
 
   Normalises the array of vectors, returning the unit vectors.
 
 Examples:
 
   Normalise the two vectors (0.0,2.0,1.3) and (1.5,3.4,2.3)

   nvec = vecnorm([0.0 1.5; 2.0 3.4; 1.3 2.3]);

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
 
 VECNORM: Normalise the vectors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
vecrot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 751
 
 VECROT: Transformation matrix for a rotation around the axis given by a vector. 
 
 Calling Sequence:
 
   rx = vecrot (angle, vector);
 
 INPUT:
 
   angle : rotation angle defined in radians
   vector: vector defining the rotation axis

 OUTPUT:
 
   rx: (4x4) Transformation matrix.
 
 
 Description:
 
   Return the (4x4) Transformation matrix for a rotation about the axis
   defined by vector, and by the given angle.
 
 See also:
 
    nrbtform

    Copyright (C) 2011 Rafael Vazquez

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 
 VECROT: Transformation matrix for a rotation around the axis given by a vecto



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
vecrotx


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1098
 
 VECROTX: Transformation matrix for a rotation around the x axis. 
 
 Calling Sequence:
 
   rx = vecrotx(angle);
 
 INPUT:
 
   angle		: rotation angle defined in radians

 OUTPUT:
 
   rx		: (4x4) Transformation matrix.
 
 
 Description:
 
   Return the (4x4) Transformation matrix for a rotation about the x axis
   by the defined angle.
 
   The matrix is:
 
         [ 1         0            0          0]
         [ 0     cos(angle)  -sin(angle)     0]
         [ 0     sin(angle)   cos(angle)     0]
         [ 0         0            0          1]
 
 Examples:
 
    Rotate the NURBS line (0.0 0.0 0.0) - (3.0 3.0 3.0) by 45 degrees
    around the x-axis
 
    line = nrbline([0.0 0.0 0.0],[3.0 3.0 3.0]);
    trans = vecrotx(%pi/4);
    rline = nrbtform(line, trans);
 
 See also:
 
    nrbtform

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
 
 VECROTX: Transformation matrix for a rotation around the x axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
vecroty


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1138
 
 VECROTY: Transformation matrix for a rotation around the y axis. 
 
 Calling Sequence:
 
   ry = vecroty(angle);
 
 INPUT:
 
   angle		: rotation angle defined in radians
 
 OUTPUT:

   ry		: (4x4) Transformation matrix.
 
 
 Description:
 
   Return the (4x4) Transformation matrix for a rotation about the y axis
   by the defined angle.
 
   The matrix is:
 
         [  cos(angle)       0        sin(angle)       0]
         [      0            1            0            0]
         [ -sin(angle)       0        cos(angle)       0]
         [      0            0            0            1]
 
 Examples:
 
    Rotate the NURBS line (0.0 0.0 0.0) - (3.0 3.0 3.0) by 45 degrees
    around the y-axis
 
    line = nrbline([0.0 0.0 0.0],[3.0 3.0 3.0]);
    trans = vecroty(%pi/4);
    rline = nrbtform(line, trans);
 
 See also:
 
    nrbtform

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
 
 VECROTY: Transformation matrix for a rotation around the y axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
vecrotz


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1172
 
 VECROTZ: Transformation matrix for a rotation around the z axis. 
 
 Calling Sequence:
 
   rz = vecrotz(angle);
 
 INPUT:
 
   angle	: rotation angle defined in radians

 OUTPUT:
 
   rz		: (4x4) Transformation matrix.
 
 
 Description:
 
   Return the (4x4) Transformation matrix for a rotation about the z axis
   by the defined angle.
 
   The matrix is:
 
         [  cos(angle)  -sin(angle)       0          0]
         [ -sin(angle)   cos(angle)       0          0]
         [      0            0            1          0]
         [      0            0            0          1]
 
 Examples:
 
  Rotate the NURBS line (0.0 0.0 0.0) - (3.0 3.0 3.0) by 45 degrees
  around the z-axis
 
    line = nrbline([0.0 0.0 0.0],[3.0 3.0 3.0]);
    trans = vecrotz(%pi/4);
    rline = nrbtform(line, trans);
 
 See also:
 
    nrbtform

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
 
 VECROTZ: Transformation matrix for a rotation around the z axis.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
vecscale


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1061

 VECSCALE: Transformation matrix for a scaling.
 
 Calling Sequence:
 
   ss = vecscale(svec)
 
 INPUT:
 
   svec    : A vectors defining the scaling along the x,y and z axes.
             i.e. [sx, sy, sy]

 OUTPUT:
 
   ss	    : Scaling Transformation Matrix
 
 Description:
 
   Returns a (4x4) Transformation matrix for scaling.
 
   The matrix is:
 
         [ sx  0   0   0]
         [ 0   sy  0   0]
         [ 0   0   sz  0]
         [ 0   0   0   1]
 
 Example:
 
   Scale up the NURBS line (0.0,0.0,0.0) - (1.0,1.0,1.0) by 3 along
   the x-axis, 2 along the y-axis and 4 along the z-axis.
 
   line = nrbline([0.0 0.0 0.0],[1.0 1.0 1.0]);
   trans = vecscale([3.0 2.0 4.0]);
   sline = nrbtform(line, trans);
 
 See also:
 
    nrbtform

    Copyright (C) 2000 Mark Spink, 2007 Daniel Claxton

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48

 VECSCALE: Transformation matrix for a scaling.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
vectrans


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1066
 
 VECTRANS: Transformation matrix for a translation.
 
 Calling Sequence:
 
   st = vectrans(tvec)
 
 INPUT:
 
   tvec	: A vectors defining the translation along the x,y and
                   z axes. i.e. [tx, ty, ty]

 OUTPUT:
 
   st		: Translation Transformation Matrix
 
 Description:
 
   Returns a (4x4) Transformation matrix for translation.
 
   The matrix is:
 
         [ 1   0   0   tx ]
         [ 0   1   0   ty ]
         [ 0   0   1   tz ]
         [ 0   0   0   1  ]
 
 Examples:
 
   Translate the NURBS line (0.0,0.0,0.0) - (1.0,1.0,1.0) by 3 along
   the x-axis, 2 along the y-axis and 4 along the z-axis.

   line = nrbline([0.0 0.0 0.0],[1.0 1.0 1.0]);
   trans = vectrans([3.0 2.0 4.0]);
   tline = nrbtform(line, trans);
 
 See also:
 
    nrbtform

    Copyright (C) 2000 Mark Spink

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
 
 VECTRANS: Transformation matrix for a translation.